78 research outputs found

    On diagonal argument, Russell absurdities and an uncountable notion of lingua characterica

    Get PDF
    vii, 111 leaves ; 29 cm.There is an interesting connection between cardinality of language and the distinction of lingua characterica from calculus rationator. Calculus-type languages have only a countable number of sentences, and only a single semantic valuation per sentence. By contrast, some of the sentences, and only a single semantic valuation per sentence. By contrast, some of the sentences of a lingua have available an uncountable number of semantic valuations. Thus, the lingua-type of language appears to have a greater degree of semantic universality than that of a calculus. It is suggested that the present notion of lingua provides a platform for a theory of ambiguity, whereby single sentences may have multiply - indeed, uncountably - many semantic valuations. It is further suggested that this might lead to a pacification of paradox. This thesis involves Peter Aczel's notion of a universal syntax, Russell's question, Keith Simmons' theory of diagonal argument, Curry's paradox, and a 'Leibnizian' notion of language

    Epistemology of quasi-sets

    Get PDF
    I briefly discuss the epistemological role of quasi-set theory in mathematics and theoretical physics. Quasi-set theory is a first order theory, based on Zermelo-Fraenkel set theory with Urelemente (ZFU). Nevertheless, quasi-set theory allows us to cope with certain collections of objects where the usual notion of identity is not applicable, in the sense that x=xx = x is not a formula, if xx is an arbitrary term. Basically, quasi-set theory offers us some sort of logical apparatus for questioning the need for identity in some branches of mathematics and theoretical physics. I also use this opportunity to discuss a misunderstanding about quasi-sets due mainly to Nicholas J. J. Smith, who argues, in a general way, that sense cannot be made of vague identity

    Readings in the 'New Science': a selective annotated bilbiography

    Full text link
    Die vorliegende kommentierte Bibliographie will hauptsächlich Historikern eine Orientierungshilfe für die Literaturfülle zum Thema 'New Science' geben. Die knapp besprochenen Arbeiten sind nach folgenden Themenkomplexen gruppiert: Unentscheidbarkeit, Ungewißheit und Komplexität; Makrostrukturen: Systeme und die humane Dimension; Dynamische Systeme (Spieltheorie, Katastrophentheorie, Chaos, Fraktale Geometrie, Antizipatorische Systeme, Lebende Systeme); Computer (Informationstheorie, Kognitionswisssenschaft und Künstliche Intelligenz); Die Mikro- und die Makrodimensionen; Zeit; Kultur und Erkenntnistheorie. (pmb

    Strong Types for Direct Logic

    Get PDF
    This article follows on the introductory article “Direct Logic for Intelligent Applications” [Hewitt 2017a]. Strong Types enable new mathematical theorems to be proved including the Formal Consistency of Mathematics. Also, Strong Types are extremely important in Direct Logic because they block all known paradoxes[Cantini and Bruni 2017]. Blocking known paradoxes makes Direct Logic safer for use in Intelligent Applications by preventing security holes. Inconsistency Robustness is performance of information systems with pervasively inconsistent information. Inconsistency Robustness of the community of professional mathematicians is their performance repeatedly repairing contradictions over the centuries. In the Inconsistency Robustness paradigm, deriving contradictions has been a progressive development and not “game stoppers.” Contradictions can be helpful instead of being something to be “swept under the rug” by denying their existence, which has been repeatedly attempted by authoritarian theoreticians (beginning with some Pythagoreans). Such denial has delayed mathematical development. This article reports how considerations of Inconsistency Robustness have recently influenced the foundations of mathematics for Computer Science continuing a tradition developing the sociological basis for foundations. Mathematics here means the common foundation of all classical mathematical theories from Euclid to the mathematics used to prove Fermat's Last [McLarty 2010]. Direct Logic provides categorical axiomatizations of the Natural Numbers, Real Numbers, Ordinal Numbers, Set Theory, and the Lambda Calculus meaning that up a unique isomorphism there is only one model that satisfies the respective axioms. Good evidence for the consistency Classical Direct Logic derives from how it blocks the known paradoxes of classical mathematics. Humans have spent millennia devising paradoxes for classical mathematics. Having a powerful system like Direct Logic is important in computer science because computers must be able to formalize all logical inferences (including inferences about their own inference processes) without requiring recourse to human intervention. Any inconsistency in Classical Direct Logic would be a potential security hole because it could be used to cause computer systems to adopt invalid conclusions. After [Church 1934], logicians faced the following dilemma: • 1st order theories cannot be powerful lest they fall into inconsistency because of Church’s Paradox. • 2nd order theories contravene the philosophical doctrine that theorems must be computationally enumerable. The above issues can be addressed by requiring Mathematics to be strongly typed using so that: • Mathematics self proves that it is “open” in the sense that theorems are not computationally enumerable. • Mathematics self proves that it is formally consistent. • Strong mathematical theories for Natural Numbers, Ordinals, Set Theory, the Lambda Calculus, Actors, etc. are inferentially decidable, meaning that every true proposition is provable and every proposition is either provable or disprovable. Furthermore, theorems of these theories are not enumerable by a provably total procedure

