Databases can leak confidential information when users combine query results
with probabilistic data dependencies and prior knowledge. Current research
offers mechanisms that either handle a limited class of dependencies or lack
tractable enforcement algorithms. We propose a foundation for Database
Inference Control based on ProbLog, a probabilistic logic programming language.
We leverage this foundation to develop Angerona, a provably secure enforcement
mechanism that prevents information leakage in the presence of probabilistic
dependencies. We then provide a tractable inference algorithm for a practically
relevant fragment of ProbLog. We empirically evaluate Angerona's performance
showing that it scales to relevant security-critical problems.Comment: A short version of this paper has been accepted at the 30th IEEE
Computer Security Foundations Symposium (CSF 2017