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On the information carried by programs

about the objects they compute∗

Mathieu Hoyrup and Cristóbal Rojas

September 23, 2014

Abstract

In computability theory and computable analysis, finite programs can compute infinite ob-

jects. Presenting a computable object via any program for it, provides at least as much infor-

mation as presenting the object itself, written on an infinite tape. What additional information

do programs provide? We characterize this additional information to be any upper bound on

the Kolmogorov complexity of the object. Hence we identify the exact relationship between

Markov-computability and Type-2-computability. We then use this relationship to obtain sev-

eral results characterizing the computational and topological structure of Markov-semidecidable

sets.

1 Introduction

We assume that the reader is familiar with Turing machines and basic computability theory over
the natural numbers. To define computability over infinite objects, one still uses Turing Machines
but has to set up a way for them to access such objects. In any case, the input of the machine is
a finite or infinite sequence of symbols written on the input tape and one has to choose a suitable
way to describe infinite objects by such symbolic sequences. We now briefly describe the two main
approaches that have been developed.

The first one was introduced and studied by Turing [Tur36], Grzegorczyk [Grz57], Lacombe
[Lac55] and later Kreitz and Weihrauch [Wei00] and is nowadays known as Type-Two computability.
In this model, the description itself is completely written on the input tape of the machine. At any
time, the machine can read a finite portion of this description. We will call this the Type-2-
model. The second approach, promoted by the Russian school led by Markov [Mar54, Kus06],
gives an alternative. In this model one restricts the action of the machine to operate on computable
(infinite) objects only, in the sense that they have computable descriptions. Instead of having
access to description themselves as in the Type-2-model, the machine here has access to a program
computing a description. We will call this the Markov-model. These two approaches provide a
priori different computability notions, and their comparison has been an important subject of study
[Ric53, MS55, Sha56, KLS57, Cei62, Fri58, PE60, Her96, Spr01].

It is clear that the Markov-model is at least as powerful as the Type-2-model, so the question is:
does it allow to compute strictly more than the Type-2-model? The answer depends on the objects
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that we consider, and the algorithmic tasks we want to perform on them. The computational power
of these models can therefore be classified according to these parameters. Table 1 summarizes
the most celebrated results in this direction. The computable objects considered are the partial
computable functions and the total computable functions. The algorithmic tasks considered are
decidability and semidecidability of properties about these objects.

Table 1: Some celebrated results comparing Markov-computability to Type-2-computability.

Objects Decidability Semidecidability

Partial computable functions Markov ≡ Type-2
Rice

Markov ≡ Type-2
Rice−Shapiro

Total computable functions Markov ≡ Type-2
Kreisel et al/Ceitin

Markov > Type-2
Friedberg

Kreisel-Lacombe-Shœnfield/Ceitin’s Theorem [KLS57, Cei62] for instance, states that over total
computable functions, Markov-decidability is equivalent to Type-2-decidability1. This means that
the machine trying to decide a property, when provided with a program p for a function f , cannot
do better than just running p to evaluate f . The machine gains no additional information about f
from p. We note that Ceitin’s version of this result shows that over the real line, Markov-computable
functions and Type-2-computable functions coincide.

On the other hand, Friedberg [Fri58] exhibited properties about total computable functions that
are Markov-semidecidable but not Type-2-semidecidable. So that for semidecidability, a program p
for a function f does give some additional information that can be exploited by the machine. The
main question we rise in this paper is the following:

Can we characterize the additional useful information contained in a program computing an object,
as compared to having the object itself ?

To get some intuition, consider the following fundamental difference between the two models.
In the Type-2-model, at any given time only a finite portion of the description of x is provided,
which corresponds to a finite approximation of x. Clearly, this approximation is also good for
infinitely many other objects – all the ones that are “close enough” to x. In particular, x is never
completely specified. In the Markov-model on the other hand, the program provided to the machine
completely specifies x from the beginning of the calculation! This increases the predictive power
of M , which might therefore be able to perform stronger calculations. The point is to understand
in which situations this fact can be exploited. A trivial example is obtained when one considers
the relativized setting: every function is Markov-computable relative to an appropriate (powerful
enough) oracle. Whereas whatever oracle A we consider, Type-2-computable functions relative to
A must always be continuous.

This observation takes us to another interesting point that separates the Markov-model from
the Type-2-model, namely their topological structure. It is well known that Type-2-computability
and topology are closely related: e.g. the Type-2-computable functions are exactly the effectively
continuous ones, and the Type-2-semidecidable properties exactly correspond to the effectively open
sets. The connection between Markov-computability and topology, on the other hand, appears to be

1In its original form, this theorem is stated for functionals.
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much less clear. In particular, Friedberg’s construction provides a Markov-semidecidable set which
is not open (for the standard topology restricted to computable elements).

An obvious solution to relate Markov-computability to topology is to consider precisely the
topology generated by all the Markov-semidecidable sets – the so called Ershov’s topology. The
question then becomes:

How do Markov-semidecidable sets look like? can we characterize Ershov’s open sets ?

In the present paper we make use of Kolmogorov Complexity to provide a fairly complete
answer to these and other questions in different settings. Our main result is a characterization of
the additional information provided by a program, when the class of objects considered are the
computable points of an effective topological space. It can be informally stated as follows (see
Section 3):

Theorem A Over effective topological spaces, a program computing x provides as much information
as a description of x itself together with any upper bound on the Kolmogorov complexity of
x.