    Multivalued Logic, Neutrosophy and Schrodinger equation

    Get PDF
    This book was intended to discuss some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of ‘identity’, which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. While some aspects of theoretical foundations of logic are discussed, this book is not intended solely for pure mathematicians, but instead for physicists in the hope that some of ideas presented herein will be found useful. The book is motivated by observation that despite almost eight decades, there is indication that some of those paradoxes known in Quantum Physics are not yet solved. In our knowledge, this is because the solution of those paradoxes requires re-examination of the foundations of logic itself, in particular on the notion of identity and multi-valuedness of entity. The book is also intended for young physicist fellows who think that somewhere there should be a ‘complete’ explanation of these paradoxes in Quantum Mechanics. If this book doesn’t answer all of their questions, it is our hope that at least it offers a new alternative viewpoint for these old questions

    Facets and Levels of Mathematical Abstraction

    Get PDF
    International audienceMathematical abstraction is the process of considering and manipulating operations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content connected to particular applications. There is no one single way of performing mathematical abstraction. The term "abstraction" does not name a unique procedure but a general process, which goes many ways that are mostly simultaneous and intertwined ; in particular, the process does not amount only to logical subsumption. I will consider comparatively how philosophers consider abstraction and how mathematicians perform it, with the aim to bring to light the fundamental thinking processes at play, and to illustrate by significant examples how much intricate and multi-leveled may be the combination of typical mathematical techniques which include axiomatic method, invarianceprinciples, equivalence relations and functional correspondences.L'abstraction mathématique consiste en la considération et la manipulation d'opérations, règles et concepts indépendamment du contenu dont les nantissent des applications particulières et du rapport qu'ils peuvent avoir avec les phénomènes et les circonstances du monde réel. L'abstraction mathématique emprunte diverses voies. Le terme " abstraction " ne désigne pasune procédure unique, mais un processus général où s'entrecroisent divers procédés employés successivement ou simultanément. En particulier, l'abstraction mathématique ne se réduit pas à la subsomption logique. Je vais étudier comparativement en quels termes les philosophes expliquent l'abstraction et par quels moyens les mathématiciens la mettent en oeuvre. Je voudrais parlà mettre en lumière les principaux processus de pensée en jeu et illustrer par des exemples divers niveaux d'intrication de techniques mathématiques récurrentes, qui incluent notamment la méthode axiomatique, les principes d'invariance, les relations d'équivalence et les correspondances fonctionnelles

    Follow the Flow: sets, relations, and categories as special cases of functions with no domain

    Get PDF
    We introduce, develop, and apply a new approach for dealing with the intuitive notion of function, called Flow Theory. Within our framework all functions are monadic and none of them has any domain. Sets, proper classes, categories, functors, and even relations are special cases of functions. In this sense, functions in Flow are not equivalent to functions in ZFC. Nevertheless, we prove both ZFC and Category Theory are naturally immersed within Flow. Besides, our framework provides major advantages as a language for axiomatization of standard mathematical and physical theories. Russell's paradox is avoided without any equivalent to the Separation Scheme. Hierarchies of sets are obtained without any equivalent to the Power Set Axiom. And a clear principle of duality emerges from Flow, in a way which was not anticipated neither by Category Theory nor by standard set theories. Besides, there seems to be within Flow an identification not only with the common practice of doing mathematics (which is usually quite different from the ways proposed by logicians), but even with the common practice of teaching this formal science
    corecore