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ON DERIVED DEPENDENCIES AND 
CONNECTED DATABASES 

PHILIP W. DART 

D This paper introduces a new class of deductive databases (connected 
databases) for which SLDNF-resolution never flounders and always com- 
putes ground answers. The class of connected databases properly includes 
that of allowed databases. Moreover the definition of connected databases 
enables evaluable predicates to be included in a uniform way. An algo- 
rithm is described which, for each predicate defined in a normal database, 
derives a propositional formula (groundness f~rmulu) describing depen- 
dencies between the arguments of that predicate. Groundness formulae 
are used to determine whether a database is connected. They are also 
used to identify goals for which SLDNF-resolution will never flounder and 
will always compute ground answers on a connected database. a 

1. INTRODUCTION 

In the context of relational databases, it has long been realized that only some first 
order formulae are reasonable queries; these formulae have desirable properties 
such as domain independence and finiteness. Because these properties are unde- 
cidable, various decidable subclasses, of at least the domain independent formulae, 
have been proposed. These classes include range separable [4], range restricted 
[17,8], evaluable [9], allowed 1211, and safe [241.’ A survey of the decidability of 
domain independence and finiteness for different query languages is given in Ill]. 
In the context of deductive databases, additional properties of databases and 
queries are desirable, such as nonfloundering and, in some cases, ground answers. 
Proposed classes of databases with these undecidable properties include allowed 
databases [3,21,221. In order to ensure that certain properties hold, most of these 
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classes forbid or restrict the use of one or more of negation, functions, recursive 
predicates, and evaluable predicates. These restrictions are severe, since they 
exclude predicates commonly used in logic programming for such fundamental 
tasks as list manipulation and arithmetic. 

Some properties of the predicates of a deductive database relate to the 
propagation of bindings between the arguments of predicates during resolution. 
The manner in which bindings are propagated may be described as dependencies. 
Propositional formulae called groundness formulae can be derived for the predi- 
cates of a deductive database to describe these dependencies. An algorithm that 
derives groundness formulae for a deductive database with evaluable predicates is 
described; testing these groundness formulae provides a sufficient condition for 
determining whether the database is connected. The class of connected databases 
properly includes the class of allowed databases, and connected databases have 
some of the desirable properties of allowed databases. Groundness formulae can 
be used to identify goals for which SLDNF-resolution never flounders and com- 
putes ground answers on a connected database. 

Section 2 of this paper presents some of the background and motivation for this 
type of analysis, including discussion of the definition of the class of allowed 
databases and the application of modes [26] in defining an extension to this class. 
Section 3 defines a class of propositional formulae that can be used to describe 
dependencies. Section 4 defines groundness formulae, relates them to the clausal 
definitions of predicates in a normal database, and gives an algorithm for deriving 
groundness formulae for a normal database. In Section 5, the class of connected 
deductive databases is defined, leading to the proof of a theorem that identifies 
goals for which SLDNF-resolution will generate ground answers and not flounder 
on this class of databases. This section also contains a proof of the theorem that 
the class of connected databases properly includes the class of allowed databases. 

Unless otherwise stated, the notation and terminology used in this paper is 
consistent with [ 141. 

2. ALLOWED DATABASES AND OTHER PRELIMINARIES 

This section considers allowed formulae and databases and some of their proper- 
ties. Throughout this paper, it is assumed that every database and goal is expressed 
in some first order language, with equality, containing only finitely many constants 
and function symbols. 

Definition 2.1. A normal goal has the form +-L, A . * . A L, where L,, . . . , L, are 
literals. A database clause has the form A + L, A . . . AL, where A is an atom 
and L,,..., L, are literals. A normal database is a finite set of database clauses. 

Definition 2.2. A predicate p in a database D is extensional if all clauses in D 
defining p are ground unit clauses. A predicates p in a database D is 
intensional if some clause in D defining p is not a ground unit clause. A 
predicate p in a database D is evaluable if p is not defined by a set of clauses 
in D; occurrences of atoms of p encountered during query evaluation will be 
evaluated directly. 
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.Examples of evaluable predicates include arithmetic and relational predicates 
such as plus, >= , and -= . Evaluable predicates are often viewed as being 
defined by (possibly infinite) sets of ground unit clauses. 

Allowed formulae were introduced in [3]. The following definition of allowed 
databases, applicable to normal databases and goals, is adapted from that given in 
[13]. This definition permits allowed databases to contain restricted occurrences of 
the equality predicate. 

DeJinition 2.3. A variable x is pos (positive) in a formula if one of the following 
cases holds: 

x is pos in p(t,, . . ., t,) if x occurs in p(t,, . . . , t,) and p is not = . 

x isposin x=t or t=x if t isagroundterm. 

xisposin L,A.*. A L, if x is pos in some literal L,, 1 5 i S n. 

Definition 2.4. A normal goal G is allowed if every variable that occurs in G is pos 
in the body of G. A database clause A + L, A . . . A L, is admissible if every 
variable that occurs in the clause either occurs in the head A or is pos in the 
body L, A . . . AL,. A database clause A + L, A *. . AL, is allowed if every 
variable that occurs in the clause is pos in the body L, A . *. AL,. If D is a 
normal database and G is a normal goal, than D U {G) is allowed if the 
following conditions are satisfied: 

(a) Every clause in D is admissible. 

(b) Every clause in the definition of a predicate occurring in a positive literal in 
the body of G or the body of a clause in D is allowed. 

(cl G is allowed. 

Note that every allowed unit clause is ground and that every allowed clause is 
admissible. 

Three definitions are given next, followed by a theorem that expresses the 
desirable operational properties that are an important reason for restricting 
attention to the class of allowed databases [13]. 

Definition 2.5. A literal is suficiently instantiated if it is ground or positive. 

Definition 2.6. A safe computation rule is a function mapping normals goals 
(containing at least one sufficiently instantiated literal). to literals such that the 
value of the function for such a goal is always a sufficiently instantiated literal 
(called the selected literal) in that goal. 

Definition 2.7. Let D be a normal database, G a normal goal, and R a safe 
computation rule. The evaluation of D U {G) via Rflounders if at some point in 
the evaluation a goal is reached which contains no sufficiently instantiated 
literals. 
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Theorem. Let D be a normal database, G a normal goal, and R a safe computation 
rule. If D U {G} is allowed, then the following properties hold: 

(a) Query evaluation of D U (G} via R does not flounder. 
(b) Every R-computed answer for D U (G} is a ground substitution for all free 

variables in G. 

Unfortunately, the class of allowed formulae is severely restricted in several 
areas. The definition permits only a restricted form of equality in which one 
argument must be ground and therefore excludes some reasonable formulae such 
as the following example: 

p(x) A x=y A *q(Y). 

Also, the clauses in the common definitions of predicates such as append and 
member are not allowed. Despite the fact such clauses are admissible, the recursive 
calls in the clauses exclude them from being included in an allowed database. 
Furthermore, the definition does not consider evaluable predicates such as the 
arithmetic predicate plus. While many evaluable predicates could be redefined 
operationally to permit their inclusion in the class of allowed formulae, the 
resulting computational behavior would be undesirable in many cases. For exam- 
ple, the predicate plus could be defined by an infinite set of ground unit clauses 
(ignoring finiteness constraints on the database), but this is not a practical solution. 

