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Abstract: There exist uncertain situations in which a random event is not a measurable set, but it
is a point of a linear space inside of which it is possible to study different random quantities
characterized by non-parametric probability distributions. We show that if an event is not a
measurable set then it is contained in a closed structure which is not a σ-algebra but a linear space
over R. We think of probability as being a mass. It is really a mass with respect to problems of
statistical sampling. It is a mass with respect to problems of social sciences. In particular, it is a
mass with regard to economic situations studied by means of the subjective notion of utility. We are
able to decompose a random quantity meant as a geometric entity inside of a metric space. It is
also possible to decompose its prevision and variance inside of it. We show a quadratic metric in
order to obtain the variance of a random quantity. The origin of the notion of variability is not
standardized within this context. It always depends on the state of information and knowledge of
an individual. We study different intrinsic properties of non-parametric probability distributions as
well as of probabilistic indices summarizing them. We define the notion of α-distance between two
non-parametric probability distributions.
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1. Introduction

We propose a mathematical model where the probability of an event has a concrete image [1].
On the other hand, the difference between two opposite points of view is well known: some scholars
interpret probability as a subjective measure of the degree of belief, whereas others consider it as an
objective measure connected with measurable sets [2]. We will refer to those situations characterizing
economic science, statistics and other related fields of interest in which such a difference has no
reason to exist because it is evident that an event cannot naturally be meant as a measurable set [3].
We have elsewhere shown that the subjective approach to decisions under uncertainty, as we propose
it, has innovative contributions to offer because the probability is basically viewed as the solution to a
specific decision problem rather than an opening assumption [4].

2. Probability Viewed as a Mass

There exist situations for which a systematic set-theoretical interpretation of events is not
conceptually satisfactory. It follows that an event is not always a measurable set, so a mechanical
transposition of all what concerns measure theory into the calculus of probability is not always
appropriate [5]. There exist situations for which an event is then an unequivocal proposition such that,
by betting on it, it is possible to establish whether the event is true or false because it has occurred
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or not. It is consequently possible to establish whether the bet has been won or lost. We will show
in this paper that an event is contained in a closed structure which is not a σ-algebra but a linear
space over R. An event has an intrinsic meaning which is independent of the mathematical notion of
measurable set; we do not select a specific orthonormal basis of the linear space under consideration
among all its possible orthonormal bases for this reason. Uncertainty about an event depends on a
lack of information [6]. It ceases only when a given individual receives certain information about
it. Probability deals with events in the sense of single and well-defined cases. It always depends
on a given state of information and knowledge of the individual evaluating. It is then a subjective
probability [7]. We think of probability as being a mass. It is always a function defined on the entire
space of events: the sum of their non-negative probabilities is equal to 1, so axiomatic probability
theory is satisfied. Nevertheless, it can freely be distributed without altering its geometric support and
the measure that appears more natural in the context represented by the space of random quantities
coinciding with a linear space over R. We observe that different distributions of mass are different
measures, but the notion of measure has no special status, unlike what happens when we refer to
measure theory. When we speak about mass as a measure, we mean that it can coherently be moved
in whatever way an individual likes. When we speak about mass as a measure, we do not mean
something fixed.

3. What We Mean about a Random Quantity

A random quantity is a mathematical function on the space of its possible outcomes. Its domain
is a collection of possible events, where every event is expressed by a real number [8]. A quantity is
random for an individual because he does not know the true value of it. The true value of a random
quantity is unique. If an individual calls it random, then it is unknown to him. He is therefore in doubt
between at least two possible values [9]. How much the domain of the possible of an individual is large
depends on his state of uncertainty at a given moment. Such a domain contains all logically possible
values of a random quantity for a given individual at a given instant [10]. In particular, we consider
the finest possible partition into atomic events within this context. In other words, we consider
different points constituting the space of possible outcomes. It is embedded in a linear space over
R. That alternative which will turn out to be verified a posteriori is nothing but a random point
in a linear space over R. It expresses everything there is to be said. We have to note that a set is
always subdivisible into subsets. Nevertheless, its subdivision necessarily stops when it reaches its
constituent elements. It cannot evidently continue. An event is conversely subdivisible without never
stopping even if in any situation it is appropriate to stop as soon as the subdivision is sufficient for the
problem under consideration. All logically possible values of a random quantity are then points that
are not further subdivisible for the purposes of the problem into account. Each random quantity can
coherently be assigned a distribution of probability as an expression of the attitude of the individual
under consideration. We do not admit that a probability distribution is already attached to it. We say
that a probability distribution can vary from individual to individual. It can vary in accordance with
the state of information and knowledge of each individual.

