9 research outputs found

    On derived dependencies and connected databases

    Get PDF
    AbstractThis paper introduces a new class of deductive databases (connected databases) for which SLDNF-resolution never flounders and always computes ground answers. The class of connected databases properly includes that of allowed databases. Moreover the definition of connected databases enables evaluable predicates to be included in a uniform way. An algorithm is described which, for each predicate defined in a normal database, derives a propositional formula (groundness formula) describing dependencies between the arguments of that predicate. Groundness formulae are used to determine whether a database is connected. They are also used to identify goals for which SLDNF-resolution will never flounder and will always compute ground answers on a connected database

    Implementing Groundness Analysis with Definite Boolean Functions

    Get PDF
    The domain of definite Boolean functions, Def, can be used to express the groundness of, and trace grounding dependencies between, program variables in (constraint) logic programs. In this paper, previously unexploited computational properties of Def are utilised to develop an efficient and succinct groundness analyser that can be coded in Prolog. In particular, entailment checking is used to prevent unnecessary least upper bound calculations. It is also demonstrated that join can be defined in terms of other operations, thereby eliminating code and removing the need for preprocessing formulae to a normal form. This saves space and time. Furthermore, the join can be adapted to straightforwardly implement the downward closure operator that arises in set sharing analyses. Experimental results indicate that the new Def implementation gives favourable results in comparison with BDD-based groundness analyses

    Efficient Groundness Analysis in Prolog

    Get PDF
    Boolean functions can be used to express the groundness of, and trace grounding dependencies between, program variables in (constraint) logic programs. In this paper, a variety of issues pertaining to the efficient Prolog implementation of groundness analysis are investigated, focusing on the domain of definite Boolean functions, Def. The systematic design of the representation of an abstract domain is discussed in relation to its impact on the algorithmic complexity of the domain operations; the most frequently called operations should be the most lightweight. This methodology is applied to Def, resulting in a new representation, together with new algorithms for its domain operations utilising previously unexploited properties of Def -- for instance, quadratic-time entailment checking. The iteration strategy driving the analysis is also discussed and a simple, but very effective, optimisation of induced magic is described. The analysis can be implemented straightforwardly in Prolog and the use of a non-ground representation results in an efficient, scalable tool which does not require widening to be invoked, even on the largest benchmarks. An extensive experimental evaluation is givenComment: 31 pages To appear in Theory and Practice of Logic Programmin

    Design of abstract domains using first-order logic

    Get PDF
    In this paper we propose a simple framework based on first-order logic, for the design and decomposition of abstract domains for static analysis. An assertion language is chosen that specifies the properties of interest, and abstract domains are defined to be suitably chosen sets of assertions. Composition and decomposition of abstract domains is facilitated by their logical specification in first-order logic. In particular, the operations of reduced product and disjunctive completion are formalized in this framework. Moreover, the notion of (conjunctive) factorization of sets of assertions is introduced, that allows one to decompose domains in `disjoint' parts. We illustrate the use of this framework by studying typical abstract domains for ground-dependency and aliasing analysis in logic programming

    Prime factorizations of abstract domains using first-order logic

    Full text link
    corecore