The simple and concise definition of the class of allowed databases, given above, 
is possible because of the restrictive nature of the class. Although this definition 
could be extended to permit other uses of equality, it is preferable to define an 
extended class that permits equality and evaluable predicates in an uniform 
manner. It is shown below that dependency information relating the arguments of 
predicates can be used to define an extension of this class that permits evaluable 
predicates and less restrictive use of equality while preserving the desirable 
properties of the class. 

Modes 

It has long been recognized, in logic programming, that many evaluable and 
intensional predicates are not used to instantiate all of their arguments. For this 
reason, the notion of modes was introduced to describe the ways in which a 
predicate will be used in a PROLOG program [26]. Modes are states of instantia- 
tion of the arguments of a predicate; an N-ary predicate can have a set of N-ary 
tuples of modes associated with it describing the states of instantiation in which 
the predicate will be called. The automatic generation of modes for PROLOG 
predicates [15] and logic programs [6,7,27] has been discussed elsewhere. 

As discussed in the previous section, query evaluation for allowed databases has 
desirable properties that result from the propagation of bindings under SLDNF- 
resolution. To permit evaluable predicates in an extension of the class of allowed 
databases, the propagation of bindings must be considered for predicates defined 
by clauses containing evaluable atoms. To extend allowed databases, the state of 
instantiation of a literal after it has been evaluated is of interest; modes can be 
used to represent such information. A mode indicating definite instantiation to a 
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ground term is of obvious importance where SLDNF-resolution using a safe 
computation rule is to be applied. In this paper, the exclusive and exhaustive set of 
the following two modes will be considered: g (always instantiated to a ground 
term) and g (not always instantiated to a ground term). Such modes can be 
considered as propositions about the state of instantiation of an argument of a 
predicate. This set of modes can be used to provide a simple but approximate 
groundness analysis of deductive databases2 

These propositional modes can be used in n-ary tuples to describe possible 
states of instantiation of the arguments of an n-ary atom after evaluation during 
SLDNF-resolution. For most predicates, there are states from which an atom of 
that predicate will generate no further bindings, even in a successful or floundering 
SLDNF-computation; these states represent information that is useful in the 
analysis of a deductive database. For example, the mode tuples for the standard 
ternary predicate append would be (g, g,g), (g, g, g), (g, g, 2) and (g, g, g). 
The reason that, for example, the mode tuple (2, g, g) has not been included is 
that a call to append with the last argument ground will always ground its other 
two arguments in any successful or floundering SLDNF-computation. Obviously, 
the mode tuple (g, g, . . . , g) would be included for any predicate and would be 
the only mode tuple applicable to predicates defined only by allowed clauses. 

Using gj to denote the proposition “the ith argument of append is instantiated 
to a ground term”, the set of the mode tuples given above for append can also be 
expressed as the propositional formula 

in disjunctive normal form. Transforming this into conjunctive normal form gives a 
set of definite clauses. Rewriting each clause as an implication gives 

which can be interpreted as describing how append propagates bindings. This 
formula can be further abbreviated to g, A g, CJ g, and can be read informally as 
“if a call to append with its first two arguments ground succeeds, it will return its 
third argument ground, and vice versa”. A propositional formula that describes the 
dependencies between the arguments of a predicate in this way is a groundness 
formula. The conjuncts of a groundness formula are similar to sufety dependencies 
[281. Groundness formulae are used in Section 4 as a basis for extending the class 
of allowed formulae. 

3. DEPENDENCY FORMULAE 

This section describes dependency formulae, a class of propositional formulae that 
can be used to describe dependencies, and operations on dependency formulae. 
Groundness formulae, to be introduced in Section 4, are dependency formulae with 
the property that they can be used to describe the propagation of bindings during 

“By using information about the possible (partially ground) structures to which a variable may be 
instantiated, a more precise analysis can be performed. One approach is to use typing (for example 
polymorphism [5]) augumented by modes. This approach is used in [ 18, I]. 
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the evaluation of a goal on a database. Dependency formulae can be used to 
describe other dependencies such as type dependencies [5]. 

In the context of pure logic programming, it is not possible for a variable to be 
instantiated as a consequence of some other variable being uninstantiated.3 Thus a 
condition Ci, for the proposition gj (“the term ti is ground”) to be true, can be 
expressed as a propositional formula based only on whether certain other terms 
are ground. Therefore, Ci can be expressed as a positive propositional formula, 
that is, a formula in which the only operators are conjunction and disjunction. This 
motivates the following definition. 

Definition 3.1. Let P be the finite set of propositions {g,, . . . , g,], and C,, . . . , C, 
be positive propositional formulae on P\{gJ. Then a dependency formulae on 
P is a propositional formula on P of the form 

i; (C;+g;). 
i-l 

Example 3.1. The following are examples of dependency formulae. Each depen- 
dency formula is on the set of propositions appearing in the formula: 

false -+gl, me +g,, (g, +g,) A (8, +g*), 
(false j-8,) A (far= +gz) A (g, Vg2-tg3). 

These formulae can be simplified, respectively, to 

true, g,, g, *g2 &?I vg,-+g,. 

The following, as will be demonstrated by Proposition 3.1, are not dependency 
formulae: 

false, i?,, g, v&r,, g, Ag,+g, vi?,. 

Note that the condition true denotes an empty conjunction and the condition 
false denotes an empty disjunction. Throughout this paper, dependency formulae 
are expressed in a simplified form where convenient, as illustrated in Example 3.1. 

It will be useful to consider a model-theoretic characterization of dependency 
formulae. A model for a propositional formula F on a set of propositions P is 
identified with a subset of P. An equivalence class of propositional formulae can 
be characterized by the set of models for which the members of that class are true. 
The set of models that characterizes an equivalence class of dependency formulae 
is described by the following proposition. 

Proposition 3.1. Let F be a propositional formula on P. Then F is logically equivalent 
to a dependency formula on P if and only if the set M of models for F satisfies: 

(a) P EM, 

(b) for all I, E M and I, E M, I, n I, E M. 

“This is a contrast to PROLOG, in which nonlogical predicates such as “p(X, Y) :- cm(X), Y = 1.” 
can be defined. 
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PROOF. If F is logically equivalent to a dependency formula A,( E &, + g,, then 
the set M of models for F satisfies (a) and (b). 

(a): Trivial. 
(b): Consider two models I, EM and Z, EM. For any gi E P, one of the 

following two cases holds: 

(i) I, k gj and Z, k gi. Then I, n Z, k gi and I, f? I, k Ci --) gi. 

(ii) I, kg, or I, # gi. Assume I, kt gi. Since I, k Ci + gi then I, I# Ci. Ci is 
positive and therefore monotonic; thus I, fl Z2 #I Ci and I, f~ Z, k Ci + gi. 
(Similarly if Z, I+ gJ 

Therefore I, n I, k F and (b) holds. 
If the set M of models for F satisfies (a) and (b), then F is logically equivalent 

to a dependency formula on P. The following proof is adapted from the proof 
given for [2, Theorem 1.2.181. Let rC, be the conjunction of all propositional 
formulae of the form 

where Pj c P\ (g$, that hold for every model in M. J, can be rewritten trivially as a 
dependency formula F. By definition, for all Z EM, Z K $. It is sufficient to show 
that for all ZcP, if Zl=@ then ZEM. 

Consider Z c P such that Z E ~JI. If Z = P then Z EM by (a>. If Z cP, then it is 
shown that Z can be expressed as the intersection of members of M. 

