research

Securing Databases from Probabilistic Inference

Abstract

Databases can leak confidential information when users combine query results with probabilistic data dependencies and prior knowledge. Current research offers mechanisms that either handle a limited class of dependencies or lack tractable enforcement algorithms. We propose a foundation for Database Inference Control based on ProbLog, a probabilistic logic programming language. We leverage this foundation to develop Angerona, a provably secure enforcement mechanism that prevents information leakage in the presence of probabilistic dependencies. We then provide a tractable inference algorithm for a practically relevant fragment of ProbLog. We empirically evaluate Angerona's performance showing that it scales to relevant security-critical problems.Comment: A short version of this paper has been accepted at the 30th IEEE Computer Security Foundations Symposium (CSF 2017

    Similar works

    Full text

    thumbnail-image

    Available Versions