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ABSTRACT 

There is an interesting connection between cardinality of language and the 

distinction of lingua characterica from calculus rationator. Calculus-type languages 

have only a countable number of sentences, and only a single semantic valuation per 

sentence. By contrast, some of the sentences of a lingua have available an uncountable 

number of semantic valuations. Thus, the lingua-type of language appears to have a 

greater degree of semantic universality than that of a calculus. It is suggested that the 

present notion of lingua provides a platform for a theory of ambiguity, whereby single 

sentences may have multiply - indeed, uncountably - many semantic valuations. It is 

further suggested that this might lead to a pacification of paradox. This thesis involves 

Peter Aczel's notion of a universal syntax, Russell's question, Keith Simmons* theory of 

diagonal argument, Curry's paradox, and a 'Leibnizian' notion of language. 

iii 



ACKNOWLEDGEMENTS 

The following people are due great thanks and gratitude for their constant support 

and understanding over the considerable time that it took to develop this thesis. They are 

each sine qua non of my success. Bryson Brown has supported my efforts from 

beginning to end, since my undergraduate studies when I first found my love of logic and 

philosophy; he also brought me to understand much that I have otherwise found obscure 

and/or irrelevant, and he provided important moral support. Kent Peacock has also 

followed my efforts from beginning to end, providing helpful comments and directing my 

attention to material which became central to my arguments - namely, the writings of 

Hans Herzberger and Gottfried Leibniz. Kathy Schrage has been generous with her aid 

in a number of matters, especially by cheerfully guiding me through administrative 

procedures and other unusual complications which I would otherwise have found 

insurmountable. Jonathan Seldin is a deft and gentle teacher of great talent, skill and 

knowledge, who brought me to understand in mere minutes and hours issues which I had 

persistently misunderstood for years. Randa Stone is due deep thanks for her morale-

boosting, and her unwavering help and clarification in administrative matters. John 

Woods, like Bryson Brown, has supported my studies since my undergraduate days with 

his interest and encouragement, uncounted fascinating discussions, and as a teacher of 

singular talent, knowledge and insight. 

Besides the above people, many others have helped me, unseen but not unnoticed. 

The University of Lethbridge School of Graduate Studies, and in particular Dean 

Shamsul Alam, has been understanding and patient with me, allowing uncommon special 

measures in my favour. The Office of the Registrar has been cheerful and supportive, 

iv 



taking the sting out of administrative procedures which, at other institutions, I usually 

find arcane. The departments of Philosophy and of Mathematics and Computer Science 

have proved themselves friendly and fertile communities of academic exchange. In 

general, and speaking as one who has ample experience at other universities, the 

academic community of the University of Lethbridge is a place of high excellence and 

collegiality, where all of my best flourishing has happened. 

v 



TABLE OF CONTENTS 

Abstract iii 

Acknowledgements iv 

Symbols vii 

Some comments on universal syntax 1 

Russell's question 5 

Some history and philosophy of diagonal argument - and Russell's question 12 

Herzberger and Boolos on semantic paradox 30 

Hodges on the phenomenon of amateur refutations of diagonal argument 33 

Gumanski's putative refutation of diagonal argument 36 

King on a problem concerning diagonal argument 43 

(KP) and the logic of provability: Henkin's problem, Lob's theorem, and 

the derivability conditions 46 

Two notions of language: lingua characterica and calculus rationator 51 

Simmons' theory of diagonal argument - and Russell's question again 59 

Well-determinedness and well-definedness 73 

Curry sentences, fixed points and undecidability 78 

'Leibnizian' language 85 

A 'Leibnizian' treatment of Curry's paradox 93 

'Leibnizian' language, formally 97 

Cumulative bibliography 106 

Bibliography of uncited works 109 

vi 



SYMBOLS 

Throughout this thesis, all references to a formal system of logic will mean an co-

consistent extension of the Peano Arithmetic. The following symbolic conventions are 

also used throughout this thesis. 

L A first-order expressively strong system of formal logic. 

FORM The set of the well-formed formulas of L. 

NN The set of the natural numbers. 

r...l Godel quotation - A total function from FORM 1-1 into NN. 