For each g, 4 I, let sj be the formula h,gi A - gj. Then Z k [,, so Z l+ - fj;., 
where - 6, is equivalent to V, - g, V gj. Since I k + and Z !# - cj, sj cannot be a 
conjunct of $. Therefore, from the construction of $, there exists a model Zj EM 
such that Zj t+ [,. It is now shown that Z can be constructed as follows: 

I= n zj. 
gjEP\I 

Consider gi E P. If gi E I, then for all j such that gj E P\Z we have gi E Zj. If 
gi e I, then 5i k - gi and gi @ Zi. Therefore Z can be constructed as above. Since 
each Zj E M, we have Z EM by (b), and the result holds. q 

A partial order can be defined on the set of dependency formulae over a set of 
propositions as follows. 

Definition 3.2. Let F and F’ be dependency formulae over the set of propositions 
(g i, . . . , g,]. Then F’ I F if F -+ F’ is a tautology. 

It follows that F is maximal in this ordering if F is logically equivalent to 
g, A -*- A g,, and F is minimal in this ordering if F is logically equivalent to true. 
A maximal dependency formula corresponds to a formula in which each Ci is true, 
and a minimal dependency formula to one in which each Ci is false. 

Definition 3.3. The expression C[g/C’] denotes the result of substituting the 
formula C’ for the proposition g throughout the formula C. 
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Proposition 3.2. Ci[g,/false] --j g, is equivalent to Cj + g;. 

PROOF. Trivial. q 

By Proposition 3.2, the restriction in Definition 3.1 that C, does not include gj 
may be applied without loss of generality. The restriction prevents trivial depen- 
dencies such as false -+ g , from being expressed as, for example, g, + g,. 

Definitions 3.4, 3.5, and 3.6 introduce dependency formula operators. These 
operators, together with the propositions proved below, are used in Section 4 to 
derive an algorithm for generating groundness formulae for a database. Since the 
definition of dependency formulae is based on a restriction to the set of proposi- 
tional formulae, the result of operations on dependency formulae should obviously 
be propositional formulae for which the restriction holds. This property holds for 
the operators defined in Definitions 3.4, 3.5, and 3.6, which are statements of 
conjunction, disjunction, and exclusion respectively. 

Definition 3.4. Let F be the dependency formula AtiZg, E p)(Ci -+ gi) on P, and F’ 
be the dependency formula Ati: g, E p,I (Cl -+g,) on P’. Then F r\ F’ is the 
following dependency formula on P U P’: 

( A (Civc/'gi) A A 

(i: g,sPnP’) 
) ( 

(i:g,EP\P’) 

(c,+gil) 

A ( A (Y-Pi)). 

(i:g,=P’\P) 

Example 3.2. ((gr + gz) A gq) i((g, --, gZ) A (g3 --+ gJ) is equivalent to ((gr V 

g, + g*) A g4). 

This conjunction operator will be used in Section 4 to derive a groundness 
formula for a conjunction of literals from groundness formulae for each of the 
literals. 

Proposition 3.3. (F A F’) * (F i F’) is a tautology. 

PROOF. Since Ci v Cl + gi is equivalent to (Cj -+ gi) A (Cl + gi), the result follows 
directly from Definition 3.4. 0 

Although propositional conjunction (A 1 and dependency conjunction (r\ ) are 
logically equivalent, dependency conjunction is provided as a syntactic character- 
ization of the conjunction of two dependency formulae. 

Definition 3.5. Let F be a dependency formula on P, and F’ a dependency 
formula on P’. Then F i/ F’ is any dependency formula on P UP’ with the set 
of models (Z(I~F}U{Z’IZ’~F’)U{l~I’(Z~F and Z’bF’). 

By Proposition 3.1, a dependency formula F i/ F’ exists and can be determined. 
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Example 3.3. ((g, --+gz) A (8, -+g~)) G((gz - g3) A (gz --$ g4)) is equivalent to 

(s, At?, ‘tT3). 

This disjunction operator will be used in Section 4 to derive a groundness 
formula for a predicate from groundness formulae derived for the body of each of 
its clauses. 

Proposition 3.4. (F V F’) -+ (F i/ F’) is a tautology. 

PROOF. Consider an interpretation Z for F v F’. Then Z k F or I k F’. By Defini- 
tion 3.5, I k F i/ F’ and the result follows. q 

Example 3.3 shows that the converse of Proposition 3.4 is false. 

Proposition 3.5. If F -+ F’ is a tautology, then (F v F”) -+ (F’ i/F”) is a tautology. 

PROOF. Consider an interpretation I for F i/ F”. Then one of three cases holds: 

(i) /kF”. Then Z!=(F’i/F”). 

(ii) Zt=F.SinceF-+F’isatautology,Zi=F’and II=F’~/F”. 

(iii) Z = I, n I,, where !, k F and Z, ti F”. Since F + F’ is a tautology, Z, b F’. 
Thus I, n I, b F’ v F”. 

The result then follows. 0 

Dejinition 3.6. Let F be the dependency formula A,;: R, E p,(Ci + gi) on P. Then F 

excluding gk, F\g,, is the following dependency formula on P\ {gk}: 

A G[WGl[&/f~~~~l +g,). 
(i:&EP\kI)) 

Example 3.4. 

((g, +gd A (gz +gd)\gz = (g2[g2/g,l[g3/falsel -+gd 
= (g,[g,/falsel +gd 
= (8, -gd. 

Also 

((WU-tg,) *(St vg,+g,) * (8, -+&)I\& 

= Kg, vg,)[g,/g,Ag,I[g,/falsel +gJ 
A(g4[g1/g2 Ag31[g3/f~~sel -+gA 

= (((g2Ag3) Vd[g2/f~~sel -+gJ A (dgJfa~~e1 -+gJ 
= (8, -+g*) A (g4 -)gd. 

From Definition 3.6 and Example 3.4, it should be evident that the exclusion 
operation takes into account the transitivity of dependencies. The exclusion 
operator will be used in Section 4, in the derivation of a groundness formula for a 
predicate from groundness formulae for the bodies of its clauses, by excluding 
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dependency information relating to variables that occur in the body of a clause but 
not the head. 

Some properties of the exclusion operator are now proven. 

Proposition 3.6. Let F be a dependency formula and I an interpretation for F. Then 
ZkF\g, ifandonlyifZ~ForZUIg,]kF. 

PROOF. Proposition 3.2 is used throughout this proof. 

(a) Show that if Z E F\g, then Z k F or Z U {gk} F F. 
Suppose Z k C,. Then it is shown that Z u {gk} K F. If gj E Z then Z U {gkl 

K Cj --f gj. If gi QG I, then it is necessary to show that Z U {gk} k - C,. If 
g, does not occur in Ci, the result follows. Now Z k - Ci[ g,/C, I[ g,/fafsel. 
If g, occurs in Ci, then Z u {g,J b - Ci[gk/CkI[gJfalsel. But g, and C, 
are true and g; is false in Z u {g,}. So C,[g,/C,I[gJfalsel is just C;, and 
z u {g/J I= - c;. 

Suppose Z k N C,. Then it is shown that Z k F. If gj E Z then Z k Cj -+ g;. If 
g; E I, then it is necessary to show that Z F - Ci. If g, does not occur in 
C;, the result follows. Now Z k - Ci[gk/Ck][gi/falsel. If g, occurs in Ci, 
then Zl= N Ci[gk/Ckl[g,/falsel. But g,, gk7 and Ck are false in I. So 
Ci[gk/Ck][gi/false] is just C; and Z k= - C;. 

