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Abstract

I briefly discuss the epistemological role of quasi-set theory in
mathematics and theoretical physics. Quasi-set theory is a first or-
der theory, based on Zermelo-Fraenkel set theory with Urelemente
(ZFU). Nevertheless, quasi-set theory allows us to cope with certain
collections of objects where the usual notion of identity is not applica-
ble, in the sense that x = x is not a formula, if x is an arbitrary term.
Basically, quasi-set theory offers us some sort of logical apparatus for
questioning the need for identity in some branches of mathematics and
theoretical physics. I also use this opportunity to discuss a misunder-
standing about quasi-sets due mainly to Nicholas J. J. Smith, who
argues, in a general way, that sense cannot be made of vague identity.
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1 Introduction

Francisco “Chico” Doria was my doctoral co-advisor. More than that, he is
one of the greatest influences on my professional and even personal life. The
most important lesson I learned from him is this: be honest with yourself!
If you want to publish papers, you go ahead and publish papers. But if you
want to find unconventional results in science, you should not submit yourself
to what other people expect from you. He never said that to me in so many
words. But his actions through theoretical physics and mathematics said
that to me in a very clear way. I found this hidden message in his successful
works on undecidability and incompleteness in physical theories and in his

1



“exotic” results on the P versus NP problem in computer science as well,
both in collaboration with Newton da Costa, my doctoral advisor. So, that
is what I try to do since then. All I want from this life is to be honest with
myself. If all my efforts fail, that will be my sole responsibility. But this
journey I started almost three decades ago, thanks to da Costa and Doria,
is truly worthwhile in itself. So, let’s talk about quasi-sets and their curious
epistemological role.

Quasi-set theory Q [1] [10] [11] is a first order theory without identity
which allows the existence, among its terms (the objects of Q), of collec-
tions (sets and q-sets) and atoms (Urelemente). Some of those collections
correspond to ZFU sets, in the sense that a binary predicate letter of ex-
tensional equality =E is explicitly defined in Q and a given translation from
ZFU to Q guarantees that every translated axiom of ZFU is a theorem in Q
(where ZFU equality is translated as the extensional equality in Q). In other
words, extensional equality in quasi-set theory has all the usual properties of
standard identity in ZFU. Nevertheless, the axioms of Q do not allow that
x =E x is necessarily a formula, for any term x. Concerning atoms in Q,
there are two kinds of Urelemente, termed m-atoms andM -atoms, which are
identified by two unary predicates m(x) and M(x), respectively. M -atoms
correspond (in a precise sense) to standard atoms of ZFU theory, while m-
atoms are something else (or less, if the reader allows our poetic view). A
weaker binary relation of “indistinguishability” (denoted by ≡), is used in-
stead of identity, and it is postulated that ≡ has the standard properties of
an equivalence relation. The defined binary predicate letter of extensional
equality =E cannot be applied to m-atoms, since no expression of the form
x =E y is a formula if either x or y denote m-atoms. Hence, there is a
precise sense in saying that m-atoms can be indistinguishable without being
identical. In standard mathematics, when we say that x = y (x is identical
to y) we are talking about the very same object, with two different labels:
x and y. In quasi-set theory Q, the formula x ≡ y does not entail we are
necessarily talking about the very same object. Axioms of quasi-set theory
are a very natural extension of the axioms of Zermelo-Fraenkel set theory
with Urelemente (ZFU). So, no one here is abandoning standard mathemat-
ics. Actually, quasi-set theory provides a specific methodology for a better
understanding of identity and its role in mathematics. Geometry was better
understood when its postulates were questioned in the last two centuries.
Something similar happens here, concerning identity.

The development of quasi-set theory was motivated mostly by certain
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striking phenomena in quantum mechanics, all related to the well known
problem of non-individuality among elementary particles [1]. According to
any standard statistical mechanics textbook [3], Maxwell-Boltzmann (MB)
statistics gives us the most probable distribution of N distinguishable objects
into, say, boxes with a specified number of objects in each box. By “box”, in
this context, we mean “state”. Thus, MB statistics can be easily described
through a classical mathematical picture for ensembles of individual parti-
cles. Nonetheless, in quantum mechanics the very notion of state of a particle
differs considerably from that one in classical mechanics. Besides, quantum
statistics are supposed to give us the most probable distribution of N in-
distinguishable objects into distinguishable boxes with a specified number of
objects in each box. The usual and physically meaningful quantum statistics
are Bose-Einstein and Fermi-Dirac.