4. The Logic of Certainty

An individual is in a state of uncertainty, at a precise moment, when she/he is in a state of lack
of knowledge due to imperfect information at that instant [11]. The latter could be connected with
many facts or events [12]. We are not, however, interested in understanding why information and
knowledge of an individual at a given instant are imperfect. We are only interested in observing that
such an imperfection objectively exists [13]. We are always dominated by uncertainty, even when we
think, we reason and we decide. If we are always dominated by uncertainty then we should use only
the language of uncertainty characterized by probability. Nevertheless, we do not immediately use it
but we firstly use the language of certainty, where the logic of certainty is a structure built above it
because it is used in order to reduce the risk of falling into error when we deductively reason. The logic
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of certainty separates what it is determined because it is true or false from what it is not determined
because it is not either true or false. Such a separation is being made by an individual on the basis
of the data he uses at a given instant. In other words, the logic of certainty enables us of identifying
the domain of a mathematical function representing the random quantity under consideration [14].
With regard to a specific situation that an individual has to take into account there could exist a huge
number of possible alternatives. Nevertheless, his information and knowledge will permit him of
excluding some of them as impossible. All others will remain possible for him. They constitute the
domain of the above function. On the other hand, if an individual is faced with an infinite number
of conceivable alternatives, where their number could be countably infinite or uncountable, then his
information and knowledge will permit him of considering a finite number of them. We are therefore
able to speak about a limitation or approximation of expectations, where the latter is nothing but a
discretization of continuous alternatives. It follows that it will be appropriate to assign probabilities
to a finite number of points contained in the set of possible values of the random quantity under
consideration. It is the domain of the mathematical function identifying it. It will be decomposed by
us through geometry. We then say that the logic of certainty also coincides with geometry. We propose
a geometric superstructure more effective than any other superstructure to representing all logically
possible alternatives that can objectively be considered with reference to a random quantity.

5. Methodological Aspects Concerning Non-Parametric Probability Distributions

Let X be a random quantity whose possible values are denoted by I(X) = {x1, x2, . . . , xm},
where we have x1 < x2 < . . . < xm without loss of generality. We evidently deal with a finite partition
of incompatible and exhaustive events. It follows that x1 is the true value of X if E1 occurs with
subjective probability equal to p1, x2 is the true value of X if E2 occurs with subjective probability
equal to p2, . . . , xm is the true value of X if Em occurs with subjective probability equal to pm, where it
turns out to be ∑m

i=1 pi = 1. An individual distributes a unit mass of probability among all possible
events contained in X and expressed by means of real numbers identifying I(X) [15]. He enters into
the logic of prevision in order to carry out this thing [16]. He is able to attribute to the different possible
events a greater or lesser degree of belief. It is nothing but a new, extralogical, subjective, personal and
relative factor expressing his attitude viewed as his inclination to expect that a particular event rather
than others will be true at the right time [17]. We have to observe a very important point: the logic of
certainty obeys the laws of mathematics. On the other hand, we deductively reason when we are faced
with mathematics. In particular, it obeys the laws of geometry within this context. This is because
all possible and elementary events contained in a random quantity are geometrically represented
as points inside of a linear space over R. The logic of prevision conversely obeys the conditions of
coherence pertaining to the meaning of probability, not to motives of a mathematical nature [18].
Given a finite partition of incompatible and exhaustive elementary events characterizing a random
quantity, the conditions of coherence impose no limits on the probabilities that an individual may
subjectively assign, except that the sum of all non-negative probabilities under consideration has to
be equal to 1. A combination of bets on all events of a finite partition of incompatible and exhaustive
elementary events coincides with a single bet on the certain event. It is a fair bet if and only if the sum
of all non-negative probabilities under consideration is equal to 1. Such a bet is consequently acceptable
by an individual in both senses indifferently. If an individual conversely accepts the same kind of
bet, where the sum of all non-negative probabilities under consideration is not equal to 1, then his
decision-making leads him to a certain and undesirable loss. A bet viewed as a real or conceptual
experiment concerning a probability distribution known over a finite partition of elementary events
permits of measuring the notion of prevision of a random quantity and, especially, of probability of an
event from an operational point of view.
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6. A Geometric Definition of a Random Quantity

Let Em be a linear space over R provided with a quadratic metric and let {ej}, j = 1, . . . , m, be an
orthonormal basis of it [19]. Any element of Em is uniquely determined by a linear combination of
basis vectors. In particular, it is possible to obtain

x = x1e1 + x2e2 + . . . + xmem (1)

as well as
x = xiei, (2)

where we have

x =


x1

x2

...
xm

 ∈ Em, (3)

with x1 < x2 < . . . < xm. We have evidently used the Einstein summation convention in Equation (2).
Having said that, we prove the following

Proposition 1. Let I(X) = {x1, x2, . . . , xm} be the set of all logically possible values of X. Each logically
possible value of X is then associated with a single and well-defined random event belonging to one of m straight
lines of Em on which a same Cartesian coordinate system is established.