(b) Show that if Z k F or Z U {gk] k F then Z k F\g,. 
Suppose Z k F. Then it is shown that Z k Ci[gk/Ckl[g;/fakel + g;. If g; E Z, 

then this always holds. If gi G I, then if g, and Ck are both either true or 
false in I, then this will hold, since Z k= Ci -+ gi. f!h’ICe 1 b ck -+ gk, only 
the case where gi G I, g, E I, Z k - Ck, and gk occurs in Cj remains to 
be considered. In this case, since gk (which is true in Z) is being replaced 
by C, (which is false in I) in Ci (which is positive), it follows that 
Cj[ gk/Ck][ g/false] + C;, and the result follows. 

Suppose Z u {g,) != F. Then the proof is similar to that when Z k F, except 
that, since g, does not occur in F\g,, Z U {gk} b F\g, if and only if 
ZkF\g,. 0 

Proposition 3.7. Let F and F’ be dependency formulae on P. Then given gi E P and 

gkEP, 

(a> F implies F\gk. 

(b) F\gk\gj is logically eqUiVaknt t0 F\gj\gk. 

(c) If F implies F’, then F/g, in@eS F’\g,. 

PROOF. (a): This result follows directly from Proposition 3.6. 
(b): Let Z be an interpretation for F. Then, applying Proposition 3.6 twice, 

Z@F\gk\gj iff (ZbF\gk) or(ZU{gj} bFF\gk) 

iff (Zl=F)Or(ZU(gk}~F)or(Zu{gj)~F) 

or (Zu (gj} u {gk) +F). 

Since the right hand side is symmetric with respect to gk and gj, the result follows. 
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(c): Let Z be an interpretation for F. Then by Proposition 3.6, 

Zl=F\g, implies (Zi=F)or(ZU{g,)kF) (byProposition3.6) 

implies (Ii= F’) or (I U { gk} k F’) (since F implies F’) 

implies Z != F’\g, (by Proposition 3.6)) 

and the result follows. •I 

Following Proposition 3,7(b), given P = {gj, . . . , gJ, F\P may be used to 
denote F/g, . . * \gk. 

The next two results reveal how dependency formulae propagate information 
for conjunction and disjunction respectively. The first result shows that if a new 
proposition can be proved from a set of propositions and a conjunction of 
dependency formulae, then there is a “convenient” sequence in which the proof 
can be performed. 

Proposition 3.8. Let F,, . . . , Ft be dependency formulae on {g,, . . . , g,), and S, be a 
subset of {l,..., nl. Zf As,g; A (F, A 1.. A Ft) --) gj is a tautology, then there 
exists a sequence of sets S,, . . . , S, + ,, s 2 0, where i E S, + 1, with the following 
property.Forallt,l<tIs,thereexistssomeg,,lIkIn,k~S,,andsomeF,, 
1 _( m < 1, such that S,,, = S, u (kj and As, gi A F,,, --, g, is a tautology. 

PROOF. Let F be the formula As,gi A (F, /\ * . . i Ft). A sequence of sets can be 
constructed as follows. Set S = S,. While any F, occurs in F such that Asgi A 
F, + g, is a tautology and k @ S, then add k to S. When no such F, can be 
chosen, then S is a model for F. If F + gj is a tautology, then gj must hold for 
every model for F. Therefore j E S, and the sequence required is a subsequence of 
the sequence constructed above. q 

The next result shows that if a new proposition can be proved from a set of 
propositions and a disjunction of dependency formulae, then any one of the 
dependency formulae could be used to perform the proof. 

Proposition 3.9. Let F,, . . . , 
subset of (l,..., 

F, be dependency formulae on {g,, . . . , g,), and S be a 
n). Zf Asgi(F, i/ . . * V F,) -+gj is a tautology, then for all m, 

1 5 m I 1, Asgi A F,,, + gi is a tautology. 

PROOF. If A,gi A (F, i/ . . . i/ Ft) + gj is a tautology, then Asgi A (F, V - * . V F,) 
-+ gj is a tautology by Proposition 3.4. This is equivalent to ( Asgi A F, + gj) 
A . . . A ( Asgi A F[ --) gj> being a tautology. The result then follows. •I 

4. GROUNDNESS FORMULAE 

This section gives a normal definition of groundness formulae followed by defini- 
tions and results that relate groundness formulae for a predicate to the groundness 
formulae for the literals that occur in the bodies of its clauses. The results of this 
section apply to normal databases and goals with functions. Results for hierarchi- 
cal databases are presented first, then extended to cover recursion; these results 
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combine into an algorithm for deriving groundness formulae for each predicate 
defined in a deductive database. 

In Section 5, the groundness formulae derived by this algorithm are used to test 
if a database is connected. Connected databases are shown to have some of the 
desirable properties of allowed databases. 

The following definition describes the properties a dependency formula must 
have to be a groundness formula for a goal. This definition is used to verify that 
dependency formulae derived by the algorithm are groundness formulae. 

Definition 4.1. Let D be a database, G be a goal with variables x,, . . . , x,,, and 
P = (i: xiq is ground), where 77 is a substitution for x,,. . . , x,. Then a 
dependency formula F on {g,, . . . , g,} is a groundness formula for G with 
respect to D if the following holds: For all substitutions (T and for all j, 
1 Ijln, if 

is a tautology, then for all SLDNF-derivations for D U {Ga} that succeed or 
flounder with mgu’s O,, . . . ,8,, 

xjae, ..* Od 

is ground. 
gf,(Gl denotes the set of all groundness formulae for G with respect to D. 

That is, a dependency formula is a groundness formula for a goal G if it can be 
used, in conjunction with the set of variables in G ground by some substitution (T, 
to determine variables in Ga that will be ground in all successful or floundering 
computations for Ga. 

From Definition 4.1, it follows that if F is in gf,(G), F’ is a dependency 
formula, and F + F’ is a tautology, then F’ is in gf,(G). Also, As_gj A true -g, 
is a tautology iff j E 5” (and therefore xiv is ground), so true, and any minimal 
dependency formula for G, is in gf,(G) for any G and D. 

This paper is not concerned with deciding whether a given dependency formula 
is a groundness formula for a given goal and database, but rather with presenting a 
method for constructing a groundness formula for a given goal and database. From 
the statement above, members of the weakest set of dependency formulae-that 
is, minimal dependency formulae-give no useful information as to the propaga- 
tion of bindings. Intuitively, it is desirable to construct a member of the strongest 
possible set of groundness formulae, which provide the most information about 
which variables will be ground by SLDNF-resolution. The construction described 
below makes use of dependency information known about predicates to construct 
groundness formulae that provide this information when possible. For example, if 
a dependency is known to hold for all clauses in the definition of a predicate, then 
a groundness formula containing that dependency will be constructed. 

A definition that associates groundness formulae with predicates is required. 

Definition 4.2. Let D be a database, p an n-ary predicate in D, and F a 
dependency formula. Then F is a groundness formula for p with respect to D if 
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F is in gf,(+p(x,,..., x,)X The symbol gfo(p) denotes the set of all ground- 
ness formulae for I, with respect to L). 

Thus, gf,(p) and gfo(+-p,(x,, . . . , x,)) are equivalent. If F is in gf,(p), then F 
indicates conditions under which each argument of p is instantiated to a ground 
term by p, depending on which of the other arguments are ground terms. 