Here, the Kolmogorov complexity K(x) of a computable infinite object x is to be understood as
the size of the shortest program computing a description of x. Obviously, any program for x trivially
provides, in addition to a description, an upper bound on its Kolmogorov complexity. Theorem A
says that this bound is all the exploitable additional information it provides.

Thus, we have a third model to deal with computable infinite objects. In this model, input x
is presented to the machine as a pair (d, k), where d is a description for x and k a bound on the
Kolmogorov complexity of x. We shall call this the K-model. In these terms, a particular case
of Theorem A can be stated as follows: if X , Y are effective topological spaces (not necessarily
metric) and Xc, Yc are the corresponding set of computable points, then a function f : Xc → Yc is
Markov-computable if and only if it is K-computable.

A simple observation shows that one can not in general compute a program for x from a K-
description of x, meaning that the two notions are not fully equivalent. Despite this fact, Theorem A
is valid in great generality: it holds for decidability, semidecidability and also higher in the hierarchy.
In proving this we make a fundamental use of the Recursion Theorem. Interestingly, although the
Recursion Theorem does not relativize (a well known fact), Theorem A relative to the halting set
also holds in many cases, but for entirely different reasons.

The K-model also sheds light into the structure of the open sets of Ershov’s topology, providing
a nice characterization in terms of Kolmogorov complexity, at least in the particular case of the
extended natural numbers N = N ∪ {∞}.

Theorem B On the extended natural numbers, the Ershov topology is generated by the sets {n}
and {x ∈ N : K(x) < h(x)} for some computable order h.

With the same techniques, we are able to prove several other related results that are interest-
ing on their own. For example, we show that there is no effective enumeration of the Markov-
semidecidable sets of N and that there is a Markov-semidecidable subset of {0, 1}N that is not
Σ0

2.
Finally, in the search of the limitations of our techniques, we turn our attention to more general

spaces and analyze functions with values on topological spaces that have an admissible represen-
tation but are not countably-based. In particular, when this is the space of open subsets of Baire
space O(B), we show that Markov-computability can be strictly stronger than K-computability:
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Theorem C. For functions from the partial computable functions with values on O(B) one has that:

Markov-computability > K-computability > Type-2-computability.

One of the main question that remains open is whether the first strict inequality in Theorem C
holds if we replace the partial computable functions by the total ones. The situation is summarized
in table 2.

Table 2: Some results comparing Markov-computability, K-computability and Type-2-
computability. S = {⊥,⊤} is the Sierpiński space whose topology is generated by {⊤}.

Space X Semidecidable ∅′-Semidecidable F: X → O(B)

S Markov ≡ K ≡ Type-2 Markov > K ≡ Type-2 Markov > K ≡ Type-2

Partial functions Markov ≡ K ≡ Type-2 Markov > K ≡ Type-2 Markov > K > Type-2

Total functions Markov ≡ K > Type-2 Markov ≡ K > Type-2 Markov ? K > Type-2

The paper is organized as follows. We start by providing the basic notions and definitions in
Section 2. In Section 3 we introduce the K-model and present our main results. Section 4 contains
several results that shed light on the structure of Markov-semidecidable sets and in Section 5 we
present the announced negative results. Finally, Section 6 contains a list of related problems for
possible future work.

2 Background

2.1 Notations and basic definitions.

We assume the reader is familiar with computability theory. Let {ϕe}e∈N be an effective enumeration
of the set of computable partial functions. We denote by Pc(N) the collection of c.e. subsets of N

and We = dom(ϕe) the induced effective enumerations of its elements. If A ∈ Pc(N), an index of
A is a number e such that We = A. If A is a c.e. set, implicitly given by an index, A[s] is the finite
subset of A enumerated by stage s, so that A[s] ⊆ A[s + 1] and A =

⋃

s A[s]. We use the notation
A[at s] = A[s] \ A[s − 1] if s ≥ 1 and A[at 0] = A[0]. If F is a finite subset of N then [F ] is the
collection of supersets of F . B = NN will denote Baire space.

2.2 Effective topological spaces.

An effective topological space is a tuple (X , τ,B) where (X , τ) is a non-empty topological space,
B = {Bi}i∈N is numbered basis such that there exists a computable function f : N×N → N satisfying
Bi ∩ Bj =

⋃

k∈Wf(i,j)
Bk.

Given an effective topological space X , the standard representation is defined as a surjective
map ρ : dom(ρ) ⊆ B → X satisfying ρ(f) = x whenever {f(n) : n ∈ N} = {i : x ∈ Bi}. We will
call any f ∈ ρ−1(x), a Type-2-name of x. An element x is computable if it has a computable
Type-2-name. We denote by Xc the set of computable points. The countable set Xc has a canonical
numbering ν defined by ν(i) = x if ϕi is a name of x. We will call such an e a Markov-name of
x. To facilitate the reading of the paper, we will use the font A, N, U when working on the space
Xc, and the fonts A,N ,U when working on X .
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2.2.1 Type-2-computability and Markov-computability

Let (X , τ,B) and (Y, τ ′,B′) be effective topological spaces. In what follows R stands for both Type-
2 and Markov. A set A ⊆ Xc is R-semidecidable if there is a Turing machine M which, when
provided with an R-name of x, halts if and only if x ∈ A. A function F : Xc → Yc is R-computable
if there is a Turing machine M which, when provided with an R-name of x, writes an R-name for
f(x) on its one-way output tape. It is not hard to see that a function f : Xc → Yc is R-computable
if and only if the sets f−1(B′

i) are uniformly R-semidecidable.