J...L Godel disquotation - A partial function from NN 1-1 onto FORM. (This 

is the inverse of the Godel-quote function.) 

C A Curry sentence. ( \c] = \C -> Q], for some arbitrarily chosen 

formula. Q.) 

C(n) Another Curry sentence. ( n = [C(nj] = \C(n) -»£>! = \\n[_ -> 0~\) 

j — 'Turnstyle' - derivability/theoremhood predicate. 

Negated 'turnstyle'. 
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SOME COMMENTS ON UNIVERSAL SYNTAX 

In the first two paragraphs of his paper, 'Schematic consequence", Peter Aczel 

makes some interesting comments. (For ' A C , read 'bezel's comments'.) 

(AC) Nowadays we are well aware that there are many different logics. 
There are computer systems which are meant to be used to 
implement many logics. But there is no generally accepted 
account of what a logic is. Perhaps this is as it should be. We 
need imprecision in our vocabulary to mirror the flexible 
imprecision of our thinking. There are a number of related 
phrases that seem to have a similar imprecision e.g. formal 
system, language, axiom system, theory, deductive system, logical 
system, etc.... These are sometimes given technical meanings, 
often without adequate consideration of the informal notions. 

When a logic has been implemented on a computer system 
the logic has been represented in the logical framework that the 
computer system uses. The logical framework will involve a 
particular approach to syntax, which may differ from the approach 
to syntax taken when the logic was first presented. This means 
that in order to represent the logic, as first presented, in the 
framework a certain amount of coding may be needed and the 
question will arise whether the logic as first presented is indeed 
the logic that has been represented in the framework. To make 
this question precise it is necessary to have a notion of a logic 
that abstracts away from particular approaches to syntactic 
presentation, [emphasis added] [ACZ5, p.261] 

Owing to practical constraints, I will discuss neither of Aczel"s general questions, 'what 

is the notion of a logic?* (which is implied in the first paragraph above), and 'how can we 

determine whether or not the logic-in-the-framework correctly represents the logic-as-

first-presented?' Except to observe that schematic consequence offers an interesting 

notion of consequence via abstracted lexical meanings, we will not be concerned with 

Aczel"s presentation of schematic consequence. It would nevertheless be interesting to 

know what schematic consequence has to say about the notion I develop below, of 

Leibnizian language. I am also interested in the notion of a universal syntax - though I 

believe I contribute more to the problem than to the solution. My suspicion is that 
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Leibnizian language could not be characterized within a universal syntax of the sort 

Aczel suggests via schematic consequence. But I cannot presently confirm or disconfirm 

this suspicion. If it is true, then Leibnizian language is a limit to which Aczel's 

schematic syntax cannot reach. In turn, schematic syntax is disqualified as a candidate 

for a truly universal syntax. But this disqualification would only be technical, since I 

have only a partial notion of what a Leibnizian language would be. In any case, the 

notion of Leibnizian language is closer to natural language than to formal language, since 

as will be discussed below [at pp. 48 & ff.], a Leibnizian language must be a lingua 

characterica, as are all natural languages, whereas the language of schematic 

consequence must be a calculus rationator, as are all formal symbolic languages. So 

Aczel's schematic syntax is still universal for all of our usual work-a-day formal 

languages. (By 'work-a-day' formal languages, I mean programming languages, the 

mathematics of astrophysics, geophysics, mathematical linguistics, economics, and so 

on.) 1 

Rather than universal syntax, this essay concerns diagonal argument and its 

relationship to (Leibnizian) lingua characterica. In particular. I argue that 'Leibnizian" 

language cannot be modeled via the formal resources of 'syntactic' languages. (By 

'syntactic' language, I mean classical formal language, including first-order logic, 

second-order logic, and in general, all classical languages which work via manipulation 

of symbols.) What lets Leibnizian language out of the universe of syntactic languages is 

that Leibnizian language has as many predicate extensions as there are subsets of the set 

of sentences (where a sentence is a finite string of symbols), or of the subsets of the 

1 Other possible theories of universal syntax might be found in gaggle theory {see [DUN 1 ] and [DUN2]), 
and for another possibility, see J.R.Brown's 'Proofs and pictures' [BRO]. 
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natural numbers. Thus there are not enough sentences in a syntactic language to pick out 

every subset of the naturals. Of course, since second-order logic quantifies over its 

predicates, of which there may be an uncountable infinity, it might capture Leibnizian 

language via syntactic resources. That is. Leibnizian language might turn out to be no 

more expressive than second order logic. 