Example 4.1. The dependency formula g, A g, e g, is in gfJappend) for any 
database D containing the usual definition of the ternary predicate append. 

The dependency formula given as a groundness formula for append in Example 
4.1 describes intuitively how append behaves with respect to groundness. The 
statement made in this example will be proven later in this paper. 

A dependency formula F will be referred to as being maximal or minimal for a 
goal (predicate), meaning that F is maximal or minimal respectively for the set of 
propositions corresponding to the variables (arguments) of that goal (predicate). 

Proposition 4.1. Let D be a database, G be a goal, and F be a dependency formula. 

(a) If F is in gfo(G), then for all substitutions CT, F is in gfo(Gu). 

(b) Let F be maximal for G. Then F is in gfo(G) iff GO, . . ’ 0, is ground for all 
SLDNF-derivations for D U {G) that succeed orflounder with mgu’s O,, . . . ,8,. 

PROOF. Both results follow trivially from Definition 4.1. 0 

Thus, if a dependency formula F is maximal and is a groundness formula for 
some predicate, then that predicate always produces ground answers. 

To apply Definition 4.1 to goals with evaluable predicates, Definition 2.7, 
describing when query evaluation flounders, must be extended. The new definition 
of “sufficiently instantiated” given in Definition 4.3 below accomplishes this. A 
table of some evaluable predicates from PROLOG, together with groundness 
formulae that represent their computational behavior, appears below: 

Predicate Groundness formula 

true true 

x, =x2 g1 *g2 
x, >=x2 true . 
maxintcx,) g, 
PMX,, x27 x,) (gZAg3+g,)Ak, *gj+gdA((8, Agz-jgs) 

x, isx, g2 -)8l 

Groundness formulae for an evaluable predicate must correspond to the computa- 
tional behavior of that predicate. Since the behavior of evaluable predicates is 
independent of any particular database, groundness formulae such as those given 
above would apply to every database. 

As stated below, an evaluable literal is evaluated directly during query evalua- 
tion. Knowing groundness formulae for evaluable predicates permits the definition 
of “sufficiently instantiated” to be generalized to cover evaluable literals. This will 
ensure that, during query evaluation, an evaluable literal will be selected only 
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when its groundness formula guarantees that selection and evaluation of that 
literal will contribute to the sequence of mgu’s generated so far, that is, when its 
evaluation would ground some nonground term in the literal. 

Definition 4.3. A literal is sz@ciently instantiated if it is ground, or positive and not 
evaluable, or a positive, evaluable literal p(t,, . . . , t,,) such that, given the 
groundness formula F for p and S = Ii : ti is ground], there exists some j G S, 
1 5 j I n, such that ( hsgi A F -+ gj) is a tautology. 

This extended definition means that a safe computation rule may delay selection 
of positive, evaluable literals. Properties of computation rules that delay the 
selection of evaluable predicates are discussed elsewhere [16]. While it is conve- 
nient to treat the equality predicate as an evaluable predicate for the purpose of 
the analysis described in the rest of this section, selection of equality predicates 
during SLDNF-resolution should not be delayed. Delaying the execution of equali- 
ties is unnecessary, because of their determinism, and undesirable, because it 
would delay the propagation of bindings. 

Even given the above restriction on the selection of evaluable predicates, 
problems arise in the evaluation of some evaluable literals in some goals. Consider, 
for example, an evaluable predicate p of arity 4, with the groundness formula 
(gl -+gz) A (g3 -)gJ, and 4 of arity 2, with the groundness formula g, -+gz. It 
could reasonably be expected. that a goal such as +p(u, x2, xX, x,) A q(x,, x3) 
would propagate the binding from the first argument of p to the fourth. Only the 
first literal is sufficiently instantiated; evaluation of this literal is only certain to 
ground x2. The second literal is then sufficiently instantiated, and evaluation of it 
is certain to ground x3. If the first literal was not discarded by the query evaluation 
process, it could then be reevaluated to ground x4. This means positive literals, of 
predicates with groundness conditions like that above, may have to be selected and 
partially evaluated at various points during SLDNF-resolution to achieve the 
expected behavior. 

The groundness formula given above for p suggests that the arguments of p can 
be partitioned into two sets that are independent in terms of the propagation of 
bindings; this is an undesirable property. Rather than complicating the query 
evaluation process in this manner, it is therefore preferable to apply a further 
restriction on which dependency formulae may be groundness formulae for evalu- 
able predicates: if a groundness formulae indicates that a currently nonground 
term in an evaluable literal would be ground if that literal were selected, then it 
must indicate that the whole literal would be ground if it were selected. In the 
absence of evaluable predicates with the same property as p, this is not a severe 
restriction. The restriction can be stated formally as follows. 

Let the dependency formula F on P be the groundness formula for some 
evaluable predicate. Then, for all subsets P’ of P, if there exists gj E P\P’ 
such that Ap,gi A F -+ gj, then for all g, E P, Ap,gi A F --, g, is a tautology. 

Note that the above restriction holds for all of the groundness formulae in the 
above table. As stated earlier, it is desirable to know one of the strongest 
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groundness formulae, within the bounds of this restriction, for an evaluable 
predicate. 

The construction of groundness formulae for goals can now be considered. The 
following proposition describes how a groundness formula can be determined for a 
predicate consisting of ground unit clauses. 

Proposition 4.2. Let D be a database, p an extensional predicate in D, and F a 
maximal dependency formula for p. Then F zk in gfo(p). 

PROOF. For any n-ary extensional predicate p in D, a computation 
Du{+p(x,,..., ~,>a} will fail or succeed immediately, with any computed 
swers being ground substitutions. The result then follows from Definition 4.1. 

Note that Propositions 4.1 and 4.2 are consistent. 

for 
an- 

0 

The following proposition describes how a groundness formula can be deter- 
mined for a goal that is a single negative literal. 

Proposition 4.3. Let D be a database, G be a goal + -~p(t,, . . . , t,,), and F be in 
gfo(G). Then F is minimal. 

PROOF. Let F be of the form h,C, -+ gi, and x1,. . . , x, be the variables in G. 
Assume there exists Cj in F not equivalent to false. Let (+ be a substitution for 
Xl,. *. , x,, and S” = (i : xiu is ground, 1 I i I m), such that xja is not ground and 
As-gi + Cj is a tautology. u always exists, since it need only ground variables 
corresponding to the propositions in Cj, which never include xi. Then ( AsVgi A F 
-+gj) is a tautology, and from Definition 4.1, given mgu’s Or,. . . ,O, from a 
successful or floundering computation for Gu, xju8, . . * Od will be ground. But u 

was chosen such that xiu, and therefore Go, was not ground, so that Gu will 
flounder immediately. Thus the initial assumption, that there exists Cj in F not 
equivalent to false, is false, and F must be minimal. q 

The following proposition describes how a groundness formula can be deter- 
mined for an atomic goal + p( t 1, . . . , t,) given a groundness formula for the n-ary 
predicate p. 

Proposition 4.4. Let D be a database, G be a goal +p(t,, . . . , t,>, Sj = Ii: Xi is a 
variable in tj), F’ be a dependency formula on {gi, . . . , g,$ in gfo(p), and F be a 
dependency formula 

on the variables in G. Then F is in gf,(G). 