Hence, it has been argued that classical particles are “individuals” of
some sort. Even when classical particles share the very same set of intrinsic
properties, their individuality must be ascribed by something which “tran-
scends” such intrinsic properties [1] [19] [22]. In quantum statistics, on the
other hand, the Indistinguishability Postulate (IP) asserts that “If a permu-
tation is applied to any state for an assembly of particles, then there is no
way of distinguishing the resulting permuted state function from the original
one by means of any observation at any time” [2]. IP is one of the most
basic principles of quantum mechanics and it implies that permutations of
quantum particles are not usually regarded as observable.

The non-individuality problem in quantum mechanics is not limited to
quantum statistics. The helium atom, e.g., is probably the simplest realistic
situation where the problem of individuality plays an important role. With
the non-individuality question put aside, the wave function of the helium
atom would be just the product of two hydrogen atom wave functions with
Z = 1 changed to Z = 2. Nevertheless, the space part of the wave function
for the case where one of the electrons is in the ground state (100) and the
other one is in excited state (nlm) is:

ϕ(x1, x2) =
1√
2
[ψ100(x1)ψnlm(x2)± ψ100(x2)ψnlm(x1)]

where the + and − signs are designated for the spin singlet and spin triplet,
respectively, while x1 and x2 denote the vector positions of both electrons.

For the ground state, however, the space function must necessarily be
symmetric. In that case, the problems regarding non-individuality have no
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physical effect. The most interesting case, however, is the excited state of
helium. The equation stated above reflects our ignorance about which elec-
tron is in position x1 and which one is in position x2 . Nevertheless, in the
same equation there are terms like ψ100(x1), which corresponds to a specific
physical property of an individual electron.

A unified quasi-set-theoretic approach to quantum distributions and the
helium atom is introduced in [12]. And a comprehensive quasi-set-theoretic
approach to quantum statistics is presented in [25]. Notwithstanding, a quasi-
set theoretic approach to the quantum interference produced by two light
beams has not yet been developed, despite the fact that a profound mathe-
matical link between indistinguishability and coherence was presented almost
three decades ago by Leonard Mandel [16].

From an epistemological and even methodological point of view, quasi-set
theory presents some peculiar features, if we compare it to other mathemati-
cal tools usually developed and employed in theoretical physics. And that is
a good reason to raise some questions about the theoretical and philosophical
role of quasi-sets.

Mostly, mathematical approaches to cope with physical problems are de-
veloped with one simple purpose in mind: to solve problems! In order to
do that, mathematical tools are created and developed. But what is the
usual procedure to develop a mathematical tool which is useful in theoret-
ical physics? The standard answer to this question emerges from stronger
concepts, stronger models, and stronger theories.

Usually, the cornerstone of any physical theory is either a differential
equation or a class of differential equations. Newtonian mechanics is based
on Newton’s Second Law, classical electromagnetism is based on Maxwell’s
equations, quantum mechanics is based on Schrödinger’s equation, and so on.
And differential equations simply establish the limits to what extent physical
phenomena are supposed to be, at least from a theoretical point of view.

Quasi-set theory does not seem to work that way! Quasi-set theory is not
supposed to be a problem solver, in the usual sense. And that is why I wrote
this paper (in honor to my friend and former Ph.D. co-advisor Francisco
Doria). Quasi-set theory allows us to discuss about a mathematical universe
which is, in a sense, weaker than ZFU (since x ≡ y does not entail that x and
y denote the very same object). And such a feature may cause some surprise
to many people. A good example to illustrate this last claim is Nicholas
J. J. Smith’s misunderstandings concerning quasi-sets and their role in the
scientific enterprise.
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So, let’s elaborate the main points of this paper.

2 Epistemological character of Q
Most of mathematics used in theoretical physics is based on set theories.
Despite the fact that physicists in general are not usually concerned with
set theories per se, there seems to be no major problem if I claim that any
common mathematical scenario for theoretical physics is based on Zermelo-
Fraenkel-like axioms, including those found in ZFC and ZFU. An excellent
defense for such a claim may be found in Patrick Suppes’ magistral book
Representation and Invariance of Scientific Structures [29]. Other mathe-
matical approaches are possible and even necessary in theoretical physics,
like category theory [4] [15]. But ZFU set theory is powerful enough for
dealing with plenty of important and well-known applications.

But, what is set theory after all? Since there is a huge myriad of set the-
ories in the literature (ZF, von Neumann’s, NBG, NF, among many others),
someone could argue that the common element among them is the formal
study of collections of objects, in some intuitive way which partially rescues
the main original ideas due to Georg Cantor (regarding Mengenlehre). But
that is hardly an accurate description. The most popular set theories in lit-
erature (ZF, ZFU, and NBG) are simply the formal study of two predicative
letters, namely, membership (∈) and identity (=). Of course, any set the-
ory seems to be associated to an intended interpretation of collection, as it
was originally proposed by Cantor. But, from a purely formal point of view,
the standard axioms of popular set theories simply state how those standard
binary predicative letters (∈ and =) behave, in a very general way.