Proof. Each contravariant component of x ∈ Em can be seen as a vector of Em written in the form
given by (i)x, i = 1, . . . , m. Thus, we write

(1)x = x1e1, (4)

with x1 ∈ R, as well as

(m)x = xmem, (5)

with xm ∈ R. It is evident that (1)x and e1 are collinear as well as (m)x and em. It follows that it is
possible to write

(1)x + . . . + (m)x = x, (6)

where each (i)x is an element of a subspace of Em denoted by Em
(i), i = 1, . . . , m, whose dimension is

equal to 1. We obtain
Em
(1) ⊕ . . .⊕ Em

(m) = Em (7)

because the direct sum of m subspaces of Em is nothing but Em itself. Such a direct sum is also
orthogonal. We note that one has

dim Em
(1) + . . . + dim Em

(m) = dim Em, (8)

with dim Em = m. The contravariant components of (i)x are given by

(i)x = (i)x
iδ

j
i , (9)

with i = 1, . . . , m. We observe that δ
j
i is the Kronecker delta. If it turns out to be i = j, then we get δ

j
i = 1.

Instead, when it turns out to be i 6= j, we get δ
j
i = 0. We observe that Equation (9) is characterized by

the Einstein summation convention. Hence, we can write



Mathematics 2020, 8, 1901 5 of 17

(i)x =


(i)x

1δ1
1 + (i)x

2δ1
2 + . . . + (i)x

mδ1
m

(i)x
1δ2

1 + (i)x
2δ2

2 + . . . + (i)x
mδ2

m
...

(i)x
1δm

1 + (i)x
2δm

2 + . . . + (i)x
mδm

m

 . (10)

We then consider m oriented straight lines of Em which are expressed in the same unit of length [20].
They are pairwise orthogonal and meet in the origin of Em. It is the zero vector of Em. We do not
contemplate particular m-tuples of real numbers belonging to any straight line of Em but we consider
only real numbers associated with each of them. All of this results from the geometric property of
collinearity just shown. Each straight line of Em expresses the whole of the space of alternatives with
respect to one of m alternatives of X. Each straight line of Em contains infinite possible alternatives.
Regarding one of m alternatives of X, we note that the knowledge and information of an individual,
at a given instant of time, do not allow him to exclude a real number only. It is still reasonable for him
because it is not either true or false [21]. The same is if thinking about all the other m− 1 alternatives
of X.

7. A Canonical Expression of a Random Quantity

We observe that all the events contained in X are embedded in Em. Probability meant as a mass
is defined inside of a linear space provided with a quadratic metric. The same symbol P is used in
order to denote both the notion of prevision or mathematical expectation of a random quantity and
the notion of probability of an event. This is because an event is nothing but a particular random
quantity [22]. Anyway, we deal with m masses denoted by p1, p2, . . . , pm such that it is possible
to write p1 + p2 + . . . + pm = 1. They are located on m components denoted by x1, x2, . . . , xm of
m vectors denoted by (1)x, (2)x, . . . , (m)x of Em. We consider a probability distribution on R inside

of Em in this way. This is because x1, x2, . . . , xm are real numbers. We have evidently {x1} ∈ R,
with (1)x = x1e1 ∈ Em

(1), . . . , {xm} ∈ R, with (m)x = xmem ∈ Em
(m)

. After writing

w = x1|E1|e1 + x2|E2|e2 + . . . + xm|Em|em, (11)

with w ∈ Em, where {ej}, j = 1, . . . , m, is an orthonormal basis of Em, it turns out to be

X = x1|E1|+ x2|E2|+ . . . + xm|Em|, (12)

where we have

|Ei| =
{

1, if Ei is true

0, if Ei is false
(13)

for every i = 1, . . . , m. It follows that it is possible to establish the following

Definition 1. Let idR : R→ R be the identity function on R, where R is a linear space over itself. Given m
elementary events of a finite partition of incompatible and exhaustive events, a random quantity denoted by X is
the restriction of idR to I(X) ⊂ R such that it turns out to be idR|I(X) : I(X)→ R.

In particular, we say that X is a linear operator whose canonical expression coincides with
Equation (12). We say that X is an isometry. This means that each single event could uniquely
be represented by infinite numbers; therefore, we can write I(X) = {x1 + a, x2 + a, . . . , xm + a},
where a ∈ R is an arbitrary constant. In this way, we are clearly considering infinite translations and
different quantities from a geometric perspective. Notwithstanding, they are the same quantity from
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a randomness point of view because events and their associated probabilities do not vary. On the
other hand, if two or more propositions could represent the same event encompassed in X, thus two
or more real numbers can uniquely identify it [23]. Hence, a change of origin is not essential from a
randomness perspective. We can always lead back the changed origin to the beginning one. Therefore,
in this way, we consider a different closed structure. The latter is not a σ-algebra but it is a linear
subspace over R, where every linear subspace is nothing but a linear space contained in another
whose dimension is higher. Since every event contained in X belongs to one of them according to
Equation (11), we deal with m subspaces of dimension 1. A random quantity X whose logically
possible values identify an m-dimensional vector of Em is an element of a set of random quantities
denoted by (1)S [24]. We observe that it is possible to write

