157,558 research outputs found

    Cloud Chaser: Real Time Deep Learning Computer Vision on Low Computing Power Devices

    Full text link
    Internet of Things(IoT) devices, mobile phones, and robotic systems are often denied the power of deep learning algorithms due to their limited computing power. However, to provide time-critical services such as emergency response, home assistance, surveillance, etc, these devices often need real-time analysis of their camera data. This paper strives to offer a viable approach to integrate high-performance deep learning-based computer vision algorithms with low-resource and low-power devices by leveraging the computing power of the cloud. By offloading the computation work to the cloud, no dedicated hardware is needed to enable deep neural networks on existing low computing power devices. A Raspberry Pi based robot, Cloud Chaser, is built to demonstrate the power of using cloud computing to perform real-time vision tasks. Furthermore, to reduce latency and improve real-time performance, compression algorithms are proposed and evaluated for streaming real-time video frames to the cloud.Comment: Accepted to The 11th International Conference on Machine Vision (ICMV 2018). Project site: https://zhengyiluo.github.io/projects/cloudchaser

    Access to multiliteracies: A critical ethnography

    Get PDF
    This paper reports the key findings of a critical ethnography, which documented the enactment of the multiliteracies pedagogy in an Australian elementary school classroom. The multiliteracies pedagogy of the New London Group is a response to the emergence of multimodal literacies in contemporary contexts of increased cultural and linguistic diversity. Giddens' structuration theory was applied to the analysis of systems relations. The key finding was that students, who were culturally and linguistically diverse, had differential access to multiliteracies. Existing degrees of access were reproduced among the student cohort, based on the learners' relation to the dominant culture. Specifically, students from Anglo-Australian, middle-class backgrounds had greater access to transformed designing than those who were culturally or socio-economically marginalized. These experiences were influenced by the agency of individuals who were both enabled and constrained by structures of power within the school and the wider educational and social systems

    Bayesian Design of Tandem Networks for Distributed Detection With Multi-bit Sensor Decisions

    Full text link
    We consider the problem of decentralized hypothesis testing under communication constraints in a topology where several peripheral nodes are arranged in tandem. Each node receives an observation and transmits a message to its successor, and the last node then decides which hypothesis is true. We assume that the observations at different nodes are, conditioned on the true hypothesis, independent and the channel between any two successive nodes is considered error-free but rate-constrained. We propose a cyclic numerical design algorithm for the design of nodes using a person-by-person methodology with the minimum expected error probability as a design criterion, where the number of communicated messages is not necessarily equal to the number of hypotheses. The number of peripheral nodes in the proposed method is in principle arbitrary and the information rate constraints are satisfied by quantizing the input of each node. The performance of the proposed method for different information rate constraints, in a binary hypothesis test, is compared to the optimum rate-one solution due to Swaszek and a method proposed by Cover, and it is shown numerically that increasing the channel rate can significantly enhance the performance of the tandem network. Simulation results for MM-ary hypothesis tests also show that by increasing the channel rates the performance of the tandem network significantly improves

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples
    • …
    corecore