The validity of the diagonal method stands independently of its instances in 

calculus rationator of symbolic logic. Accordingly, diagonal argument imposes 

constraints on symbolic logic, rather than the reverse. Instead of being a kind of proof for 

mathematical logic alone, we shall see that diagonal argument has applications well 

beyond mathematical logic to the theory of natural language, the semantic paradoxes. As 

further confirmation, we can observe that within the general discipline of mathematical 

logic, diagonal argument provides philosophical-sounding conclusions for set theory, 

metamathematics and computability theory. For Fregean set theory, the principle of set 

comprehension fails, since the Russell set (RS) cannot be consistently either included or 

omitted from itself. That is. we can reason both that RS € RS and that RS g RS. In 

computability theory, it is demonstrable that no universal Turing machine computes all 

functions - that is, the halting problem is unsolvable. In metamathematics. Godel's 

incompleteness theorems show that proof and truth are not the same things, and due to 

elaboration by Tarski [TAR2] , the truth-predicate is not even definable in classical first-

order logic. None of these philosophical-sounding conclusions are provable in a formal 

language, and neither is the language of schematic consequence. Indeed, many of these 

2 see also, [MEN, p. 151] and [KLE1, p.501]. Kleene: 'Truth definitions for formal systems were originally 
investigated by Tarski (1932, 1933). He established that, if an (effective) formal system including the usual 
number theory is consistent, it must be impossible to express the [truth] predicate... For [if the truth 
predicate were expressable] then the reasoning of the Epimenides paradox could be carried out in the 
system.' 
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conclusions are not even expressible or definable in formal languages (in consequence, 

for example, the undefinablility of the truth predicate). Yet diagonal argument does bring 

us to these philosophical-sounding conclusions. Accordingly, diagonal argument is not 

an exclusively formal kind of argument, i.e., it is not exclusively a calculus rationator 

kind of argument. Thus, as is argued in the rest of this essay, diagonal argument is - in 

the general case - a method of proof for the lingua characterica kind of language. (As 

the calculus rationator kind of language is subsumed within the lingua characterica 

kind, the general case of diagonal argument includes the special cases of the calculus 

rationator languages.) 
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RUSSELL'S QUESTION 

The general context of our investigation into diagonal argument will be that of 

Russell*s question (RQ). 

(RQj Why are some diagonal arguments good, whereas others are bad? 3 

Much turns on what is meant by 'good' and 'bad' in (RQ). since there are many 

interesting kinds of diagonal argument. For instance. Keith Simmons proposes that the 

'good' diagonal arguments are reasoned upon 'well-determined' sets, whereas the 'bad' 

are reasoned upon (false suppositions or) ' non-well -determined' sets [SIM, pp.27-37; 

especially p.29]. But Simmons' distinction does not exhaustively classify all diagonal 

argument. Of course, some of the bad diagonal arguments can be immediately 

recognized as such, for they (purport to) prove contradictions. (Of course, if a 

contradiction is actually proved - or seems to have been proved - then we must either 

take the proof as an absurdity for a reductio argument, or, we must either change our 

logical system or employ a paraconsistent system.) Since contradictions are easy to 

identify by their syntactic form, we can effectively locate and dismiss them. Thusly at 

least some of the 'bad' diagonal arguments are identified. But there are other diagonal 

arguments, the conclusions of which are (or seem) utterly absurd, yet without having a 

contradictor)' form. These are the 'Russell absurdities" (as I will call them). Every 

contradiction is an absurdity, but not every absurdity is a contradiction. Some non-

contradictory absurdities are very hard to attribute to any error, except that (quasi-) error 

of violating our intuitions about absurdity in the first place. But intuitions inevitably 

change, and with time, a number of the past absurdities become re-evaluated as theorems. 