(1)S ⊂ Em, (14)

where (1)S is an m-dimensional linear space contained in Em. The reason is that the sum of two vectors
belonging to (1)S must be a vector whose components are all different. Therefore, it belongs to (1)S in
this way. It belongs to (1)S if and only if its components are all different. The same is when considering
the multiplication of a vector of (1)S by a real number that is non-zero. Hence, we say that (1)S is
closed with respect to the sum of two vectors of it and the multiplication of a vector of it by a real
number that is different from zero. We consider a closed structure coinciding with an m-dimensional
linear space contained in Em in this way. We observe that Em can also be read as an affine space over
itself and each element of Em can be read as a point of an affine space, where the zero vector of Em

is the origin of it. We could then be faced with a point of an affine space or a vector of a linear space.
We choose a covariant notation with respect to the components of p ∈ Em, so we write

p =


p1

p2
...

pm

 , (15)

with ∑m
i=1 pi = 1, where pi represents a subjective probability assigned to xi, i = 1, . . . , m, by an

individual according to his/her degree of belief in the occurrence of xi [18]. If we write

(x, p) ⊂ Em, (16)

then we identify a distribution of probability embedded inside of a linear space provided with a
quadratic metric. A coherent prevision of X is given by

P(X) = x1P(E1) + x2P(E2) + . . . + xmP(Em). (17)

It is linear and homogeneous [25]. From P(Ei) = pi, i = 1, . . . , m, it follows that it turns out to be

P(X) = x1 p1 + x2 p2 + . . . + xm pm. (18)

We note that the covariant components of every vector of Em coincide with the contravariant ones
because we deal with an orthonormal basis of Em. Nevertheless, we want to stress that x and p are of a
diverse nature.
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8. A Coherent Prevision of a Random Quantity Viewed as an m-Dimensional Vector Coinciding
with Its Center of Mass

After decomposing X into m single random events, we note that its coherent prevision is given by

P(X) = x̄ =
m

∑
i=1

(i)x pi, (19)

where we have 0 ≤ pi ≤ 1, i = 1, . . . , m, and ∑m
i=1 pi = 1 [26]. We say that Equation (19) is an

m-dimensional vector belonging to Em whose contravariant components are all equal. We then write

x̄ =


x̄1

x̄2

...
x̄m

 . (20)

We note that Equation(19) holds when the zero vector of Em coincides with the origin of Em.
We note that the i-th contravariant component of x̄ is given by

x̄i = (i)x
i pi, (21)

where we have i = 1, . . . , m. Each contravariant component of x̄ is then obtained by means of
a linear combination. The latter is characterized by Equation (21). We observe that the Einstein
summation convention holds with regard to Equation (21). Each contravariant component of x̄ is
therefore originated by m groups of numbers where every group of numbers consists of m numbers
that are added.

9. A Decomposition of a Coherent Prevision of a Random Quantity

If it is possible to decompose a random quantity denoted by X, then it is also possible to decompose
its coherent prevision denoted by P(X). We therefore consider the following

Proposition 2. Let I(X) = {x1, x2, . . . , xm} be the set of all logically possible values of X, where it turns out
to be x1 < x2 < . . . < xm. If {ej}, j = 1, . . . , m, is an orthonormal basis of Em, then y = (x1 p1)e1 + . . . +
(xm pm)em, with y ∈ Em, is a direct and orthogonal sum of m vectors belonging to m one-dimensional subspaces
of Em.

Proof. We have
e1 = 1 · e1, (22)

as well as

(1)x = x1e1, (23)

with regard to the first subspace of Em. A same probability expressed by p1 is associated with
Equation (23) when we consider x1 + a, where a ∈ R is an arbitrary constant. We identify different
vectors on a same straight line in Em in this way [24]. Its direction is established by e1. All collinear
vectors lying on the straight line established by e1 represent the same event from a randomness point
of view on condition that the starting inequalities given by x1 < x2 < . . . < xm remain the same when
we write them in the form expressed by x1 + a < x2 + a < . . . < xm + a. Such an event is then verified
when the true value of X which has occurred a posteriori coincides with the lowest possible value of
X. Conversely, we write

em = 1 · em, (24)
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as well as

(m)x = xmem, (25)

with regard to the m-th subspace of Em. A same probability denoted by pm is associated with
Equation (25) when we consider xm + a, where a ∈ R is an arbitrary constant. All collinear vectors
lying on the straight line established by em represent the same event from a randomness point of
view on condition that the starting inequalities given by x1 < x2 < . . . < xm remain the same
when we write them in the form expressed by x1 + a < x2 + a < . . . < xm + a. Such an event is
then verified when the true value of X which has occurred a posteriori coincides with the highest
possible value of X. What we have just said does not change by considering all other subspaces of
Em. A coherent prevision of X always coincides with the direct sum of m vectors connected with m
incompatible and exhaustive elementary events. Such a direct sum is also orthogonal. Let y be a
vector belonging to Em and obtained by means of a linear combination of m vectors that are linearly
independent. The contravariant components of y are m scalars whose sum coincides with a coherent
prevision of X. Such a sum is connected with m incompatible and exhaustive elementary events [27].
We therefore write

y = (x1 p1)e1 + . . . + (xm pm)em, (26)

where we have y ∈ Em.