Remark 2.1. It is worth noting that for a function f : Xc → Yc, being Markov-computable is
equivalent to having a Machine M which, provided with a Markov-name of x, outputs a Type-2-
name of f(x). Indeed, combining the program for x with the program for M gives a program for
f(x). We also note that a function f : Xc → Yc which is Type-2-computable does not necessarily
extends to a Type-2-computable function f : X → Y .

A numbering η of Xc is admissible if it is equivalent to the canonical numbering ν in the sense
that there exists partial computable functions f and g such that ν = η ◦ f on dom(ν) and η = ν ◦ g
on dom(η). The Markov-computability notions do not depend on the choice of the admissible
numbering. We will often use the admissible numbering η of Xc defined by η(e) = x whenever
We = {i ∈ N : x ∈ Bi}.

Type-2-computability and topology are closely related. A set U ⊆ X is an effective open set
if there exists e ∈ N such that U =

⋃

i∈We
Bi. If A = U ∩ Xc, we will then say that A is effectively

open in Xc. The connection is established by the following result (see [Wei00]).

Theorem 2.1. A set A ⊆ Xc is Type-2-semidecidable if and only if it is effectively open in Xc.
Therefore, a function f : Xc → Yc is Type-2-computable if and only if it is effectively continuous,
i.e. the sets f−1(B′

i) are uniformly effectively open in Xc.

As mentioned in the introduction, in order to have an analogous result for Markov-computability,
we have to use Ershov’s topology on Xc, which may be different from the topology of X restricted
to Xc.

Example 2.1. Let B = NN be the Baire space. For each finite sequence u, let [u] be the set of infinite
extensions of u, called a cylinder. We endow B with the topology generated by the cylinders, which
is an effective topology. The standard numbering ϕe of partial computable functions, restricted to
the indices of total functions is an admissible numbering of Bc.

Example 2.2. Let P(N) be space of subsets of N. For each finite set F ⊆ N, let [F ] be the set of
supersets of F . We endow P(N) with the Scott topology, generated by the sets [F ], which is an
effective topology. The standard numbering We = dom(ϕe) of c.e. sets is admissible numbering of
P (N)c

3 Main results

In this section, (X , τ,B, νB) is always an effective topological space and Xc is the subset of com-
putable elements. We start by explaining the main idea behind our results. Let x ∈ Xc be a
fixed element. From a machine Type-2-semideciding a set A containing x, one can compute a
neighborhood N of x such that for every element y ∈ Xc the following implication holds:

y ∈ N =⇒ y ∈ A. (1)
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Now assume that A has the weaker property of being Markov-semidecidable, and still contains
x. From a machine Markov-semideciding A one cannot in general compute such a neighborhood,
which may not exist as shown by Friedberg’s example. However, from the Markov-name of any
other element y ∈ Xc one can still compute a neighborhood Ny of x such that implication (1)
holds. Further, as a finite intersection of neighborhoods is still a neighborhood, one can compute
a neighborhood N satisfying implication (1) for all y in a given finite set. Using this argument
we can show that the problem x ∈ A can be Type-2-semidecided as soon as we know, in addition,
a finite list of programs containing at least one for x. This additional information is equivalent
to having any upper bound on the Kolmogorov complexity of x, which leads us to the notion of
K-computability that we now introduce.

3.1 K-computability

Definition 3.1. The Kolmogorov complexity K(x) of a computable element x ∈ Xc is the
length of a shortest program computing a Type-2-name of x.

In this paper, whether we use prefix-free, monotone or plain machines will not make any differ-
ence so we do not need to specify the definition any further.

Definition 3.2. A K-name of a computable element x ∈ Xc consists of a pair (k, f) where
k ≥ K(x) and f is a Type-2-name of x.

Remark 3.1. Note that k is only an upper bound on the Kolmogorov complexity of x and not
necessarily of f , which may even be non computable. Note also that knowing any such k is effectively
equivalent to knowing any upper bound on a Markov-name of x. This is what we will rather use in
our proofs.

The K-computability notions are defined in the same way as in the previous section. We
will denote by Xc(k) the set of computable elements whose Kolmogorov complexity is at most k.
Note that Xc =

⋃

k Xc(k) and that K-computability is the same as Type-2-computability on Xc(k),
uniformly in k. In particular, a set A ⊆ Xc is K-semidecidable iff there exists uniformly effective
open sets Uk such that A ∩ Xc(k) = Uk ∩ Xc(k).

Thus, for each notion of computability we have so far three versions, depending on the way the
objects are represented.

It is clear that one can compute K-names from Markov-names. An important first observation is
the fact that the converse does not necessarily holds. In other words, the representations underlying
Markov-computability and K-computability are not equivalent.

Proposition 3.1. In general, it is not possible to compute Markov-names from K-names.

Proof. Let f : N → N be a computable function such that xf(i) = 0ω if ϕi(i) does not halt,
xf(i) = 0t1ω if ϕi(i) halts in time t.

Assume that there is an oracle Turing machine M that converts each K-name of a sequence into
a program computing the sequence (a Markov-name). There is a computable function k : N → N

such that k(i) is an upper bound on the complexity of xf(i) and of 0ω. Given i, run M on 0k(i)10ω,
let ui be its use when it halts. M halts and outputs a program computing the sequence 0ω. On
0k(i)1xf(i) it must halt and output a program computing xf(i), so if xf(i) contains a 1 then it must
occur early in the sequence, namely before ui − k(i)− 1. As a result, if ϕi(i) halts then it must halt
in time ui − k(i) − 1. It enables one to decide the Halting problem, which is a contradiction.
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One can show that on Cantor space, Markov-names are limit-computable (can be learned) from
K-names: given x and k ≥ K(x), one can compute a sequence of natural numbers converging to an
index of x (this problem was investigated in the context of inductive inference [FW79]). A c.e. set,
however, cannot be learned in this way. Actually one can prove a stronger statement.

