7 research outputs found

    The consumer’s demand functions defined to study contingent consumption plans. Summarized probability distributions: a mathematical application to contingent consumption choices

    Get PDF
    Given two probability distributions expressing returns on two single risky assets of a portfolio, we innovatively define two consumer’s demand functions connected with two contingent consumption plans. This thing is possible whenever we coherently summarize every probability distribution being chosen by the consumer. Since prevision choices are consumption choices being made by the consumer inside of a metric space, we show that prevision choices can be studied by means of the standard economic model of consumer behavior. Such a model implies that we consider all coherent previsions of a joint distribution. They are decomposed inside of a metric space. Such a space coincides with the consumer’s consumption space. In this paper, we do not consider a joint distribution only. It follows that we innovatively define a stand-alone and double risky asset. Different summary measures of it characterizing consumption choices being made by the consumer can then be studied inside of a linear space over ℝ. We show that it is possible to obtain different summary measures of probability distributions by using two different quadratic metrics. In this paper, our results are based on a particular approach to the origin of the variability of probability distributions. We realize that it is not standardized, but it always depends on the state of information and knowledge of the consumer

    Non-parametric probability distributions embedded inside of a linear space provided with a quadratic metric

    Get PDF
    There exist uncertain situations in which a random event is not a measurable set, but it is a point of a linear space inside of which it is possible to study different random quantities characterized by non-parametric probability distributions. We show that if an event is not a measurable set then it is contained in a closed structure which is not a σ-algebra but it is a linear space over R. We think of probability as being a mass. It is really a mass with respect to problems of statistical sampling. It is a mass with respect to problems of social sciences. In particular, it is a mass with regard to economic situations studied by means of the subjective notion of utility. We are able to decompose a random quantity meant as a geometric entity inside of a metric space. It is also possible to decompose its prevision and variance inside of it. We show a quadratic metric in order to obtain the variance of a random quantity. The origin of the notion of variability is not standardized within this context. It always depends on the state of information and knowledge of an individual. We study different intrinsic properties of non-parametric probability distributions as well as of probabilistic indices summarizing them. We define the notion of α-distance between two non-parametric probability distributio

    Tensors Associated with Mean Quadratic Differences Explaining the Riskiness of Portfolios of Financial Assets

    Get PDF
    Bound choices such as portfolio choices are studied in an aggregate fashion using an extension of the notion of barycenter of masses. This paper answers the question of whether such an extension is a natural fashion of studying bound choices or not. Given n risky assets, the question of why it is appropriate to treat only two risky assets at a time inside the budget set of the decision-maker is handled in this paper. Two risky assets are two goods. They are two marginal goods. The question of why they always give rise to a joint good inside the budget set of the decision-maker is addressed by this research work. A single risky asset is viewed as a double one using four nonparametric joint distributions of probability. The variability of a joint distribution of probability always depends on the state of information and knowledge associated with a given decision-maker. For this reason, two variability tensors are defined to identify the riskiness of the same risky asset. A multilinear version of the Sharpe ratio is shown. It is based on tensors. After computing the expected return on an n-risky asset portfolio, its riskiness is obtained using mean quadratic differences developed through tensor

    Merging and testing opinions

    Get PDF
    We study the merging and the testing of opinions in the context of a prediction model. In the absence of incentive problems, opinions can be tested and rejected, regardless of whether or not data produces consensus among Bayesian agents. In contrast, in the presence of incentive problems, opinions can only be tested and rejected when data produces consensus among Bayesian agents. These results show a strong connection between the testing and the merging of opinions. They also relate the literature on Bayesian learning and the literature on testing strategic experts

    On coherent conditional probabilities and disintegrations

    No full text
    Existence of coherent extensions of coherent conditional probabilities is one of the major merits of de Finetti's theory of probability. However, coherent extensions which meet some special property, like sigma-additivity or disintegrability, can fail to exist. An example is given where a coherent and sigma-additive conditional probability cannot be extended preserving both sigma-additivity and coherence. Motivated by such example, conditions are provided in order that a coherent and sigma-additive conditional probability admits a coherent and sigma-additive extension. Moreover, conditions are given for the existence of disintegrations, possibly sigma-additive, of a probability along a partition
    corecore