3 1 have been unable to locate (RQ) in Russell's writings. But Keith Simmons refers to Russell's question -
'a question first asked by Russell' - in his Universality and the Liar [SIM, p.20]. 
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(In the early history of mathematical logic, these are the theorems of Cantor's powerset, 

Russell's set, and Godel's incompleteness proofs.) So if we want to decide whether or 

not a given diagonal argument is 'good', we might simply wait. What the teacher's 

teacher cannot conceive, the teacher may not be able to fault, and the student may 

embrace. This change in the minds of mathematical logicians is interesting in its own 

right, from both historical and philosophical perspectives. But it cannot qualify as a 

means of distinguishing the 'good' non-contradictory absurdities from the 'bad' ones, 

whereas that is precisely what (RQ) exhorts us to find. (Hereafter, we refer to the non-

contradictory-but-absurd conclusions and their diagonal proofs as, 'RA', for i?ussell 

absurdities.) 

(RA) A 'Russell absurdity' is an intuitively absurd thesis which is argued 
validly, and which does not have the form of a contradiction. 

There is credibility in the claim that there are no hard-to-decide diagonal 

arguments left, leastways, none for first-order logic. So if there remains an interesting 

case of an (RA), it must ostensibly be an argument in some language other than those of 

first-order logic. But given the great semantic generality of first-order logic, there is not 

much left which cannot be expressed formally. Although there are significantly more 

expressive formal systems - such as those of second-order logic 4 - first order logic is 

4 An example of the greater expressive capacity of second-order logic is easily seen in the difference 
between first-order and second-order mathematical induction. In a first order system, induction is captured 
by a schema which applies only to the predicates given in the system, i.e., X is used as a substitutional 
variable. 'X in the first-order induction schema, 

{X(0) A (Vm)[X(m)->X(m+\)]} -> (V«)Z(«), 

'stands in' for the predicate-names available in the first-order language. (We understand m and n to be 
natural numbers.) 'X does not range (i.e., is not quantified) over all of the properties of the natural 
numbers, but only the available predicate-«a/w<?5. By contrast, second-order induction involves 
quantification over all of the properties of natural numbers. The second-order axiom of induction can be 
expressed in this way: 
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already expressive enough to represent much of natural language (see [JAC chapters 2.1, 

2.2, 5 & 6] and [JOH]). Thus natural language is the most semantically universal, first-

order logic is nearly as universal as English. So first-order logic has a very high degree 

of universality, and first-order logic has enjoyed some impressive (though partial) 

successes as a theory of natural language. Noam Chomsky, for instance, founded the still 

flourishing field of mathematical linguistics (see, for example. [CHOI] and [CH02]), 

whereby natural language is represented in a formal (usually first-order) language. 

Simplified, this is the notion that natural language is really just a special case of formal 

language - that natural language reduces to or is completely expressahle by formal 

language.5 

It is a key thesis of this essay that some diagonal argument shows that there is a 

somewhat coherent notion of natural language which does not completely reduce to an 

equivalent expression in first-order logic, and that (when clarified) this notion may afford 

a greater degree of semantic universality than can be achieved via first-order systems. 

Those (RA)s which are not decidable in first-order logic might be decidable in a non-first 

order language - (possibly) such as second-order logic - of higher semantic generality. 

Although this notion of language (which I call 'Leibnizian") is incomplete, it suggests an 

(VX)[ {X(0) A (Vm)[X(m)-+X(m+\)] } -» (Vn)X(ri) ]. 

Thus the first-order axiom of induction implies an infinity of axioms, viz.: 

{ Po(0) A (Vm)[P0(m) -> PfaH-l)] } -> (V«)/>0(«), 
{ P,(0) A (Vm)[P,(m) - > Pi(m+l)] } - • (Vn)P,(n), 

and so on, such that every predicate-name is some P,. for i e NN. Necessarily, there are extensions of 
natural numbers (i.e., subsets of NN) which none of the P, name. (This follows trivially from the fact that 
there are uncountably many subsets of NN, but only denumerably many predicate-names.) The second-
order axiom entitles us to assert induction via every subset of NN, whether or not the subset (i.e., property 
extension) has yet been assigned a name. 
5 Below, at pp.46-54, we revisit this notion as the mathesis universalis view of (natural) language. 
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uncomplicated way of deciding (at least some) of the Russell absurdities. These 

decisions are obtained by simply re-expressing the (RA)s in terms of Leibnizian 

language. For example, consider a famous (RA), that of the Russell set (hereafter. 'RS'). 