Proposition 3.2. There is no Turing functional Φ that, given an index e and a Type-2-name of a
set W which is either N or We, computes a sequence of numbers converging to an index of W .

Proof. Assume that such a Φ exists. Using the Recursion theorem, we define an index a in the
following way. At the same time we enumerate a c.e. set Wa and we build an oracle f .

We define Wa =
⋃

i Fi where Fi is a computable sequence of finite sets and Fi ⊆ Fi+1. At the
same time we define an oracle t as the limit of a computable sequence of finite strings ti such that
ti+1 extends ti. The finite string ti contains exactly the elements of Fi.

The strings ti are such that Φti(a) outputs a (finite or infinite) sequence of indices taking at
least i values. Hence Φt(a) outputs an infinite sequence of indices taking infinitely many values.

We start with F0 = ∅ and t0 is the empty string. Assume Fi and ti have been defined. Look
for a finite extension u of ti such that Φu(a) eventually outputs an index i such that Wi contains
some number that is not in u (such a u must be found: on a representation of N starting with ti, Φ
must eventually output a program enumerating N, let u be the finite part of the oracle that is read
when such a program is output). Let Fi+1 be the set of elements enumerated in u. Run Φu0ω

(a)
and look for a number j 6= i output later than i (such a j must be found, otherwise the oracle is a
representation of Wa so it must eventually stabilize on a program j enumerating the elements of u,
and j must be different from i). Let ti+1 be the part of the oracle that is used in the computation
of j.

The rest of this section is devoted to show that, despite the facts above, the notions of Markov-
computability and K-computability are indeed equivalent to a large extent.

3.2 Equivalence between Markov-computability and K-computability

We will use the Recursion Theorem. See [Rog87].

Theorem 3.1 (Recursion Theorem). For every computable total function f , there exists e such that
ϕe = ϕf(e). Moreover, p can be computed from an index of f .

The following Lemma contains the main technical arguments.

Lemma 3.1. Let A be a c.e. subset of N. There exist uniformly effective Scott open sets Uk ⊆ P(N),
such that for every c.e. set E the following hold:

i) if all the indices of E belong to A then E ∈ Uk for every k,

ii) if no index of E belongs to A then E /∈ Uk for every k ≥ K(E).

The argument is uniform: the open sets Uk are effective, uniformly in a c.e. index of A.

Proof. Using the Recursion theorem, there is a computable function e(a, b) such that for all a, b ∈ N,

We(a,b) =

{

Wa if e(a, b) /∈ A,

Wa[t] ∪ Wb if e(a, b) ∈ A[at t].
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Let k ∈ N. We define an effective open set Uk. Compute bk such every element whose complexity
is less than k has an index less than bk. If a is such that for all b ≤ bk, e(a, b) ∈ A then let t be
minimal such that e(a, b) ∈ A[t] for all b ≤ bk, enumerate [Wa[t]] into Uk.

We now check the two announced conditions. i) Let E ⊆ N be a c.e. set. Assume that every
index of E belongs to A and let a be an index of E. For all b, e(a, b) ∈ A (otherwise e(a, b) is an
index of Wa = E but e(a, b) /∈ A, contradiction), so Uk contains [Wa[t]] for some t, which contains
E. ii) Assume that K(E) ≤ k, that no index of E belongs to A and that E ∈ Uk. Let b ≤ bk

be an index of E. As E ∈ Uk, E belongs to some [Wa[t]] enumerated into Uk (here a is not the
same as above and is not assumed to be an index of E). As e(a, b) ∈ A, We(a,b) = Wa[t

′] ∪ Wb for
some t′ ≤ t. As Wa[t

′] ⊆ Wa[t] ⊆ Wb, e(a, b) is an index of E that belongs to A, contradicting the
assumption.

We know state the main explicit versions of Theorems A and B.

Theorem 3.2. Let X be an effective topological space. A set A ⊆ Xc is Markov-semidecidable iff
it is K-semidecidable. The equivalence is uniform.

Proof. Every effective topological space is Type-2-computably homeomorphic to a subspace of P(N):
to x ∈ X , associate {i ∈ N : x ∈ Bi} where Bi is enumeration of the basis of X . Hence we can
assume that X is a subspace of P(N). Let I ⊆ N be a c.e. set such that for all e ∈ N for which
We ∈ Xc, it holds We ∈ A ⇐⇒ e ∈ I. Each c.e. set E ∈ Xc either has all its indices in I or has
no index in I, so the effective open sets Uk provided by Lemma 3.1 coincide with A on the set of
elements of Xc whose complexity is at most k. Now, a machine K-semideciding A works as follows:
given a Type-2-name of E ∈ Xc and k ≥ K(E), it tests whether E ∈ Uk and halts in this case
only.

Corollary 3.1. Let X ,Y be effective topological spaces. A function f : Xc → Yc is Markov-
computable iff f is K-computable. The equivalence is uniform.

Proof. Let Bi be the numbered basis of Y. f is Markov-computable iff the sets f−1(Bi) are uniformly
Markov-semidecidable iff these sets are K-semidecidable (Theorem 3.2) iff f is K-computable.