If we consider xi + a, with a ∈ R, instead of xi, i = 1, . . . , m, then we write

y′ = [(x1 + a)p1]e1 + . . . + [(xm + a)pm]em, (27)

where we have y′ ∈ Em. The contravariant components of y′ are m scalars whose sum coincides with a
coherent prevision of X + a denoted by P(X + a).

10. Quadratic Indices and a Decomposition of the Variance of a Random Quantity

Given a coherent prevision of X, we are able to establish the following

Definition 2. Let Xd be a transformed random quantity whose possible values represent all deviations from
P(X) = x̄ ∈ Em. It is then represented by the vector xd = x− x̄ ∈ Em whose contravariant components are
given by xdi = xi − x̄i, i = 1, . . . , m.

If we consider Xd, then we evidently deal with a linear transformation of X. It is a change of
origin. It always depends on the state of information and knowledge of the individual evaluating.
A coherent prevision of Xd is necessarily given by

P(Xd) = (xi − x̄i)pi = 0. (28)

Having said that, we firstly observe that the α-norm of the vector x ∈ Em identifying X is
expressed by

‖x‖2
α = (xi)2 pi. (29)

We use the term α-norm because we refer to the α-criterion of concordance introduced by Gini [28].
The notion of α-norm is a consequence of the notion of α-product with respect to two vectors belonging
to Em and representing the logically possible values of two random quantities which are jointly
considered. They are logically independent. They identify a bivariate random quantity which is
generically denoted by X12 = {1X , 2X}. The number of its logically possible values is overall equal to
m2. We evidently deal with a partition of m2 incompatible and exhaustive elementary events. The joint
distribution of X12 is geometrically represented by the covariant components of the tensor p = (pi1i2),
where p is an affine tensor of order 2. From the notion of α-product results the one of α-norm because
the latter is nothing but an α-product between two random quantities whose possible values are all
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equal. The covariant components of the tensor p = (pi1i2) having different numerical values as indices
are then equal to 0. We therefore say that the absolute maximum of concordance is actually obtained.
We note that it turns out to be ‖x‖2

α ≥ 0. Secondly, the α-norm of the vector representing Xd is given by

‖xd‖2
α = (xdi)2 pi = σ2

X . (30)

It therefore represents the variance of X. The origin of the notion of variability is not evidently
standardized within this context. The standard deviation of X is given by

‖xd‖α =
√

σ2
X = σX . (31)

A metric connection between Em and a random quantity whose possible values are geometrically
represented by an m-dimensional vector belonging to Em is therefore obtained by using the notion of
α-norm. It is consequently possible to decompose a random quantity whose possible values represent
all deviations from x̄ as well as the variance of X by using the geometric property of collinearity.
After decomposing X and P(X) we are able to show the following

Proposition 3. Let I(Xd) = {xd1, xd2, . . . , xdm} be the set of all logically possible values of Xd, where it
turns out to be xd1 < xd2 < . . . < xdm. If {ej}, j = 1, . . . , m, is an orthonormal basis of Em, then z =[(

(1)
xd1
)2

p1

]
e1 + . . . +

[(
(m)

xdm
)2

pm

]
em, with z ∈ Em, is a direct and orthogonal sum of m vectors

belonging to m one-dimensional subspaces of Em.

Proof. What we have said with respect to X and P(X) continues to be valid when we consider a
random quantity whose possible values represent all deviations from x̄. We write

xd =
(1)

xd + . . . +
(m)

xd (32)

as well as

z =

[(
(1)

xd1
)2

p1

]
e1 + . . . +

[(
(m)

xdm
)2

pm

]
em, (33)

where we have z ∈ Em. The contravariant components of z are then m scalars whose sum coincides
with the variance of X. Such a sum is connected with m incompatible and exhaustive elementary
events.

11. Invariance of a Random Quantity Subjected to a Translation

If we transform all logically possible values of X by using a same m-dimensional constant denoted
by a ∈ Em, then we obtain a transformed random quantity in this way. We denote it by X + a.
It represents a translation of X. Its contravariant components are then expressed by xi = xi + a,
where we have i = 1, . . . , m. We assign to them the same subjective probabilities assigned to xi,
i = 1, . . . , m. A coherent prevision of X + a is then denoted by

P(X + a) = P(X) + a = x̄ + a. (34)

We observe that all deviations from x̄ + a of the possible values of X + a are the same of the
ones from x̄ of the possible values of X. We now transform all possible values of X by using a
same m-dimensional constant which is different from a. We denote it by b ∈ Em. We obtain another
transformed random quantity in this way. We denote it by X + b. It represents another translation
of X. Its contravariant components are then expressed by xi = xi + b, where we have i = 1, . . . , m.
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We assign to them the same subjective probabilities assigned to xi and xi + a, i = 1, . . . , m. A coherent
prevision of X + b is then denoted by

P(X + b) = P(X) + b = x̄ + b. (35)