Nevertheless, physicists need much more than a simple knowledge con-
cerning two binary predicative letters (I am not suggesting that either ZF
or other formal set theories are simple theories!). Physicists need mostly
functions rather than sets, and whatever they can do with such functions
[27]. A function, in set-theoretic terms, is usually a particular case of a
set (a very specific set of ordered pairs). And that works as some sort of
mathematical constraint: physicists need specialized sets called functions.
But, physicists do need specialized functions as well, namely, those functions
which are solutions of very specific differential equations submitted to very
specific boundary conditions. And so we have one more level of mathematical
constraint.
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By mathematical constraints we mean, in the present context, mathemat-
ical formulas that somehow can be intuitively translated into either physical
laws or physical principles. Such a specialized mathematical apparatus pro-
vides the necessary impulse to raise and develop physical theories. After
all, it is far from enough to say the position of a given particle in a given
space can be described by a function. Physicists do need to assert special
conditions for a function in order to describe position: like the Second Law
of Classical Mechanics, namely, a specific differential equation!

On the other side of this mathematical spectrum, however, there are some
few works in the literature which follow a different philosophical approach.
It is something that has more to do with a revisionist perspective than with
plain mathematical applications. For example, it is easy to show that in many
natural axiomatic formulations of physical and even mathematical theories,
there is a substantial list of superfluous concepts usually assumed as primitive
[27], like time, space and spacetime. That happens mainly when those the-
ories are formulated in a set-theoretic language, such as Zermelo-Fraenkel’s.
On the other hand, in 1925, John von Neumann created a set theory where
sets are definable as special cases of functions. And in [27] it is provided a re-
formulation of von Neumann’s set theory where it is demonstrated that such
an axiomatic framework can be used to formulate physical and mathematical
theories with less primitive concepts in a very natural fashion.

Another historical example is Hertz’s mechanics [6]. Despite the fact that
Padoa’s method guarantees that force is an indispensable concept in certain
axiomatic formulations for non-relativistic classical particle mechanics [17],
nothing prevents us from introducing a formal framework for non-relativist
classical particle mechanics without any notion of force [24]. Even Kepler’s
Laws for planetary orbits may be derived within this “forceless” framework
[26]. Concerning the standard concepts of force and mass, a fascinating and
enlightening discussion may be found in [8].

All this means that mathematics may play a twofold epistemological role
in theoretical physics: application and revision. Applications are achieved
by means of stronger assumptions than those naturally offered by formal
set theories axioms (like specialized sets called functions, and specialized
functions which are solutions of specific differential equations under specific
boundary conditions). Revision is achieved when we use foundational tools
in order to answer to the following natural question: Do we really need
all standard mathematical apparatus in order to do mathematical physics?
More specifically: Do we really need the mathematical counterpart which
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describes space? Do we need time? Do we need spacetime? Are we doomed
to always use identity in all theoretical physics? What do we really mean by
usual concepts like space, time, spacetime, mass, force, and identity?

Quasi-set theory is just a useful mathematical tool which allows us to an-
swer rather important questions concerning mathematical methods in physics.

From a formal point of view, identity is usually associated to the predicate
letter = in standard set theories. One of the major mathematical applications
of identity is the statement of symmetry principles. How can we say, for
example, the angular momentum of the Earth-Moon system is invariant?
The usual answer is provided by a formula grounded on the standard notion
of identity:

H = HE +HM ,

where H is the total angular momentum of the Earth-Moon system, and HE

and HM are the angular momenta of Earth and Moon, respectively.
Nevertheless, do we really need identity in order to state symmetry prin-

ciples? That is a vague and, so, a tricky question! Therefore, allow me to
rephrase my doubt. Can we rewrite the last equation as

H ≡ HE +HM?