We now show that the argument in the proof of Lemma 3.1 can be extended from semidecidability
to weaker classes of properties, showing that for most algorithmic tasks, the additional information
given by programs is indeed just an upper bound on the Kolmogorov complexity.
Hierarchies. Let X be an effective topological space. We consider the finite levels of the effective
Borel hierarchy, defined as follows. The class Σ0

1 consists of the effective open sets. The class Σ0
n+1

consists of the effective unions of differences of Σ0
n-sets. The classes Π0

n consists of complements of
Σ0

n-sets. The class ∆0
n is the intersection of Σ0

n and Π0
n. Inside the class ∆0

2 we consider the finite
levels of the effective difference hierarchy. For n ∈ N, the class Dn consists of the differences of n
effective open sets, i.e. the sets (U0\U1)∪. . . (Un−2\Un−1) if n is even and the sets (U0\U1)∪. . .Un−1

if n is odd. In the case X = N with the discrete topology, the effective Borel hierarchy is exactly
the arithmetical hierarchy, the class Dn of effective difference hierarchy is exactly the class of n-c.e.
sets.

Theorem 3.3. A set A ⊆ Xc is Markov-n-c.e. iff it is K-n-c.e. More precisely, the set of indices
of elements of A is n-c.e. on the set of indices of Xc iff there exist uniformly effective open sets
U1

k , . . . ,Un
k such that A ∩ Xc(k) = Dn(U1

k , . . . ,Un
k ) ∩ Xc(k).

8



Proof. Again we can assume w.l.o.g. that X is a subspace of P(N). Let A0 ⊇ A1 ⊇ . . . ⊇ An−1 such
that if We ∈ Xc then We ∈ A ⇐⇒ e ∈ A0 \A1∪A2 \A3 . . .. We denote a tuple (a0, . . . , an) ∈ Nn+1

by a. There is a computable function e(a) such that

We(a) =











































Wa0 if e(a) /∈ A0,

Wa0 [t0] ∪ Wa1 if e(a) ∈ A0[at t0] \ A1,

Wa0 [t0] ∪ Wa1 [t1] ∪ Wa2 if e(a) ∈ A0[at t0] ∩ A1[at t1] \ A2,

. . .

Wa0 [t0] ∪ Wa1 [t1] ∪ . . . ∪ Wan−1 if e(a) ∈ A0[at t0] ∩ . . . ∩ An−2[at tn−2] \ An−1,

Wa0 [t0] ∪ Wa1 [t1] ∪ . . . ∪ Wan if e(a) ∈ A0[at t0] ∩ . . . ∩ An−2[at tn−2] ∩ An−1[at tn−1].

Given k, let bk be un upper bound on the indices of elements whose Kolmogorov complexity is
at most k. If a0 is such that for all a1, . . . , an ≤ bk, e(a0, . . . , an) ∈ A0 then let t0 be minimal such
that all these numbers belong to A0[t0], enumerate [Wa0 [t0]] in U0. By induction, let 1 ≤ i < n and
assume a0, . . . , ai−1 have been accepted with t0, . . . , ti−1. If ai is such that for all ai+1, . . . , an ≤ bk,
e(a0, . . . , an) ∈ Ai then let ti be minimal such that all these numbers belong to Ai[ti] and enumerate
[Wa0 [t0] ∪ . . . ∪ Wai

[ti]] in Ui.
In the same way, one checks that if We ∈ Xc(k) then We ∈ A ⇐⇒ We ∈ U0\U1∪U2\U3∪. . ..

It is known from [Sel84] that there exists a Markov-2-c.e. subset of P(N) that is not even Π0
2.

Hence Markov-2-c.e. sets are not the differences of Markov-semidecidable sets.
In the following theorem, we need to assume an additional property on the space X . Namely,

that the domain of the standard representation on X is a Π0
2 set. This is case for example for the

so called quasi-Polish spaces (see [dB13]).

Theorem 3.4. A set A ⊆ Xc is Markov-Σ0
2 iff it is K-Σ0

2. More precisely, the set of indices of
elements of A is Σ0

2 on the set of indices of Xc iff there exist uniformly effective open sets Un
k ,Vn

k

such that A ∩ Xc(k) =
⋃

n(Un
k \ Vn

k ) ∩ Xc(k).

Remark 3.2. In case X is a Polish space, the sets Vk are not needed and therefore the last part of
the statement reads A ∩ Xc(k) =

⋃

n U
n
k ∩ Xc(k).

Proof of Theorem 3.4. We show that if A is Markov-Π0
2 then A is K-Π0

2, which is equivalent to the
statement by replacing A with its complement. We use the numbering xe = x if We is the set of
indices of basic neighborhoods of x. Let P =

⋂

n Pn ⊆ N be Π0
2 (Pn are uniformly c.e.) such that if

e is an index of x ∈ Xc then x ∈ A ⇐⇒ e ∈ P . The assumption about the space implies that the
set of indices of elements of Xc is a Π0

2-set Q =
⋂

n Qn ⊆ N, where Qn are uniformly c.e. sets.
Given i, let Ci = {xi} if i is an index and i ∈ P ∩Q, Ci = ∅ otherwise. Ci is Π0

2, uniformly in i.
Indeed, for each n, define the uniformly effective open sets

(U2n,V2n) =

{

(Bn, ∅) if n /∈ Wi,

(X, Bn) if n ∈ Wi,

and

(U2n+1,V2n+1) =

{

(X, ∅) if i /∈ Pn ∩ Qn,

(X, X) if i ∈ Pn ∩ Qn.
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One has Ci =
⋂

n(Un \ Vn)c.
Given k ∈ N, compute bk such that every element of Kolmogorov complexity at most k has an

index ≤ bk. The set
⋃

i≤bk
Ci is Π0

2, uniformly in k. This set is exactly A ∩ Xc(k).