(This (RA) is no longer understood as an absurdity, though it was at the time of its 

discovery.) Ordinarily, the absurdity of the RS is understood as a proof that (RS e RS) 

<-> (RS £ RS). which is a contradiction, and in this form, it does not qualify as an (RA) -

since no (RA) is a contradiction. However, the RS can also be understood as showing 

that because of the contradiction of the RS, the principle of set comprehension fails, or 

else Frege's set theory is inconsistent. According to this principle, every intuitively 

coherent definition of a set - such as 'RS is the set of all non-self-membered sets' -

consistently defines the set's membership. (In the case of RS, it is often said that the 

definition of RS is not coherent, since, according to Russell, the definition of RS violates 

the famous 'vicious circle principle'.) But the RS does lead to the following (RA) - or at 

least it did for Frege, who was disinclined to accept the vicious circle principle as a 

solution for the problem of the RS.) 

(FRA) Either set comprehension is incorrect or else Frege's set theory is 

inconsistent. 

(For 'FRA', read 'Frege's i?ussell absurdity".) (FRA) is solved via Leibnizian language 

by allowing the membership of RS to be ambiguous, in the sense that RS has many 

possible memberships. We distinguish these memberships by adding primes to the 

symbol 'RS ' . Thus, there is one membership, RS', for which RS <= RS'. In another 

membership, RS", we have RS g RS". Thus, for Leibnizian language, the contradiction 

of RS resolves to, 
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(RS € RS') <-» (RS g RS"), 

which does not have the form of a contradiction. In this Leibnizian interpretation of RS. 

there is no contradiction to force us to consider and resolve (FRA). Thus, Leibnizian 

language 'solves" (FRA). 

Of course, to 'solve' a logical problem by translating it into another logical 

language has the prima facie appearance of an ad hoc form of argument. But it is not 

always an unsound mode of argument. Consider for example. Godel's second 

incompleteness theorem of the unprovability of consistency. Strictly speaking, the 

second incompleteness theorem is not a proof that consistency is unprovable, but rather 

that either the Principia Mathematica is inconsistent, or the Principia cannot prove its 

own consistency. In this form, Godel's second incompleteness theorem implies no 

decision as to whether or not consistency actually is provable in the Principia. Thus, to 

conclude that consistency is unprovable, we must suppose that the Principia is consistent. 

Since the Principia is consistent if and only if consistency is unprovable (in the 

Principia). the supposition that the Principia is consistent is logically equivalent to the 

desired conclusion, that consistency is unprovable. And so it is ad hoc to reason in this 

way that consistency actually is unprovable in the Principia. But this conclusion is not 

without support, for there is independent cause to hold that the Principia is consistent. It 

is an empirical fact that, as a formal theory of the natural arithmetic, the soundness of the 

Principia has overwhelming confirmation and no significant disconfirmation. The 

Principia's success as a theory of the natural arithmetic is at least as well confirmed as the 

most successful theories of physics - Newtonian, relativity and quantum. Were the 

Principia actually inconsistent, then we might have found some inconsistencies by now. 
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Another independent reason to hold that the first-order subsystem of the Principia is 

consistent is found in Gentzen's proof via transfinite induction [GEN]. This is a rigorous 

proof of the Principia's consistency, but it is not proved in the language of the Principia, 

nor in any first order system of logic. Godel's second incompleteness theorem concerns 

only the provability of consistency of the Principia. in the language of the Principia. That 

is, Godel shows only that (if it is consistent) then the Principia cannot prove its own 

consistency. Godel's theorem does not block a consistency proof which is argued within 

a language other that the Principia. Godel"s second incompleteness theorem shows that 

there is no purely logical reason to hold that consistency is actually unprovable via proof 

in the Principia. but with non-logical support for the consistency of the Principia - via 

empirical confirmation and transfinite induction - it is possible to reasonably conclude 

that the Principia actually does not prove its own consistency. So our reasons for 

accepting the unprovability of consistency are just as much dependent on empirical 

confirmation and transfinite induction as they are on Godel's theorem. 

