2,132 research outputs found

    On Classical Teleportation and Classical Nonlocality

    Full text link
    An interesting protocol for classical teleportation of an unknown classical state was recently suggested by Cohen, and by Gour and Meyer. In that protocol, Bob can sample from a probability distribution P that is given to Alice, even if Alice has absolutely no knowledge about P. Pursuing a similar line of thought, we suggest here a limited form of nonlocality - "classical nonlocality". Our nonlocality is the (somewhat limited) classical analogue of the Hughston-Jozsa-Wootters (HJW) quantum nonlocality. The HJW nonlocality tells us how, for a given density matrix rho, Alice can generate any rho-ensemble on the North Star. This is done using surprisingly few resources - one shared entangled state (prepared in advance), one generalized quantum measurement, and no communication. Similarly, our classical nonlocality presents how, for a given probability distribution P, Alice can generate any P-ensemble on the North Star, using only one correlated state (prepared in advance), one (generalized) classical measurement, and no communication. It is important to clarify that while the classical teleportation and the classical non-locality protocols are probably rather insignificant from a classical information processing point of view, they significantly contribute to our understanding of what exactly is quantum in their well established and highly famous quantum analogues.Comment: 8 pages, Version 2 is using the term "quantum remote steering" to describe HJW idea, and "classical remote steering" is the main new result of this current paper. Version 2 also has an additional citation (to Gisin's 89 paper

    Implications of Teleportation for Nonlocality

    Full text link
    Adopting an approach similar to that of Zukowski [Phys. Rev. A 62, 032101 (2000)], we investigate connections between teleportation and nonlocality. We derive a Bell-type inequality pertaining to the teleportation scenario and show that it is violated in the case of teleportation using a perfect singlet. We also investigate teleportation using `Werner states' of the form x P + (1-x) I/4, where P is the projector corresponding to a singlet state and I is the identity. We find that our inequality is violated, implying nonlocality, if x > 1/sqrt(2). In addition, we extend Werner's local hidden variable model to simulation of teleportation with the x = 1/2 Werner state. Thus teleportation using this state does not involve nonlocality even though the fidelity achieved is 3/4 which is greater than the `classical limit' of 2/3. Finally, we comment on a result of Gisin's and offer some philosophical remarks on teleportation and nonlocality generally.Comment: 10 pages, no figures. Title changed to accord with Phys. Rev. A version. A note and an extra reference have been added. Journal reference adde

    Classical wave-optics analogy of quantum information processing

    Get PDF
    An analogous model system for quantum information processing is discussed, based on classical wave optics. The model system is applied to three examples that involve three qubits: ({\em i}) three-particle Greenberger-Horne-Zeilinger entanglement, ({\em ii}) quantum teleportation, and ({\em iii}) a simple quantum error correction network. It is found that the model system can successfully simulate most features of entanglement, but fails to simulate quantum nonlocality. Investigations of how far the classical simulation can be pushed show that {\em quantum nonlocality} is the essential ingredient of a quantum computer, even more so than entanglement. The well known problem of exponential resources required for a classical simulation of a quantum computer, is also linked to the nonlocal nature of entanglement, rather than to the nonfactorizability of the state vector.Comment: 9 pages, 6 figure

    Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states

    Full text link
    Based on the assumption that the receiver Bob can apply any unitary transformation, Horodecki {\it et al.} [Phys. Lett. A {\bf 222}, 21 (1996)] proved that any mixed two spin-1/2 state which violates the Bell-CHSH inequality is useful for teleportation. Here, we further show that any X state which violates the Bell-CHSH inequality can also be used for nonclassical teleportation even if Bob can only perform the identity or the Pauli rotation operations. Moreover, we showed that the maximal difference between the two average fidelities achievable via Bob's arbitrary transformations and via the sole identity or the Pauli rotation is 1/9.Comment: 5 pages, to be published in "Quantum Information Processing

    On the Nonlocality of the Quantum Channel in the Standard Teleportation Protocol

    Get PDF
    By exhibiting a violation of a novel form of the Bell-CHSH inequality, Zukowski has recently established that the quantum correlations exploited in the standard perfect teleportation protocol cannot be recovered by any local hidden variables model. Allowing the quantum channel state in the protocol to be given by any density operator of two spin-1/2 particles, we show that a violation of a generalized form of Zukowski's teleportation inequality can only occur if the channel state, considered by itself, violates a Bell-CHSH inequality. On the other hand, although it is sufficient for a teleportation process to have a nonclassical fidelity-defined as a fidelity exceeding 2/3-that the channel state employed violate a Bell-CHSH inequality, we show that such a violation does not imply a violation of Zukowski's teleportation inequality or any of its generalizations. The implication does hold, however, if the fidelity of the teleportation exceeds 2/3(1+1/22)≈.902/3(1+1/2\sqrt{2})\approx .90, suggesting the existence of a regime of nonclassical values of the fidelity, less than .90, for which the standard teleportation protocol can be modelled by local hidden variables.Comment: 9 pages, no figures, submitted to PR

    Teleportation capability, distillability, and nonlocality on three-qubit states

    Get PDF
    In this paper, we consider teleportation capability, distillability, and nonlocality on three-qubit states. In order to investigate some relations among them, we first find the explicit formulas of the quantities about the maximal teleportation fidelity on three-qubit states. We show that if any three-qubit state is useful for three-qubit teleportation then the three-qubit state is distillable into a Greenberger-Horne-Zeilinger state, and that if any three-qubit state violates a specific form of Mermin inequality then the three-qubit state is useful for three-qubit teleportation.Comment: 5 pages, 2 figures; The old version has been generalized into the results on general 3-qubit state
    • 

    corecore