Quasi-set theory has been used for a better understanding (in a philosoph-
ical fashion) of some phenomena in quantum mechanics. Within this context,
the indistinguishability predicate ≡ has been mostly used among Urelemente
of Q. Nevertheless, the same predicate letter may be used among collections
as well, including quasi-functions (the quasi-set theoretic counterpart of func-
tions). One thing is to say the total angular momentum of the Earth-Moon
system is identical to the vector sum of the angular momenta of Earth and
Moon. Another thing is to say both functions are simply indistinguishable.
That sort of philosophical perspective may inspire new and relevant ideas.
In the specific case of the last equation, it seems reasonable to consider both
functions H and HE +HM as standard ZF-sets, even within Q. Thus, as a
consequence we have the following:

H =E HE +HM ,

where =E stands for the extensional equality mentioned in the Introduction.
Nevertheless, quasi-set theory allows us to state symmetry principles in a
more relaxed way.
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By using category theory, Shahn Majid proposed a very general symmetry
principle inspired on Einstein’s formulation for equivalence between gravita-
tion and acceleration [15]. His idea was to propose a mathematical tool for
coping with quantum gravitation. Analogously, if macroscopic objects are, in
some sense, composed of microscopic objects, why can’t we abandon identity
right at start? After all, microscopic particles (usually described by quantum
theories) seem to be devoid of any classical notion of identity.

In standard set theories, an arbitrary permutation of the elements of a set
x is a classical example of an automorphism. And the automorphism group
of x is the symmetric group on x. Notwithstanding, in quasi-set theory the
automorphism group simply presents indistinguishable elements. That’s all!
Nevertheless, such indistinguishable elements offer a new way to examine
quantum statistical mechanics. And that is a revisionist perspective that
mathematics can effectively offer to theoretical physics.

That revisionist perspective offered by quasi-set theory may be responsi-
ble for some misunderstandings among physicists and even philosophers. We
illustrate this point in the next Section.

3 Nicholas Smith’s criticisms

Nicholas J. J. Smith published ten years ago a paper about the philosophical
dispute concerning any clear notion of vague identity [28]. According to him:

[T]o make clear sense of something, one must at least model it
set-theoretically; but due to the special place of identity in set-
theoretic models, any vague relation that one does model set-
theoretically will not be identity, for real identity will already
be there, built into the background of the model, and perfectly
precise.

More specifically, Smith argues that Krause and collaborators [13] made
no progress towards the problem of clarifying any notion of vague identity.
According to Smith, Krause and colleagues

“simply present quasi-set theory as an axiomatic theory − i.e.
as a list of definitions and axioms involving a primitive relation
of indistinguishability, symbolised as ≡. This approach leads di-
rectly to the dilemma that Priest and van Inwagen faced. If we
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understand this axiomatic theory in the usual way − i.e. as pick-
ing out the class of (standard set-theoretic) models in which all
the axioms are true then we can only understand ≡ as a new
relation in addition to the precise identity relation which inheres
in all standard models. We have then done nothing to remove
precise identity in favour of the vague relation of indistinguisha-
bility − i.e. we have gone no way towards achieving Krause et
als stated goal of developing a framework which does not treat
objects as individuals in the standard sense.”

The works cited by Smith are [21] and [7] (Priest and Inwagen, respec-
tively).

Well, let’s analyse Smith’s arguments. After all, it seems to me that no
one did this until now, at least from the perspective I wish to explore here.

First of all, it is easy to find a manifold prejudice to the interests of phi-
losophy, when someone reads a statement like this: “to make clear sense of
something, one must at least model it set-theoretically”. Is this statement
supposed to be a critical one? If that is the case, what is set theory supposed
to be? Smith argues he is not talking about a particular formulation for set
theory, like ZFC or NBG (the most popular examples in specialized litera-
ture). He refers to set theory as “a way of thinking with which we need to be
inculcated if we are to understand any mathematical theory”. That is quite
puzzling! After all, there are many well known mathematical theories that re-
quire no particular notion of set whatsoever: classical propositional calculus
[18], non-classical propositional calculi [9], certain formulations for category
theory [5], mereology [14], type theory [23], and, of course, set theory itself
[18] [30]!

Besides, ZFC and NBG are first order theories whose primitive concepts
are equality = and membership ∈. And that is all! There is no need to
talk about sets (in the intuitive sense of a collection of objects), when we are
dealing with ZFC and NBG. Both ZFC and NBG are well known examples
of formal theories in which the main purpose is to deal with two binary
predicate letters, namely, equality and membership. The objects of ZFC
and NBG are simply terms , from a first order language point of view. If a
mathematician refers to such terms as sets , that happens because both ZFC
and NBG are defined through axioms somehow associated to an intended
and merely intuitive interpretation of what a set (collection) is supposed to
be. Somehow, ZFC and NBG were erected in order to capture an intended
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interpretation that started with the work of Georg Cantor in the late 19th
century. Nevertheless, there is no way to guarantee which formulation is
better suited for Cantor’s ideas about sets.

Cantor said “a set is any collection of definite, distinguishable objects of
our intuition or of our intellect to be conceived as a whole”. That is a really
vague notion about what a set is supposed to be! That is why there is a huge
myriad of set theories in specialized literature!

