91,545 research outputs found

    On Covering Segments with Unit Intervals

    Get PDF
    We study the problem of covering a set of segments on a line with the minimum number of unit-length intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls in the unit interval. We also study several variants of this problem. We show that the restrictions of the aforementioned problems to the set of instances in which all the segments have the same length are NP-hard. This result implies several NP-hardness results in the literature for variants and generalizations of the problems under consideration. We then study the parameterized complexity of the aforementioned problems. We provide tight results for most of them by showing that they are fixed-parameter tractable for the restrictions in which all the segments have the same length, and are W[1]-complete otherwise

    Fast Fencing

    Get PDF
    We consider very natural "fence enclosure" problems studied by Capoyleas, Rote, and Woeginger and Arkin, Khuller, and Mitchell in the early 90s. Given a set SS of nn points in the plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and (2) the total length of the curves is minimized. We consider two main variants. In the first variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent formulation of this version is that we have to enclose nn unit disks, paying only the total length of the enclosing curves. In the other variant, we are allowed to use at most kk closed curves and pay no cost per curve. For the variant with at most kk closed curves, we present an algorithm that is polynomial in both nn and kk. For the variant with unit cost per curve, or unit disks, we present a near-linear time algorithm. Capoyleas, Rote, and Woeginger solved the problem with at most kk curves in nO(k)n^{O(k)} time. Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential time. At the time, they conjectured that the problem with kk curves is NP-hard for general kk. Our polynomial time algorithm refutes this unless P equals NP

    Geometry, topology and dynamics of geodesic flows on noncompact polygonal surfaces

    Full text link
    We establish the background for the study of geodesics on noncompact polygonal surfaces. For illustration, we study the recurrence of geodesics on ZZ-periodic polygonal surfaces. We prove, in particular, that almost all geodesics on a topologically typical ZZ-periodic surface with boundary are recurrent.Comment: 34 pages, 13 figures. To be published in V. V. Kozlov's Festschrif

    Optimal randomized incremental construction for guaranteed logarithmic planar point location

    Full text link
    Given a planar map of nn segments in which we wish to efficiently locate points, we present the first randomized incremental construction of the well-known trapezoidal-map search-structure that only requires expected O(nlogn)O(n \log n) preprocessing time while deterministically guaranteeing worst-case linear storage space and worst-case logarithmic query time. This settles a long standing open problem; the best previously known construction time of such a structure, which is based on a directed acyclic graph, so-called the history DAG, and with the above worst-case space and query-time guarantees, was expected O(nlog2n)O(n \log^2 n). The result is based on a deeper understanding of the structure of the history DAG, its depth in relation to the length of its longest search path, as well as its correspondence to the trapezoidal search tree. Our results immediately extend to planar maps induced by finite collections of pairwise interior disjoint well-behaved curves.Comment: The article significantly extends the theoretical aspects of the work presented in http://arxiv.org/abs/1205.543
    corecore