PROOF. tit Sfa = {i : tiu is ground} and S”” = {i : xi is a variable in G and xiu is 
ground). Using Proposition 3.7(a), if AsXWgi A F -+ gj is a tautology, then there is 
some g; such that /+g: A F’ + g, is a tautology, where xi is a variable in t,. 
Since t,utl, e.0 0, is ground iff, for all j E S,, xjuO, * * - 0, is ground, the result 
follows from Definition 4.1. •I 
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Using the notation of Section 3, the formula F above can be expressed more 
concisely and intuitively as 

Example 4.2. Using the groundness formula given for append in Example 4.1, 
the groundness formula derived for the atom. 

append(x,,x,.x,, 1.(2.(3.nil))) 

is 

(( g;og,)A(gSog,Ag3)A(g;t,true)A(g;Ag;t,g;))\g;\g;\g;, 

or equivalently 

(g; Ag~t,g;)[g;/g,l[gi/g,Ag,l[gj/truel, 

which are equivalent to 

g, Agz Agj. 

The resultant maximal dependency formula in Example 4.2 indicates that, as 
expected, evaluating the atom as a query would generate ground answers. 

The next two propositions demonstrate how a groundness formula may be 
determined for a normal goal, given a groundness formula for each of the 
predicates that occurs as a literal in that goal. 

Proposition 4.5. Let D be a database, and G be a goal + L, A . . . A L,. Let L, be a 
literal in G, and xj a variable in Li, such that for all computations for Lia that 
succeed or pounder with mgu’s 0,, . . . , ed, xia6, . - . 8, is ground. Then, for all 
computations for Ga that succeed or flounder with mgu’s q,, . . . , ve, x,aq, . . * qe 
is ground. 

PROOF. It is a straightforward inductive proof on the length of refutation to show 
that given any SLDNF-derivation Gu that succeeds or flounders with mgu’s 
771, *. .7 rle, there is a corresponding SLDNF-derivation for L;u that succeeds or 
flounders with mgu’s 8,, . . . , e,, such that at?, . . . ed is more general than (~7, . . . 
qe. The result then follows. 0 

Proposition 4.6, Let D be a database, G be a goal +- L, A . . . AL,, and Fk be in 
gfJ+- L,), 1 I k I 1. Then F, r\ . . . r\ F, is in gfo(G). 

PROOF. Let X ,, . . . , x, be the variables in G, Vk = (i : xi is a variable in Lk}, and 
S, = lgi : xiu is ground), where u is a substitution for x,, . _. , x,. Then, from 
Proposition 3.8, if As,gi A (F, i + . . i F,) --+ gj is a tautology, then there exists a 
sequence of sets S,, . . . , S,, ,, s 2 0, where j E S,, , with the following property. 
For all t, 1 I t 2 s, there exists some g k, 1 I k in, k @ S,, and some F,, 1 <rn I 1, 
such that S, + 1 = S, U {k} and As, gi A F, + g, is a tautology. Now, if s = 0, then 
j E S, and xju is ground. If s = 1, then from Definition 4.1 and Proposition 4.5, 
jES2 and x,ue, ~0. e, is ground for all successful or floundering computations 
for Gu. Consider a sequence with s > 1. Then x,uO, . * * 8, is ground for all 



DERIVED DEPENDENCIES AND CONNECTED DATABASES 179 

successful or floundering computations for Ga, for every k added to S, to get S,. 
Since there is some F, such that As gj A F,,, 
holds from Definition 4.1 and Proposition 4.5. 

+ gj is a tautology, then the result 
0 

Example 4.3. Using the groundness formula given for append in Example 4.1 
and given the groundness formula g, tf g, for = , a groundness formula for the 
goal +- appendcx,, x2, x,> Ax, =x3 is 

(8, r\g,++g,) Qg, +-+g3), 

which is equivalent to 

Note that the groundness formula derived for the goal 

+-(x; =t,) A ... A (x:,=t,) A&x;,...,x:,) 

via Proposition 4.6 is consistent with the groundness formula derived for +p(t, 
, . . . , t,). 

Proposition 4.7 below demonstrates how a groundness formula may be derived 
for a predicate p if a groundness formula is known for each of the predicates that 
occur in the body of each of the clauses. Where the set of clauses defining a 
predicate is to be analysed to determine some property of the predicate, the 
analysis may be simplified by considering a modified set of clauses in which the 
head of each clause contains only variables [25]. 

Definition 4.4. The homogeneous form of a clause C of the form 

P(t ,,...,t,) +-G 

is a clause of the form 

P(X,,...,X,) + (x1 = t,) A * . . A (x, = t,) A G, 

where x ,, . . . , x, are distinct and do not occur in C. Let D be a database and p 
be an n-ary predicate defined in D. Then the homogeneous form of p is the set 
of homogeneous forms of the clauses defining p in D. 

Example 4.4. The following is the standard definition of the ternary predicate 
append, used for concatenating or splitting lists: 

append(nil, Y], Y,) + 

append(y,.y,,y,,y,.y,) ~wpe~d(y,,y,,y,). 

The homogeneous form of append is 

append(x,,x2,x3) +-(x1 =nil) A (x2=yl) A (x,=y,) 

wend(x,,x,,x,) + (~1 =Y,.Y,) A (x2 =~4) A (~3 =Y,.Y,) 

A wvd(y,, y4, Y,). 
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Proposition 4.7. Let D be a database and p an n-ary predicate in D. Let the 
homogeneous form of p be 

A+B, 

Let V, = (gi : xi is a variable in Bk not in A}, and F, be in gf,(B,), 1 -< m 5 1. 
Then (F,\V,)i/ e.* i/ (F,\ V[) is in gfo(p). 

PROOF. Since the homogeneous form of p is computationally equivalent to the 
definition of p, only the homogeneous form of p need be considered. Let 
S” = Ii : xi in A and xiu is ground}. By Proposition 3.9, if 

( 
A giA(Fr\Vr)’ -0. 
s 

i/ ( FI\ V[) + gj) is a tautology, 

then, for all m, 1 <rn I 1, 

( 
/\ gi A (F,\V,) +gj is a tautology. 
S 1 

Then by Proposition 3.7(a) and Definition 4.1, for a computation for p(x,, . , . , x,b 
that succeeds or flounders with mgu’s 8,, . . . , t?,, xjdl * . * 13, will be ground no 
matter which clause of p is the first input clause to the computation. The result 
then follows from Definition 4.1. 0 

Note that Propositions 4.6 and 4.7 are consistent with Proposition 4.2. 

Example 4.5. The following definition is for a. predicate that holds if the first 
argument is a singleton list of the first element in the second argument list, or both 
arguments are nil: 

p(n,,n,) +-x,=nilAx,=nii 

P(x,,xz) +X1 =x,.nil Ax, =x3.x4. 

Given the groundness formula g, ++g, for = , a groundness formula for p is 

(<(gr -true) Qgz ~t~))\oM(g* V3) /\(g*~g3Ag4))\{g3,g4)), 

which simplifies to g, + g,. 

Example 4.6. Given the definition 

q(x*,x2,xJ +x1 2x,h(x, kxt -x2) A r(xq, x5) A (x3 kx, +x5) 

q(x,,xZ,x3)+x1<x2A(xqirx,-x,)Ar(x,,x,)~(x,isx,+x,) 

and given the groundness formula g, + g, for is, a groundness formula for the 
first clause of q is 

(tnreA(g,Ag,-,g,)j\(g,Ag,)j\(g,Ag,-,g,))\(g,,g,), 

which simplifies to g, +g,. Similarly, a groundness formula for the second clause 
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is g, + g,. A groundness formula for 4 can then be derived as (g, + gJ i/ (g2 + 
g3), which is equivalent to g, A g, + g,. 