In von Neumann set theory, e.g., there are in fact sets [27]! A set may be
defined as a quite particular term in von Neumann’s axiomatic framework.
Not all terms are sets in von Neumann’s theory. But in ZFC and NBG, all
terms are usually called sets (except in ZFU and its variations). For all that
matters, those terms could be called things ! Even if that was the case, still
ZFC and NBG should be seen as first order theories whose primitive concepts
are just equality and membership. So, what makes Smith think he knows for
sure what a set should be?

During the early development of formal set theories, many mathemati-
cians displayed serious prejudice against certain set-theoretic ideas. The best
known example is the Axiom of Choice. Banach-Tarski theorem was used
sometimes as an attempt to refute the Axiom of Choice [20]. The argument
was simple (yet naive!): since the theorem is intuitively false, the Axiom
of Choice cannot be true! That happened because many mathematicians of
the early 20th century had their own ideas about what a set is supposed to
be (like Smith is trying to do, with his own sense of what a clear sense is
supposed to be).

Mathematics is not the science of clear sense! Mathematics is a social
enterprise which fundamentally depends on fresh ideas and, of course, intense
and critical discussion. Despite the fact that mathematics can be done in a
formal way, formal languages cannot hide mathematics from social criticism.
Yuri Manin proposed in 1974:

We should consider the possibilities of developing a totally new
language to speak about infinity. Classical critics of Cantor (Brouwer
et al .) argued that, say, the general choice axiom is an illicit ex-
trapolation of the finite case.

I would like to point out that this is rather an extrapolation of
common-place physics, where we can distinguish things, count
them, put them in some order, etc. New quantum physics has
shown us models of entities with quite different behavior. Even
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‘sets’ os photons in a looking-glass box, or of electrons in a nickel
piece are much less Cantorian than the ‘set’ of grains of sand.
In general, a highly probabilistic ‘physical infinity’ looks consid-
erably more complicated and interesting than a plain infinity of
‘things’.

That point raised by Manin was one of the major motivations for devel-
oping quasi-set theory. The point here is not the concept of set per se, but
it is rather a formal way to cope with infinities, specially infinite collections
in some sense. If quasi set theory answers to Yuri Manin questions, that is
naturally debatable. Nevertheless, quasi-set theory is as licit as any usual
standard set theory, if we are trying to talk about infinite collections in a
rigorous and formal way.

Smith argues quasi-set theory is simply an axiomatic theory. Well, we
can obviously say exactly the same about any standard set theory, like ZFC
and NBG, among others! So, why quasi-set theory should be seen in any
different way?

The point raised by Smith seems to be directly connected to (standard)
model theory. Nevertheless, what prevents us from developing a quasi-set-
theoretic version of model theory? Few people in the world work with quasi-
sets. And there is a lot to do if we really want to get some answers good
enough to resist to qualified criticisms. On the other hand, some shy examples
of quasi-set-theoretic models already exist in the literature, like the ones
presented in [12] and [25] (apparently ignored by Smith).

Georg Cantor himself once said: “The essence of mathematics lies in its
freedom”. So, let us be free to create! Manin wrote [1] “In accordance with
Hilbert’s prophecy, we are living in Cantor’s paradise. So, we are bound to
be tempted.” That non-Cantorian proposal is in a poetic agreement to the
notion of freedom advocated by Cantor himself!

Allow me to extrapolate Smith’s ideas (at my own risk) to another realm:
geometry. What about a thesis like the following one? “To make clear sense
of geometrical concepts, one must at least model it in Euclidian geometry;
but due to the special place of the parallel postulate in geometry, any vague
axiom that one does model geometrically will not be the parallel postulate,
for real parallelism will already be there, built into the background of the
geometrical model, and perfectly precise.” Well, nowadays non-euclidian
geometry is as good geometry as euclidian geometry! So, what seems to be
the problem?
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There is no precise definition for what geometry is! Analogously, there is
no precise definition for what set theory is supposed to be!

The real issue here, mostly from a philosophical point of view, is this:
can we cope with infinite collections (in a precise sense) without appealing to
identity? If the answer is negative, why? And if the answer to this question
is positive, what is the advantage of this kind of formal approach? That
is why I wrote this paper! Any discussion about the importance of quasi-
set theory should take epistemological issues under consideration. And the
epistemological character of quasi-set theory is quite unusual, from a general
scientific perspective. That happens as a consequence of the revision power
quasi-set theory provides. We do not need to live in a world enslaved into
identity. One of the most valuable lessons of twentieth century mathematics
was this: there is no room for prejudice.
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