4 Structure of Markov-semidecidable sets

Here we provide several results that shed light on the computational and topological structure of
Markov-semidecidable sets. Our first result shows that Markov-semidecidable sets share some of
the nice properties of Type-2-semidecidable sets.

Proposition 4.1. Assume that X contains a dense computable sequence. Given a Markov-semidecidable
set A, it is semi-decidable whether A is non-empty. If A is non-empty, one can compute a sequence
of points {xi} ⊆ A which is dense in A.

Proof. Using the Recursion theorem, there is a computable function e(a) such that xe(a) = xa if
e(a) /∈ A, or xe(a) is some point from the dense sequence in some neighborhood of xa if e(a) ∈ A at
time t. A is non-empty iff there is a such that e(a) ∈ A. When A is non-empty, one can compute
an element in A: look for a such that e(a) ∈ A, xe(a) is such a point. To get a computable dense
sequence, apply this argument in parallel to the intersection of A with each basic open set Bi.

The following result provides an upper bound on the effective Borel complexity of Markov-
semidecidable sets.

Proposition 4.2. Let A ⊆ Xc be Markov-semidecidable. There exist uniformly effective open sets
Uk ⊆ X such that A =

⋂

k Uk ∩ Xc.

Proof. Let Uk be the effective open sets from the proof of Theorem 3.2 and define S =
⋂

k Uk. We
already know that A ⊆ Uk for all k. If x ∈ Xc ∩ S then let k ≥ K(x). Since x ∈ Xc(k) ∩ Uk =
Xc(k) ∩ A, we conclude that x ∈ A.

The result above is actually tight, as the following theorem shows. For a finite string u, let us
define the monotone complexity Km(u) of u as the length of a shortest program computing a (finite
or infinite) binary sequence extending u. The program writes its output on a one-way output tape
and may never halt. Again the precise definition of Km(u) (Levin or Schnorr monotone or process
complexity) does not make any difference for our purposes. The only important property is that for
a computable sequence x, Km(x↾n) ≤ Km(x) for all n. For the seek of completeness, let us recall
original Friedberg’s example. We present it in a way that is more convenient for our purposes.

Theorem 4.1 (Friedberg). On the Cantor space, the set

A = {0ω} ∪
⋃

n:Km(0n1)<log(n)−1

[0n1].

is Markov-semidecidable but not open. Hence the Ershov topology is strictly stronger than the Cantor
topology.

Proof. We show that A is K-semidecidable. Given an infinite binary sequence x (a Type-2-description)
and a bound k on K(x), we only need to read the first e = 2k+2 bits of x. If we see only zeros, we
accept. Otherwise one gets 0n1 . . . for some n < e, then test whether Km(0n1) < log(n) − 1.

10



Remark 4.1. Friedberg’s example happens to be Σ0
2. It is an effective open set appended with a

limit point. We strengthen Friedberg’s example by constructing a Markov-semidecidable set which
is far from being open.

Theorem 4.2. There is a Markov-semidecidable subset of {0, 1}N
c that is not Σ0

2. It is a non-empty
closed subset of {0, 1}N

c with empty interior, defined by

A = {x ∈ {0, 1}N
c : ∀n, Km(x↾n) < n/2 + c} for some sufficiently large c ∈ N.

Proof. We choose c such that for some computable sequence x, K(x) ≤ c, hence A is non-empty as
it contains x. We first show that A is K-semidecidable. First, the function u 7→ Km(u) is right-c.e.
Now, given x and some k ≥ K(x), x ∈ A iff for all n ≤ 2(k − c), Km(x↾n) < n/2 + c, as for all
n > 2(k − c), Km(x↾n) ≤ K(x) ≤ k < n/2 + c.

Here we denote {0, 1}N by X and the set of computable sequences by Xc. A is a subset of Xc.
We show that there is no Σ0

2-subset of X whose intersection with Xc is A. Let A be the closure of
A in X (it might not be {x ∈ X : ∀n, Km(x↾n) < n/2 + c}). Here is the argument:

1. A has empty interior in Xc, i.e. there is no cylinder [u] such that [u] ∩Xc ⊆ A. Indeed, given
a finite string u and a sufficiently large k, for most words v of length k, Km(uv) ≥ |uv|/2 + c
so [uv] is disjoint from A.

2. If P ⊆ X is a Π0
1-set and P ∩ Xc ⊆ A then P is nowhere dense in A. Indeed, if there exists a

cylinder [u] such that ∅ 6= A∩ [u] ⊆ P then A∩ [u] = P∩ [u]∩Xc is both Markov-semidecidable
and Markov-co-semidecidable hence by Kreisel-Lacombe-Shœnfield/Ceitin theorem it is clopen
on Xc, so A has non-empty interior in Xc, contradicting the first point.

3. By Proposition 4.1, A is a c.e. closed subset of X (it contains a dense computable sequence)
hence a Π0

2-set. Let S ⊆ X be the Π0
2-set given by Proposition 4.2, satisfying A = S ∩ Xc.

Let S ′ = A∩ S. S ′ is a Π0
2-set which contains a dense computable sequence, and A is exactly

the set of computable elements of S ′. From this it follows that computable Baire theorem
holds on S ′: if the sets Pi are uniformly Π0

1-sets that have empty interior in S ′ then one can
compute some x in S ′ \

⋃

i Pi.

4. Now, if Pi are uniformly Π0
1-sets such that each Pi ∩Xc is contained in A then by the second

point Pi has empty interior in A, and also in S ′ ⊆ A, so by the third point one can compute
some x in S ′ \

⋃

i Pi. As x is computable and belongs to S ′, x belongs to A so
⋃

i Pi does not
cover A.

