1,951 research outputs found

    On the information carried by programs about the objects they compute

    Get PDF
    In computability theory and computable analysis, finite programs can compute infinite objects. Presenting a computable object via any program for it, provides at least as much information as presenting the object itself, written on an infinite tape. What additional information do programs provide? We characterize this additional information to be any upper bound on the Kolmogorov complexity of the object. Hence we identify the exact relationship between Markov-computability and Type-2-computability. We then use this relationship to obtain several results characterizing the computational and topological structure of Markov-semidecidable sets

    On the Information Carried by Programs about the Objects They Compute

    Get PDF
    In computability theory and computable analysis, finite programs can compute infinite objects. Presenting a computable object via any program for it, provides at least as much information as presenting the object itself, written on an infinite tape. What additional information do programs provide? We characterize this additional information to be any upper bound on the Kolmogorov complexity of the object. Hence we identify the exact relationship between Markov-computability and Type-2-computability. We then use this relationship to obtain several results characterizing the computational and topological structure of Markov-semidecidable sets

    Kolmogorov Complexity Theory over the Reals

    Get PDF
    Kolmogorov Complexity constitutes an integral part of computability theory, information theory, and computational complexity theory -- in the discrete setting of bits and Turing machines. Over real numbers, on the other hand, the BSS-machine (aka real-RAM) has been established as a major model of computation. This real realm has turned out to exhibit natural counterparts to many notions and results in classical complexity and recursion theory; although usually with considerably different proofs. The present work investigates similarities and differences between discrete and real Kolmogorov Complexity as introduced by Montana and Pardo (1998)

    Fourier spectra of measures associated with algorithmically random Brownian motion

    Full text link
    In this paper we study the behaviour at infinity of the Fourier transform of Radon measures supported by the images of fractal sets under an algorithmically random Brownian motion. We show that, under some computability conditions on these sets, the Fourier transform of the associated measures have, relative to the Hausdorff dimensions of these sets, optimal asymptotic decay at infinity. The argument relies heavily on a direct characterisation, due to Asarin and Pokrovskii, of algorithmically random Brownian motion in terms of the prefix free Kolmogorov complexity of finite binary sequences. The study also necessitates a closer look at the potential theory over fractals from a computable point of view.Comment: 24 page

    Complexity vs Energy: Theory of Computation and Theoretical Physics

    Full text link
    This paper is a survey dedicated to the analogy between the notions of {\it complexity} in theoretical computer science and {\it energy} in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra, Geometry, Information", Tallinn, July 9-12, 201

    Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts in the same volume. Part I is dedicated to information theory and the mathematical formalization of randomness based on Kolmogorov complexity. This last application goes back to the 60's and 70's with the work of Martin-L\"of, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.Comment: 40 page

    Complexity vs energy: theory of computation and theoretical physics

    No full text
    • …
    corecore