The Leibnizian view of language is similarly dependent on a strictly non-logical 

fact: Diagonal argument does not always have to be evaluated as if it were a first-order 

kind of formal argument. In particular, Keith Simmons" theory of diagonal argument 

does not cover all possible kinds - it is possible to conceive diagonal argument as 

occurring within a language of higher semantic generality than Simmons* theory affords. 

But the Leibnizian notion of natural language which will be developed below offers no 

refutation of any other notion (or model) of natural language, and particularly not those 

notions offered by first-order logic. Thus the Leibnizian notion of natural language might 

compete with the formal notion, but neither can refute the other. Nevertheless, the 
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Leibnizian notion is presently far too weak and incomplete to offer any effective means of 

modelling natural language. It is also hard to see how to strengthen the Leibnizian 

notion. Notwithstanding its weaknesses, this thesis is not a straightforward one, and 

besides the technical discussion, will include material from the history and philosophy of 

diagonal argument. Indeed, the vast bulk of this essay is devoted more to 'setting the 

scene' than to 'proving the point". I would have preferred to 'prove' than to 'set', but at 

this stage of research, there is greater need of setting than proving. 

The next part of this essay is devoted to a discussion of some of the history and 

philosophy of diagonal argument. The part immediately following explains Keith 

Simmons" theory of diagonal argument [SIM, pp.20-37], the comments of some other 

logicians on diagonal argument, and then a short philosophical critique of Simmons' 

theory. The motivating question of these parts was first expressed by Russell, where he 

asks (RQ). 
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SOME HISTORY AND PHILOSOPHY OF DIAGONAL ARGUMENT 
AND RUSSELL'S QUESTION 

Diagonal argument was first presented by Georg Cantor in [CAN1] (see also 

[KLE2, pp. 180-183]). but is nevertheless suggested in earlier logical puzzles, all the way 

back to Epimenides' liar paradox. This pre-Socratic self-referential paradox can be 

profitably explained (if not solved) by assuming that they are diagonally argued. Pre-

Socratic philosophers debated these paradoxes thoroughly, but of course, their 

understanding of 'self-referential' paradox is distant from the powerful analysis offered 

by the voluminous contemporary philosophical and formal literature. This literature, 

exemplified by work such as Douglas Hofstadter's philosophical Godel Escher Bach 

[HOF] and Raymond Smullyan's formal Diagonalization and Self-Reference [SMU2], is 

accordingly the more appropriate language for the following analysis of diagonal 

argument. However, we will briefly consider some of the so-called 'semantic' 

paradoxes, and express them as if they were diagonally proved. Inasmuch as 

Epimenides' liar has the same form as the 'semantic' liar, our analysis of the 'semantic' 

liar serves also as an analysis of Epimenides' liar. 

Let us consider a diagonal analysis of Epimenides' liar. For reference, the non-

diagonal expression of Epimenides' liar is as follows. (For 'EL', read 'Epimenides' liar.) 

(ELo) All Cretans are liars. 

Epimenides himself was a Cretan, and thus, by asserting (ELo), Epimenides calls himself 

a liar. However, (ELo) does not immediately imply a contradiction, since if any Cretan 

were to tell the truth just once, then (ELo) is simply false (i.e., without also implying that 

(ELo) is true). But (ELo) can be strengthened to. 
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(ELi) Epimenides is a liar, 

since Epimenides is a Cretan. And (ELi) can be strengthened to, 

(EL2) Everything Epimenides says is a lie. 

since otherwise, if Epimenides sometimes tells the truth, then Epimenides* liar is not 

paradoxical. Now as (ELi) is something which Epimenides says, we have. 

(EL3) The assertion of (EL3) is a lie. 

Finally, we employ the supposition that if a person's claim is a lie, then the claim is false. 

(This supposition is not in all cases true, since it is credible to define a lie as the assertion 

of a claim which the speaker believes is false - even though the claim might actually be 

true. For example, suppose Smed comes indoors from a sunny sky and attempts to lie by 

saying 'its raining'. But after Smed has come inside, and before he attempts to lie, the 

weather may change to a thunderstorm. Then Smed's lie is actually true.) This 

supposition that a lie is a falsehood leads us to the following formulation of Epimenides" 

liar. 