We observe that all deviations from x̄ + b of the possible values of X + b are the same of the ones
from x̄ + a of the possible values of X + a. They are also the same of the ones from x̄ of the possible
values of X. We then note that Xd, (X+a)d and (X+b)d have the same possible values, so we write

Xd =(X+a) d =(X+b) d. (36)

We therefore say that a random quantity denoted by Xd is invariant when X is subjected to
different translations. We make clear a basic point: all possible translations of X are characterized
by the same subjective probabilities assigned to the possible values of the random quantities under
consideration. This means that each event contained in those random quantities is always the same
from a randomness point of view [29]. We also observe that the weighted summation of the possible
values of Xd =(X+a) d =(X+b) d is always equal to 0. Such a property must always characterize any
random quantity whose possible values represent all deviations from a mean value. If it does not hold,
then we are not able to speak about invariance of a random quantity whose possible values represent
all deviations from a mean value.

12. A Particular Random Quantity Subjected to a Rotation

We establish the following

Definition 3. Let xd = x− x̄ be an m-dimensional vector of Em identifying a random quantity whose possible
values represent all deviations from x̄. Given an m×m orthogonal matrix denoted by A = (ai′

j ), where it turns
out to be i′ = 1, . . . , m as well as j = 1, . . . , m, it is possible to write

RA(xd) : xd⇒ A xd = ∗
x
d,

where ∗
x
d represents an m-dimensional vector of Em originated by a specific rotation of xd determined by A.

We note that the contravariant indices of the generic element of A represent the rows of A.
The covariant indices of the generic element of A represent its columns. After noting that the
contravariant components of xd are given by xdi = xi − x̄i, i = 1, . . . , m, we observe that it turns
out to be

∗
x
di′ = xdh ai′

h . (37)

This means that there exist m linear and homogeneous relationships between the contravariant
components of xd and the ones of ∗

x
d. We want to wonder if ∗

X
d is invariant with respect to a rotation

of xd. We then prove the following

Proposition 4. The weighted summation of the possible values of ∗
X

d, where ∗
X

d identifies a rotated random

quantity whose possible values represent all deviations from a mean value, is not necessarily equal to 0.

Proof. Given Equation (37), we write

∗
x
di′ = xdja

j
i′ . (38)
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We denote by covariant indices m results, where each of them is originated by the multiplication
of each possible value of ∗

X
d by the corresponding probability. We evidently consider m possible values

of ∗
X

d as well as m corresponding probabilities. If we use covariant indices, then we have to write

m

∑
j=1

xdj = 0 (39)

in order to express the property connected with the possible values of a random quantity representing
all deviations from a mean value and their corresponding probabilities. We have consequently to
verify if it turns out to be

m

∑
i′=1

∗
x
di′ = 0. (40)

If we write
xdj = xj − x̄j, (41)

where we have j = 1, . . . , m, then we note that we have m products, where each of them is given
by xj = (xj − x̄j)pj, j = 1, . . . , m. We have also x̄j = 0, j = 1, . . . , m. We consequently observe that
Equation (38) can be expressed by

∗
x
di′ = xja

j
i′ − x̄ja

j
i′ . (42)

We observe that the transformation of the components of x is the same of the one connected with
the components of x̄. We note that the m subtrahends appearing in Equation (41) are all equal unlike
the m subtrahends appearing in Equation (42). This means that Equation (40) does not necessarily
hold, so ∗

X
d is not invariant with respect to a rotation of xd.

We observe that Xd and ∗
X

d are the same quantity from a randomness point of view. They are

different quantities from a geometric point of view. This means that there always exists an one-to-one
correspondence between the events of the set of events characterizing Xd and the ones of the set of
events characterizing ∗

X
d. It is explained by the same probabilities which are coherently assigned to the

corresponding events [30].

13. Intrinsic Properties of Probabilistic Indices

We prove the following

Proposition 5. The variance of X and its standard deviation are invariant with respect to a rotation of xd
determined by an m×m orthogonal matrix denoted by A.

Proof. Given xd ∈ Em, its α-norm is coherently expressed by Equation (30) [31]. Since it is possible to
write (xdi)2 pi = (xdi)(xdi)pi, we note that it turns out to be (xdi)pi = xdi. We use covariant indices
when we are faced with probabilities. We are then able to write

‖xd‖2
α = xdi

xdi. (43)

It follows that it turns out to be

σ2
X = ‖xd‖2

α = xdi
xdi. (44)
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Given
∗
X, where

∗
X is a random quantity obtained when X is subjected to a rotation, let ∗

x
d be an

m-dimensional vector of Em representing ∗
X

d. We then write

σ2
∗
X
= ‖∗

x
d‖2

α = ∗
x
di′
∗
x
di′ . (45)

We refer to Equation (37) and Equation (38) in Equation (45), so we are able to write

‖∗
x
d‖2

α = ∗
x
di′
∗
x
di′

= (xdhai′
h )(xdja

j
i′)

= xdh
xdjai′

h aj
i′ .