For the following results, we restrict our attention to the space X = N = N∪{∞} whose topology
is generated by the singletons {n} and the semi-lines [n,∞], for n ∈ N. Note that every point in
this space is computable, so that X = Xc.

Friedberg’s example translated to this space reads {x ∈ N : K(x) < log(x) − 1}, which inspires
the following definition.

Definition 4.1. We define the Friedberg sets of N to be the ones of the form {x ∈ N : K(x) <
h(x)}, where h : N → N is any computable order, namely, any non decreasing unbounded com-
putable function.

11



Note that a computable order can always be extended to a computable function h : N → N,
with h(∞) = ∞.

Friedberg sets are Markov-semidecidable just like the original set. The next two results show
that, unlike Cantor space, the only Markov-semidecidable sets over N which are not Type-2-
semidecidable are essentially the Friedberg sets.

Proposition 4.3. If A ⊆ N is Markov-semidecidable and contains ∞ then there is a computable
order h such that A contains a Friedberg set.

Proof. Since A is K-semidecidable, for each k one can compute p(k) such that [p(k),∞] ∩ {x :
K(x) ≤ k} ⊆ A. One can assume that p(k) is increasing. Let h(n) = min{i : p(i) > n}. If n /∈ A
then p(K(n)) > n (just take k = K(n)), so one has h(n) ≤ K(n).

Remark 4.2. Observe that K(x) here coincides with the usual notion of Kolmogorov complexity of
natural numbers.

Proposition 4.3 provides a nice characterization of the Ershov’s open sets.

Corollary 4.1. The Ershov topology is generated by the singletons {n} and the Friedberg sets.

Remark 4.3. Note that the sets [n,∞] can be expressed as the Friedberg sets {x ∈ N : K(x) < h(x)}
where h(x) = 0 for x < n and h(x) = c(x + 1) for x ≥ n, where c is such that K(n) ≤ c(n + 1) for
all n ∈ N.

Whether or not one can find such a characterization on other spaces such as the Cantor space
is an interesting question.

We end this section by observing that, unlike Type-2-semidecidable sets, Markov-semidecidable
sets cannot be effectively enumerated.

Proposition 4.4. There is no effective enumeration of the Markov-semidecidable subsets of N.

Proof. Let Ai be a sequence of uniformly Markov-semidecidable sets, coming with uniformly c.e.
sets Ei ⊆ N such that Ei ∩ dom(ν) = ν−1(Ai). One can extract the sets that contain ∞ (let
e0 be some index of ∞, one can enumerate the numbers i such that Ei contains e0), so we can
assume w.l.o.g. that each Ai contains ∞. For each i one can compute an increasing computable
function fi : N → N whose range is contained in Ai. Now we build a Markov-semidecidable set
A that contains ∞ and differs from each Ai. Let f be a computable order such that for each i
and all sufficiently large k, fi(k) < f(k) (for instance, f(k) = max(f0(k), . . . , fk(k)) + 1). Here we
use another version of Kolmogorov complexity: C(x) is the minimal index of x. We now define
A = {x ∈ N : f(C(x)) ≤ x}. A is Markov-semidecidable by the usual argument.

We show that A differs from each Ai. Let i ∈ N. As C◦fi is one-to-one, there exist infinitely many
k ∈ N such that C(fi(k)) ≥ k. Moreover if k is sufficiently large then fi(C(fi(k))) < f(C(fi(k))).
Hence there exists k such that fi(k) ≤ fi(C(fi(k))) < f(C(fi(k)). Let x = fi(k): x ∈ Ai by
construction of fi and x < f(C(x)) so x /∈ A.

5 When Markov beats Kolmogorov

In this section we explore the limits of our methods. We first look at the relativized case, and show
that there are simple cases that separate Markov-computability from K-computability. However,
we also show that, interestingly, the equivalence persists if the space has a Polish structure.
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5.1 Relativization

Let S = {⊥,⊤} be the Sierpiński space with topology given by {∅, {⊤}, {⊥,⊤}}. Note that as
S is finite, K-computability is trivially equivalent to Type-2-computability simply because all the
elements share a common upper bound on their Kolmogorov complexities, which therefore provides
no interesting information. Relativizing w.r.t. the Halting set, we can then separate Markov-
decidability from Type-2-decidability, and therefore from K-decidability.

Remark 5.1. The set {⊥} ⊆ S is Markov-decidable relative to the halting set but is not Type-2-
decidable relative to any oracle.

Proof. It is not decidable relative to any oracle simply because it is not clopen.

Similarly, using ∅′′ we can separate, over P(N), K-semidecidability from Type-2-semidecidability
(without oracle, the two notions coincide with Markov-decidability by Rice-Shapiro theorem).

Proposition 5.1. The set {N} ⊆ P(N) is K-semidecidable relative to ∅′′ but is not Type-2-
semidecidable relative to any oracle.

Proof. Let E ⊆ N be a c.e. set and k an upper bound on its Kolmogorov complexity. From k we
know that A has an index in some finite set F . Using ∅′′ we, for each e ∈ F , decide whether We = N

and compute, when We 6= N, an element outside We. We then wait that each one of this finite set
of elements appears in A, enumerated on the input tape, and accept A if it is the case.

However, metric spaces behave differently. Although stated on Cantor space, the next result
extends to any computable metric space [Wei00].

Proposition 5.2. Let A be an oracle computing the Halting set. A subset of {0, 1}N
c is Markov-

semidecidable relative to A if and only if it is K-semidecidable relative to A.