Groundness Formulae for Recursive Databases 

Using the definitions and propositions given so far, groundness formulae can be 
derived for the predicates of a hierarchical database given groundness formulae for 
the evaluable predicates. The following definition and two propositions provide 
extensions to allow groundness formulae to be derived for the predicates defined 
in a recursive database. 

Definition 4.5. Let D be a database, G be a goal with variables x1,. . ., x,,, and 
S” = (i: xiv is ground}, where n is a substitution for x1,. . ., x,. Then a 
dependency formula F on {gr, . . . , g,) is a groundnessformula to length r for G 
with respect to D if the following holds: For all substitutions v and for all j, 
1 IjIn, if 

is a tautology, then for all SLDNF-derivations of length 5 r for D U (Gal that 
succeed or flounder with mgu’s 8,, . . , , e,, 

xjae, ... ed 

is ground. 
gfA(G) denotes the set of all groundness formulae to length r for G with 
respect to D. 

Definition 4.6. Let D be a database, p be an n-ary predicate in D, and F be a 
dependency formula. Then F is a groundness formula to length r for p with 
respect to D, if F is in gfb(+p(x,, . . . , x,)). 
gfA(p) denotes the set of all groundness formulae to length r for p with respect 
to D. 

From Definition 4.5 it follows that if F is in gf/j+‘(G), then F is in gfL(G). 
From Definitions 4.1 and 4.5 it follows that gf;;(G) and gf,(G) are equivalent. 

Propositions 4.8, 4.9, and 4.10 correspond to Propositions 4.4, 4.6, and 4.7 
respectively, extended to take the limit on derivation length into account. 

Proposition 4.8, Let D be a database, G be a goal +p(t ,, . . . , t,), Sj = {i: x, is a 
cariable in t,), F’ be a dependency formula on (gi, . . . , g$ in gfL( P), and F be a 

dependency formula 

on the variables in G. Then F is in gfL(G). 

PROOF. The proof of Proposition 4.4 can be extended trivially to prove this result. 
rl 



182 PHILlPW.DART 

Proposition 4.9. Let D be a database, G be a goal + L, A . . . A L,, and FL be in 

PROOF. Proposition 4.6 shows that F; r\ . . . r\ F; is in gfZ;CG) and hence in 
gf,(G). The corresponding proof is extended by adding that a refutation of length 
r for D u (Gcr,} cannot include a refutation of length greater than r for D U (L,aJ, 
for any L;, 1 Ii Il. 0 

Proposition 4.10. Let D be a database, and p be an n-ary predicate in D. Let the 
homogeneous form of p be 

A +B, 

A+B, 

Let V, = {g, : x,. is a variable in B, not in A), and l$ be in gf$ B,,), 1 -< m 2 1, 
Then (F;\V,) V . . . c(F;\V,) is in gf;;“(p). 

PROOF. Proposition 4.7 shows that (Fr\V,) \i . . . \;I(F;\V,) is in gfJp). The 
corresponding proof is extended by adding that a refutation of length r + 1 for 
DUI+p(x,,..., x,,)~,) cannot include a refutation of length greater than r for 
D U {B,,a,j for any B,, 1 5 m I 1. 0 

The following algorithm and proposition demonstrate how groundness formulae 
can be constructed for each predicate in a recursive normal database. 

Groundness Formula Algorithm. 

Input: A database D. 

output: A set P, of pairs (p, F,), where p is a predicate and F, is a 
dependency formula. 

Method: 

r := 0; 
for each predicate p in D do 

if p is evaluable then let FL be the groundness formula for p 
else let FL be any maximal dependency formula for p; 

repeat 
r:=r+ 1; 
for each predicate p in D do 

if p is evaluable then let FL be the groundness formula for p 
else let FL be constructed by Propositions 4.8, 4.9, and 4.10 from the 

dependency formula F,“-’ for each of the predicates 9 for which 
atoms occur in the bodies of the clauses defining p in D; 

until Fi is logically equivalent to F;-’ for each predicate p in D; 
return r, = I( p, F,“) I p is a predicate in D); 
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Proposition 4.11. Let D be a database. Then 

Cal The groundness formula algorithm with D as input terminates; 

(b) for each (p, F,) E I’,, F, is in gf,(p). 

PROOF. Let p be a predicate in D. If p is evaluable, F,‘-’ = F,’ for r > 0. If p is 
not evaluable, Fd’ is maximal for p. Therefore Fp’ --) F,’ is a tautology. If p is not 
evaluable, the derivation of F; has the form 

where each r/; is a set of propositions, for r > 0. Since F, --) F; implies that 

F, i F, + F; i F, (by Proposition 3.31, F, i/ F2 + F; 6 F2 (by Proposition 3.5). and 
F, \gk --) F; \gk [by Proposition 3.7(c)], then F,‘-’ * Fi must hold. Definition 3.2 
defines a partial order on the set of dependency formulae for logical implication. 
Since FL-’ ---f FL for all predicates p in D. there exists f > 0 such that for all 
predicates p in D, Fpf is logically equivalent to FL’-‘, and (al holds. It follows from 
Propositions 4.8, 4.9, and 4.10 that F,’ is a gft(p). It is trivially true that for any F; 
constructed for r > f, F,; is logically equivalent to F[,‘. Therefore Fi is logically 
equivalent to F,” and (bl holds. 0 

Example 4.7. Let D be the database consisting of the predicate append from 
Example 4.4 and the evaluable predicate = . Applying the algorithm described 
above. given the groundness formula g, c-) g2 for = , gives the following results: 

0 g, Agl Ag.7 g, -gz 
1 g, A (81 “SJ g, ++g2 
2 g, r\g, -g.; g, -g2 
3 g, Agl -g.? g, ++g2 

Since F,;il,pr,,‘f is equivalent to Fr$,pPrrri and Fi is equivalent to Fi , the algorithm 
terminates. returning I, = {(append, g, A g2 -gj>,( = ,g, -g2)). 

Note that the groundness formula derived for append in Example 4.7 is the 
same as that given in Example 4.1. 

5. CONNECTED DATABASES 

This section defines the class of connected databases. A result describing desirable 
properties of connected databases, similar to that given in Section 2 for allowed 
databases. is then proven. 

Definition 5.1. Let D be a normal database and G be a normal goal. A database 
clause in D with homogeneous form p(x,, . . , x,,) +- B is cormected if, for some 
F in gf,( + B), g, A . . . A g,, A F is maximal for + B. D is conrzected if each 
clause in D is connected. D U {GI is connected if D is connected and, for some 
F in gf,(G), F is maximal for G. 
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Given this definition, connectedness is a semantic property, based on the 
behavior of databases and goals under SLDNF-resolution. The algorithm for 
deriving groundness formulae given in Section 4 uses the syntactic form of a 
database. The groundness formulae derived for a database can therefore be used 
to provide a syntactic check of whether the database is connected.4 Having derived 
groundness formulae for a given database D, a groundness formula can be derived 
for any goal G with respect to D, and therefore, whether G is connected with 
respect to D can be tested without reconstructing groundness formulae for D. If 
the groundness formulae constructed for a database by the algorithm do not meet 
the requirements of Definition 5.1, no information about the connectedness of the 
database is revealed. Note that by Definition 5.1, if every variable that occurs in a 
clause occurs in its head, then that clause is connected. 