(46)

Since it turns out to be
ai′

h aj
i′ = δ

j
h, (47)

where δ
j
h represents the Kronecker delta, we consequently obtain

‖∗
x
d‖2

α = xdh
xdjδ

j
h = xdj

xdj. (48)

We can evidently write
‖xd‖2

α = ‖∗
x
d‖2

α (49)

as well as
‖RA(xd)‖2

α = ‖xd‖2
α. (50)

All of this shows that the variance of X is invariant with respect to a rotation of xd determined by
A. Since it is possible to write √

σ2
X =

√
σ2
∗
X

(51)

we note that the same thing goes when we consider the standard deviation associated with X and
∗
X.

14. Variations Connected with the Bravais–Pearson Correlation Coefficient

Given X, let Xv be a random quantity identifying variations. Its logically possible values are
obtained by means of a relationship between two quantities expressed in the form of a ratio. We firstly
consider the logically possible values of a random quantity representing all deviations from a mean
value. It is defined with respect to X [32]. We secondly consider the standard deviation of X denoted
by σX . We then establish the following

Definition 4. A random quantity identifying variations denoted by Xv is geometrically represented by an
m-dimensional vector of Em denoted by xv ∈ Em whose contravariant components are given by

xvi =
xdi

σX
.

We note that the variance of Xv as well as its standard deviation are always equal to 1.
We therefore write

σ2
Xv = ‖xv‖2

α = 1 (52)

as well as √
σ2

Xv = 1. (53)
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We observe that the logically possible values of a random quantity representing variations are
invariant with respect to an affine transformation of them expressed by

Xv⇒ a Xv + b, (54)

where we have a 6= 0. Having said that, we now consider a generic bivariate random quantity denoted
by X12 = {1X , 2X}. Its possible values represent a partition of m2 incompatible and exhaustive
elementary events. We transform the logically possible values of 1X and 2X . We therefore obtain two
random quantities representing two variations whose m-dimensional vectors of Em are respectively
given by (1)v and (2)v. They geometrically represent

1X v and
2X v. We have to note a very important

point: even if the logically possible values of 1X and 2X change we observe that their joint probabilities
as well as their marginal probabilities are always the same. This means that we always consider
the same events from a randomness point of view. We represent the joint probabilities of the joint
distribution using an affine tensor of order 2 denoted by p. We note that its components are represented
by using covariant indices, so we write p = pij. Having said that, we consider the α-product between

(1)v and (2)v, where it is a scalar product obtained by using the joint probabilities together with two
equal-length sequences of contravariant components of m-dimensional vectors of Em. We write

(1)v � (2)v = (1)v
i
(2)v

j pij. (55)

We note that it turns out to be (2)v
j pij = (2)vi because we deal with a vector homography, so we

are also able to write

(1)v � (2)v = (1)v
i
(2)vi. (56)

It follows that it turns out to be

(1)v
i
(2)vi =

(1)d
i
(2)di

σ
1X σ

2X
, (57)

so we obtain the Bravais-Pearson correlation coefficient in this way. We want to realize that the
Bravais-Pearson correlation coefficient is invariant with respect to a rotation characterized by an m×m
orthogonal matrix denoted by A. Given (1)v, if it is subjected to a rotation established by A then its
contravariant components are given by

∗
(1)

vi′ =

∗
(1)

di′

σ
1X

. (58)

Given (2)v, if it is subjected to a rotation established by A then its contravariant components are
given by

∗
(2)

vi′ =

∗
(2)

di′

σ
2X

. (59)

The α-product between ∗
(1)

v and ∗
(2)

v, where both ∗
(1)

v and ∗
(2)

v are not invariant with respect to a

rotation determined by A, is then given by

∗
(1)

v � ∗
(2)

v = ∗
(1)

vi′
∗
(2)

vi′ =

∗
(1)

di′
∗
(2)

di′

σ
1X σ

2X
. (60)

Since it turns out to be
∗
(1)

di′
∗
(2)

di′ = (1)d
i
(2)di (61)
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we are able to establish that the Bravais-Pearson correlation coefficient is invariant with respect to a
rotation determined by A. We therefore write

∗
(1)

vi′
∗
(2)

vi′ = (1)v
i
(2)vi. (62)

15. A Measure of Distance between Two Non-Parametric Probability Distributions

After considering Equation (14), we now write

(2)S
(1) ⊂ Em, (63)

where (2)S
(1) is an m-dimensional linear space contained in Em. Let X12 = {1X , 2X} be a generic

bivariate random quantity. Its possible values represent a partition of m2 incompatible and exhaustive
elementary events. Its marginal components denoted by 1X and 2X are geometrically represented by
two m-dimensional vectors of Em denoted by (1)x and (2)x, where we have (1)x, (2)x ∈ (2)S

(1). We note

that (2)S
(1) contains all ordered pairs of m-dimensional vectors of Em identifying the logically possible

values of the marginal components of a bivariate random quantity. An affine tensor of order 2 denoted
by p uniquely corresponds to every ordered pair of vectors belonging to (2)S

