9 research outputs found

    On balanced planar graphs, following W. Thurston

    Full text link
    Let f:S2→S2f:S^2\to S^2 be an orientation-preserving branched covering map of degree d≥2d\geq 2, and let Σ\Sigma be an oriented Jordan curve passing through the critical values of ff. Then Γ:=f−1(Σ)\Gamma:=f^{-1}(\Sigma) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ\Gamma, where ff has 2d−22d-2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.Comment: 17 page

    The brick polytope of a sorting network

    Get PDF
    The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of flip graphs on pseudoline arrangements with contacts supported by a given sorting network. In this paper, we construct the brick polytope of a sorting network, obtained as the convex hull of the brick vectors associated to each pseudoline arrangement supported by the network. We combinatorially characterize the vertices of this polytope, describe its faces, and decompose it as a Minkowski sum of matroid polytopes. Our brick polytopes include Hohlweg and Lange's many realizations of the associahedron, which arise as brick polytopes for certain well-chosen sorting networks. We furthermore discuss the brick polytopes of sorting networks supporting pseudoline arrangements which correspond to multitriangulations of convex polygons: our polytopes only realize subgraphs of the flip graphs on multitriangulations and they cannot appear as projections of a hypothetical multiassociahedron.Comment: 36 pages, 25 figures; Version 2 refers to the recent generalization of our results to spherical subword complexes on finite Coxeter groups (http://arxiv.org/abs/1111.3349

    Brick polytopes of spherical subword complexes and generalized associahedra

    No full text
    International audienceWe generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspectives on these constructions. This new approach yields in particular the vertex description of generalized associahedra, a Minkowski sum decomposition into Coxeter matroid polytopes, and a combinatorial description of the exchange matrix of any cluster in a finite type cluster algebra

    K-Decompositions and 3d Gauge Theories

    Get PDF
    This paper combines several new constructions in mathematics and physics. Mathematically, we study framed flat PGL(K,C)-connections on a large class of 3-manifolds M with boundary. We define a space L_K(M) of framed flat connections on the boundary of M that extend to M. Our goal is to understand an open part of L_K(M) as a Lagrangian in the symplectic space of framed flat connections on the boundary, and as a K_2-Lagrangian, meaning that the K_2-avatar of the symplectic form restricts to zero. We construct an open part of L_K(M) from data assigned to a hypersimplicial K-decomposition of an ideal triangulation of M, generalizing Thurston's gluing equations in 3d hyperbolic geometry, and combining them with the cluster coordinates for framed flat PGL(K)-connections on surfaces. Using a canonical map from the complex of configurations of decorated flags to the Bloch complex, we prove that any generic component of L_K(M) is K_2-isotropic if the boundary satisfies some topological constraints (Theorem 4.2). In some cases this implies that L_K(M) is K_2-Lagrangian. For general M, we extend a classic result of Neumann-Zagier on symplectic properties of PGL(2) gluing equations to reduce the K_2-Lagrangian property to a combinatorial claim. Physically, we use the symplectic properties of K-decompositions to construct 3d N=2 superconformal field theories T_K[M] corresponding (conjecturally) to the compactification of K M5-branes on M. This extends known constructions for K=2. Just as for K=2, the theories T_K[M] are described as IR fixed points of abelian Chern-Simons-matter theories. Changes of triangulation (2-3 moves) lead to abelian mirror symmetries that are all generated by the elementary duality between N_f=1 SQED and the XYZ model. In the large K limit, we find evidence that the degrees of freedom of T_K[M] grow cubically in K.Comment: 121 pages + 2 appendices, 80 figures; Version 2: reorganized mathematical perspective, swapped Sections 3 and

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Applications of matching theory in constraint programming

    Get PDF
    [no abstract
    corecore