Proof. Assume that A is Markov-semidecidable relative to the halting set, via some oracle Turing
machine M . Assume we are given the halting set, x ∈ {0, 1}N

c and an upper bound k on its
Kolmogorov complexity. Look for a partition of {0, . . . , k} into three sets A, B,C such that:

• for every a ∈ A, xa is incompatible with x (there exists n such that xa(n)↓ 6= x(n)),

• for every b ∈ B, xb is partial (there exists n such that xb(n)↑),

• for every c ∈ C, c is accepted by M with the halting set as oracle.

Once such a partition is found, accept x.
First, the tests can be effectively done relative to the halting set: incompatibility of xa with x

is semidecidable, partiality of xb is semidecidable relative to the halting set. If such a partition is
found then x must have an index in C so x must satisfy the property. Conversely if x satisfies the
property then for every i ≤ k, either i is an index of x or xi is incompatible with x or xi is partial,
so a partition exists and will be eventually found.
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5.2 Functions to non-effective topological spaces

In this section we provide results that strictly separate our three notions: Markov-computability, K-
computability and Type-2-computability. The idea of the constructions is to build uniform versions
of the examples given in Remark 5.1 and Proposition 5.1. For this, one can imagine a function
with two arguments, where the second argument A ∈ B is always provided to the machine by a
Type-2-name and plays the role of the oracle. The only difficulty is then to make the computation
work in a uniform way in the oracle parameter. In order to get a well defined function w.r.t. our
models, we express it as a function of the first argument only, but with values on O(B), which is the
set of open subsets of the Baire space endowed with the topology generated by the following sets:
given a compact set K ⊆ B, the class of open subsets of B containing K is open. This topology is
not countably-based, and hence it is not an effective topology. However it does have an admissible
representation [Sch02].

We now present the details of the simplest case, a uniform version of Remark 5.1. This result
contrasts with Corollary 3.1.

Theorem 5.1. There exists a Markov-computable function F : S → O(B) that is not K-computable.

Proof. We use the admissible numbering νS of S defined by νS(e) = ⊤ if ϕe(e)↓, νS(e) = ⊥ otherwise.
We define two effective open sets U⊥, U⊤ and define F (⊥) = U⊥ and F (⊤) = U⊤. First, let U⊥ = B.
Let T : N → N be defined as follows: T (n) is the halting time of ϕn(n) if it halts, T (n) = 0 otherwise.
The open set U⊤ := B\{T} happens to be effective. First the function F is not Lacombe computable
because it is not continuous: indeed, F is not monotonic as ⊥ ≤ ⊤ but U⊥ = B is not contained in
U⊤ ( B. As S is finite, F is not K-computable neither. However F is Markov-computable. Given an
index e of s ∈ S, enumerate U⊤ and enumerate the set of functions f such that ϕe(e) does not halt
in exactly f(e) steps. The latter set of functions is effectively open, uniformly in e. If ϕe(e)↑ then
the whole space B is enumerated. If ϕe(e)↓ then nothing more than U⊤ is enumerated. Intuitively,
given e and f , from T one can decide whether ϕe(e) halts, i.e. whether νS(e) = ⊥.

A similar construction, based on Proposition 5.1, yields a function F : P(N) → O(B) which
is K-computable but not Type-2-computable by replacing the function T from Theorem 5.1 by a
function T ′ computing ∅′′ and such that B \ {T ′} is effectively open.

Combining all these results, and using that fact that Theorem 5.1 can clearly also be realized
using P(N) in place of S, we obtain our announced Theorem C.

Theorem 5.2. For functions from P(N) with values on O(B) on has that:

Markov-computability > K-computability > Type-2-computability.

While Type-2-computable functions are always Scott continuous (i.e. monotone and compact),
one can show that K-computable functions are always monotone but not necessarily compact.
Markov-computable functions may even not be monotone.

Let us now briefly discuss whether Theorem 5.2 holds for functions from the Cantor space to
O(B). Friedberg’s example of a Markov (hence K)-semidecidable set that is not Type-2-semidecidable
directly implies the second inequality. However the idea behind the proof of the first inequality can-
not be applied on Cantor space. Indeed, using Proposition 5.2 one can show that the analog of the
function of Theorem 5.1 is actually K-computable.
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Proposition 5.3. The function G : {0, 1}N → O(B) mapping 0ω to B and any other sequence to
B \ {T} is K-computable.

Proof. Given x, k and f , apply the algorithm given by Proposition 5.2 to semi-decide, if f = T ,
whether x = 0ω. In parallel, semidecide whether f 6= T .

We leave the following question open: is there a Markov-computable function from the Cantor
space to O(B) that is not K-computable? A simpler version of this question: is there an oracle
that separates K-semidecidability from Markov-semidecidability on Cantor space? We note that,
by Proposition 5.2, such an oracle should not compute ∅′.

6 Future work

We list a few problems for future work.

• Find a characterization of the Ershov topology on other spaces than N, like the Cantor space.

• Determine for which levels of the effective difference hierarchy the Markov-model and the
K-model are equivalent. We know from Theorem 3.3 that the equivalence holds for the finite
levels. What about the level ω?

• All our results hold when the space X is an effective topological space. However the three
models also make sense on any represented space. It seems like an interesting research program
to study the extent to which our results are valid in this case.

• Compare the effective Borel hierarchy induced by the Markov-semidecidable sets, the hierarchy
induced by the arithmetical hierarchy on the indices and the effective Borel hierarchy induced
by the standard topology.
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