(1). The components of
p identify all joint probabilities characterizing a bivariate random quantity. Having said that, we write

y = (1)x + λ (2)x, (64)

where it turns out to be λ ∈ R. It is possible to suppose that (1)x and (2)x are linearly independent
without loss of generality. We write

‖y‖2
α = ‖(1)x‖

2
α + 2 λ

(
(1)x � (2)x

)
+ λ2 ‖(2)x‖

2
α, (65)

where we need to solve a linear equation having m− 1 unknowns in order to compute the marginal
probabilities corresponding to y ∈ (2)S

(1). In particular, if it turns out to be λ = −1 then we obtain

‖(1)x − (2)x‖
2
α = ‖(1)x‖

2
α − 2

(
(1)x � (2)x

)
+ ‖(2)x‖

2
α. (66)

We therefore establish the following

Definition 5. Given two non-parametric probability distributions, their α-distance coincides with ‖y‖2
α =

‖(1)x − (2)x‖
2
α. It is the α-norm of an m-dimensional vector denoted by y belonging to (2)S

(1). Such a vector is

one of infinite possible linear combinations of (1)x and (2)x, with (1)x, (2)x ∈ (2)S
(1).

From Equation (65), it is possible to derive Schwarz’s α-generalized inequality given by

|(1)x � (2)x| ≤ ‖(1)x‖α ‖(2)x‖α. (67)

If λ = 1 then one has y = (1)x + (2)x, so it is possible to write the α-triangle inequality given by

‖(1)x + (2)x‖α ≤ ‖(1)x‖α + ‖(2)x‖α. (68)

The reverse α-triangle inequality is expressed by

‖(1)x − (2)x‖α ≥
∣∣∣‖(1)x‖α − ‖(2)x‖α

∣∣∣ . (69)



Mathematics 2020, 8, 1901 15 of 17

We also write

cos γ =
(1)x � (2)x

‖
(1)x‖α‖(2)x‖α

, (70)

so we say that (2)S
(1) is a metric space [33]. What we have said can be referred to random quantities

whose possible values represent all deviations from a mean value. On the other hand, the variance of
a probability distribution is a reasonable measure of the riskiness involved. Given two transformed
random quantities, we are also able to realize whether they are equally risky or not. We can understand
which is their distance in terms of riskiness.

16. Some Future Works

If we consider n random quantities that are logically independent, where each of them is a
partition of m (with m > n) incompatible and exhaustive elementary events, then it is also possible to
consider a multivariate random quantity of order n. Every partition characterizing one of n random
quantities is uniquely determined by m possible values that are necessarily all distinct. It is possible
to study both n random quantities and a multivariate random quantity of order n inside of a linear
space provided with a quadratic metric. It is analytically possible to decompose a multivariate random
quantity of order n inside of a linear space provided with a quadratic metric in order to compute
further summary indices. They can usefully be used by an individual in order to compare different
non-parametric probability distributions [34]. If we decompose a multivariate random quantity of
order n inside of a linear space provided with a quadratic metric then we observe that it is not possible
to consider more than two random quantities at a time. It is possible to study probability inside
of a linear space provided with a quadratic metric because the most important role in probability
theory is played by the notion of linearity. On the other hand, it can be extended by considering the
notion of multilinearity, so we are also able to interpret principal component analysis connected with
non-parametric probability distributions in a new and profitable way. It is also possible to consider
two different quadratic metrics in order to compare more than two probability distributions, where a
linear quadratic metric is different from a non-linear quadratic metric. In particular, non-parametric
probability distributions based on dichotomy between possibility and probability can also be used in
order to study statistical issues connected with sampling as well as risky assets into problems of an
economic nature characterizing decision theory [35]. They can consequently be used in order to treat
cardinal utility functions into problems of an economic nature involving decisions under uncertainty
and riskiness being made by an individual [36].

17. Conclusions

We have considered a linear space provided with a quadratic metric in order to represent all
logically possible alternatives of a random quantity meant as a geometric entity. We did not assume
a probability distribution as already attached to it. We have decomposed a random quantity as
well as its coherent prevision inside of a linear space provided with a quadratic metric by using
the geometric property of collinearity. We have shown a quadratic and linear metric by taking the
α-criterion of concordance introduced by Gini into account. We have decomposed a random quantity
whose possible values represent all deviations from a mean value as well as its variance inside of a
linear space provided with a quadratic metric by using the geometric property of collinearity. We have
realized that the origin of the notion of variability is not standardized but it always depends on the
state of information and knowledge of an individual. We have shown different intrinsic properties
of non-parametric probability distributions as well as of probabilistic indices summarizing them.
We have defined the notion of α-distance between two non-parametric probability distributions. All of
this works when an event is not a measurable set but it is an unequivocal proposition susceptible of
being true or false at the right time. Probability viewed as a mass is then a non-negative and finitely
additive function taking the value 1 on the whole space of events coinciding with a finite partition



Mathematics 2020, 8, 1901 16 of 17

of incompatible and exhaustive outcomes characterizing a random quantity. All of this is interesting
partly because it can be extended to more than two random quantities which are jointly considered.
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