(EL4) (EL4) is false. 

One more change to Epimenides' liar brings us to the ordinary semantic paradox of the 

liar sentence, (EL5). 

(EL5) This sentence is false. 

(EL5) is abstracted a significant distance from Epimenides' liar (i.e., from ELo). 

but it is not abstracted too far. for (EL 5) has exactly the logical structure which makes 

Epimenides' liar a paradox. Notwithstanding the close relationship between (ELo) and 
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(EL 5), we reason below according to (EL4), since this is the expression most amenable to 

treatment as a diagonal paradox. For reference below, we allow (EL4) to be expressed as 

s*. 

s* $* is false. 

(This expression of s* is not intended as a definition, but rather as a preview of the 

definition to follow below, s* will be defined as a fixed point on the falsity predicate, p?.) 

We now consider some formal definitions and theorems which are needed for a 

diagonal expression of the paradox of 5*. First, we let the set SENT have all and only the 

declarative sentences of English as members. Note that there is exactly a countable 

infinity of these sentences, since every sentence is a finite string of the letters of the 

alphabet (including spaces, punctuation and brackets). (Proof is omitted.) So SENT is 

countable. Because SENT is countable, its members can be arranged into a list, as 

follows. 

so, si, S2, and so on. 

The sentences - i.e., the members of SENT - are referred to collectively as 'the st\ Note 

that as every sentence of English is some sm. for a natural, m, it follows that there is some 

n such that s* = s„. (That is, the fixed point on p? must be a sentence, and therefore it 

must be one of the st.) 

We define the set PRED of the sentential predicates of English. By a 'sentential' 

predicate, I mean one which applies to the sentences of English. For example, the 

members of PRED include, ' . . . has five words', ' . . . is self-referential', ' . . . is a 

palindrome'. ' . . . is false", and so on. Some predicates which are not members of PRED 
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include, is blue*, is east of Lethbridge", and the like. (We could have allowed 

PRED to include all of the predicates of English without weakening the following 

arguments, but it increases clarity to exclude them from PRED at the outset.) We 

conceive the members of PRED extensionally. such that a predicate is a subset of SENT. 

Thus PRED <= p(SENT). Although the st are exhaustively listed above, not all the 

predicates can be listed, for there are more subsets of SENT than there are natural 

numbers. (This fact follows immediately by Cantor's powerset theorem, which I do not 

prove here.) Because p(SENT) is uncountably large, it cannot be hoped that its 

members could be exhaustively listed, as the st can be. There are not enough symbols of 

the form p„ (for n, some natural number) to name every member of p(SENT). But we 

can name some of the members of p (SENT), and that some are left un-named does not 

block or invalidate the diagonal analysis below. We let (some of) the members of 

p(SENT) to be listed as below. 

Po,Pi,P2, and so on. 

The predicates of this list are referred to collectively as 'the pt\ 

We assume for reductio that every one of the pt can be uniquely paired with a 

single extension (that is, with a single unique subset of SENT). According to this 

assumption, there must be exactly as many predicate-extensions as there are p, - to wit, 

exactly denumerably many. It will be shown that the reductio assumption is false, that 

even though the pt are countable, they cannot each be uniquely paired with one extension. 

In particular, it will be shown that the predicate, ' . . . is false' (pt). cannot be paired with 

one extension unless it is paired with another, and then with an uncountable infinity 
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more. From this, it follows that either has no extension, or that it has uncountably 

many. 

It is important to stress that the reductio proof is not employed to prove that 

PRED is uncountable, even though we already know that PRED is uncountable. Rather, 

what the reductio argument is intended to prove is that the number of extensions which 

are named by the denumerably-many pt is greater than the number of pt in the first place. 