Example 5.1. Let D be the following database: 

P(X,Y) +r(x) A -s(y) 

q(x, Y) +-s(x) At(Y), 

where the unary predicates r, s, and t are extensional predicates. Let G be the 
goal cp(x, y) A q(x, y). Using the construction described in Section 4, 

r,=((~,g,),(q,g,),(r,g,),(s,g,),(t,g,)j. 

Using the groundness formulae in I,, we have that D, G, and D U {G) are 
connected. 

Note that, in Example 5.1, both of the clauses are admissible but not allowed, G 
is allowed, and D U (G} is not allowed. 

Some desirable properties of connected databases are now considered. 

Theorem 5.1. Let D be a connected normal database and G be a normal goal. If 
D U {G) is connected and R is a safe computation rule, then the following 
properties hold: 

(a) Every R-computed answer for D U IG) ti a ground substitution for all free 
variables in G. 

(b) Query evaluation of D U {G) via R does not flounder. 

PROOF. (a): This result follows directly from Definition 5.1 and Proposition 4.1. 
(b): We begin by proving inductively that, for every goal Gi in an SLDNF- 

derivation G, = G, G,, . . . of D u {G} via R, D U {Gi} is connected. For i = 0, the 
result is trivially true. Assume the result is true for G, to G,. Let L be the literal 
selected by R from Gi. If L is negative, the result holds, as Gi+, c Gi and any 
groundness formula for L is minimal. Let L be p(t,, . . . , t,). If p is evaluable, then 

41n fact, an equivalent condition for a database D to be connected can be applied as part of the 
algorithm for deriving groundness formulae. D is connected if during the construction of Fi, for all p 
and r (up to the ftxpoint), every application of the exclusion operation having the form F\g, has the Ci 
corresponding to gi not equivalent to false. Informally, this corresponds to every local variable having a 
satisfiable condition under which it will be ground. 
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let 0 be the substitution generated by evaluating L. Then LO will be ground, and 
all of the variables in L that occur in Gi will be ground in Gi+,, and the result 
holds. If p is not evaluable, then, for any clause of p selected, that clause is 
connected, and by Definition 5.1 the result holds. Therefore D U (G;} is connected 
for all i 2 0. 

Consider a goal G for which D U (G) is connected. Assume G contains no 
sufficiently instantiated literals. Then G consists only of (nonground) negative and 
evaluable literals. A goal consisting of only negative literals must be ground to be 
connected; therefore G contains at least one nonground evaluable literal. Consider 
each literal L in G. If L is negative and F is in gf,(+ Lj), then F is minimal. If 
L is evaluable, let L be of the form p(t ,, . . . , r,), F be a groundness formula for p, 
and S = {i: t, is ground}. By Definition 4.3 and the restriction on dependency 
formulae for evaluable predicates, there is no gj e S, 1 5 j 5 n, such that Asgi A 
F + gj is a tautology, since L is not sufficiently instantiated. Then if xk is a 
variable in an evaluable literal in G, and F is in gf,(G), then using Proposition 
3.8, it cannot hold that F-j g, is a tautology. Also, F maximal for G is a gfo(G), 
since D U (Gj is connected; therefore F +g, is a tautology. Thus the assumption 
that G contains no sufficiently instantiated literals as false, and (b) must hold. •I 

The following theorem shows that the class of allowed databases is a subclass of 
the class of connected databases. 

Theorem 5.2. Let D u (G} be allowed. Then D u (G) is connected. 

PROOF. It is sufficient to prove that, if p is a predicate in D defined only by 
allowed clauses, then every maximal dependency formula for p is in gfo(p). This 
can be shown directly from Proposition 4.1 and the theorem in Section 2 describing 
the query evaluation properties of allowed databases and goals. Alternatively, this 
property can be demonstrated (more usefully) by observing that the groundness 
formula derived for p by constructing I, will be maximal for p. This will hold even 
if the groundness formulae derived for predicates with definitions that include 
nonallowed clauses are all minimal. The result can then be shown to hold by using 
a maximal dependency formula as a groundness formula for predicates in D 
defined only by allowed clauses, and minimal dependency formula for all other 
predicates in D, to satisfy the sufficient condition described by Definition 5.1. q 

Example 5.1 demonstrates that the converse of Theorem 5.2 is false. 

6. CONCLUSION 

A new class of deductive databases, connected databases, has been defined. It is 
possible to identify goals that will not flounder and will produce ground answers on 
this class of database. The class of connected databases is much less restrictive 
than the class of allowed databases, permitting the inclusion of system predicates 
such as plus and general equality, and a greater class of recursive definitions such 

as for append, member, and reverse. 
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Various methods can be applied to improve the analysis described in Section 4. 
For example, consider the following database D: 

The groundness formula for p derived by the algorithm of Section 4 is (g, w gz)\ 
g,, which is equivalent to true. This groundness formula cannot be used to show 
that D U { tp(x>} is connected. After transforming D to the database D’ by 

P(Xl> +x1 =x2 A 1 =x*, 

the groundness formula for p is ((g, ++gz) A g,)\g,, which is equivalent to g,. 
Then D’ U (+p(x)) is connected. In general, an equality can be partially inter- 
preted, according to the equality axioms [14], to reduce it from the form t = t’ to 
the form L‘, = t, A . . . A L’,, = t,, where every r is a term and every L‘ is a variable. 
Applying the equality axioms in this way allows the algorithm in Section 4 to 
analyse the dependencies between variables more precisely. 

Unfolding [19,10] can also be used to achieve a more precise analysis of 
dependencies. Dependency analysis is performed at the level of variables within 
the body of a clause, but is limited by the arguments to predicates in passing 
dependencies from one predicate to another. Unfolding can, in some cases, 
eliminate the loss of resolution involved in considering dependencies in terms of 
arguments to a predicate. For example, the predicate p in the database D given by 

P(f(X,>X,]) +x1 =x2 

has the groundness formula true, which cannot be used to show that D U 
{ +p(f(l, x>>} is connected. Applying unfolding gives D U { + 1 =x}, which is 
trivially connected. 

The algorithm described in Section 4 has been implemented in NU-PROLOG 
[20]. Many improvements on the basic algorithm were implemented; in particular, 
the groundness formula for a predicate is only recalculated if a new groundness 
formula was derived for a literal in a body of that predicate, and equalities are 
partially evaluated as described above. The implementation operates in two 
phases. The first computes groundness formulae for a database and reports where 
the database is not connected. The second is an adaptation of NU-PROLOG 
query language that transforms queries, using a modified Lloyd-Topor transforma- 
tion [12], and checks that they are connected before passing them to the inter- 
preter. 

The implementation was used successfully in 1986 for a “Database Systems” 
course in which students use the NU-PROLOG query language to interrogate 
databases. The addition of groundness formula checking to the interface does not 
significantly degrade the response time, since only the query (and the groundness 
formulae derived for the database) need be examined. 

Dependency formulae have been used to represent type dependencies [5], and 
further research is being conducted into the use of dependency formulae to 
represent functional and finiteness dependencies, and to apply dependency analy- 
sis to tasks such as query optimization through subquery reordering. 
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