In other words, there is no one-to-one function from the pt to the extensions named 

thereby. This logical manouvre - of stopping short of an otherwise well-warranted 

conclusion (that the extensions of the pt are uncountable) - is not novel, having precedent 

in the reasoning of intutionist logicians. Intuitionists will grant that Cantor's diagonal 

proof of the uncountability of the real numbers proves that there is no one-to-one onto 

function from the naturals to the reals, but they will not grant the further conclusion that 

there are more reals than naturals. In contradistinction from the intuitionists, this essay 

does not go to challenge the conclusion that sets such as those of the reals, and of PRED. 

are uncountable. Rather, the uncountability of these sets is beside the point. What is 

material to this essay is that if predicates such as p? have one extension, then the set of the 

extensions of the denumerably-many pt is uncountable. Let us henceforth name the set of 

the extensions of the pt as "EPF, for "extensions of the 

In continuance of our diagonal analysis of the paradox of s*. we now assert a 

fixed point theorem, via which s* is defined. 

(FPT1) For every predicate p, there is a sentence s such that s = \s is p'. 
Equivalently, for every p, there is an s such that 's <-» p(sY is 
provable. 

(FPT2) Formally, the fixed point theorem is 'Vx3j'(.sy <-»p x(s }))\ 
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If we now instantiate px as pf, we obtain. 

(FPT3) 3y(sy^pF(sy)). 

And now we instantiate sy as sa (for a, some natural number), and define s* as sa. I stress 

that sy is not (existentially) instantiated as s*; nor is it assumed that sa is s*. Rather s* is 

defined to be for whichever sentence sa happens to be. Now the fixed point theorem 

on p? is, 

(I do not attempt to prove the fixed point theorem, formally - although (FPT4) could be 

formally proved.) Notwithstanding the fact that (FPT4) is expressed in a formal way, we 

understand it as a natural language expression: 's* holds true if and only if s* is false'. In 

natural language, sentences can be directly presented without any need of formal 

definitions. The resources of natural language allow us to construct many sentences like 

s*. where self-attribution (or self-reference) can be easily accomplished - unlike formal 

self-attribution, which normally requires complex devices of one kind or another, such as 

Godel-numbering. 

Now with all the above preparatory discussion completed, we construct the 

following array, '(EDA)' (for Epimenides diagonal array), upon which the following 

reasoning is based. 

(FPT4) s* <->pt(s*). 

Pol 0 
P i I 1 
P2I 1 
Pal 0 

s i 
1 
1 
1 
0 

§2 
0 
0 
1 
1 

1 
1 
0 
0 

(EDA) 
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p F | l 1 0 0 . . . a . . . 
• I 
. I 

We interpret (EDA) as follows. Across the top. we list the $,. Down the side, we list the 

pt (which constitute a subset of PRED). In the body of (EDA), there is a two-dimensional 

array of the symbols '0 ' and ' 1'. The rows of the array specify the membership of the pt. 

Where there is a ' 1 ' , the co-ordinate member of the s, is a member of the co-ordinate 

member of the p,. For example, suppose that the predicate name pa has the row, 

101011101111... Then the extension of pa has sq, si, $4, $5, s&, sg. sg, s\o, and su as 

members. (pa may or may not have as members some of the sentences after s\\) Above, 

at the intersection of p$ and sj, there is a ' 1 ' - we interpret this to mean, \vi is a p^, or 

'^3(^2) is true'. Were there a '0 ' at this intersection, it would be interpreted to mean 'si is 

not a p^, or 'piisz) is false'. Also, we understand the values of the array classically, such 

that every intersection has either '0 ' or ' 1 ' , not neither and not both. If we reason 

concerning an intersection that it is 'not 1", then it is ' 0 ' , and vice-versa. And 

furthermore, we treat truth classically, such that 'it is false that (j> is false' means '<)) is 

true', and vice-versa. 

We now proceed to the paradox. At the intersection of pj and s*, there is the 

symbol, ' a ' . According to the interpretation of (EDA), a must be either ' 0 ' or T . 

Suppose a is '0 ' . Then pf(s*) is false. By (FPT4), it follows that s* is false. But Pf(s*) 

means 's* is false'. So as pr(s*) is false, it follows that it is false that s* is false. To wit, 

s* is true - but this contradicts the hypothesis that a is 0. Suppose instead that a is T . 

Then pp(s*) is true. By (FPT4), it follows that s* is true. But as pr(s*) means '5* is 
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false', it follows that s* is false. Accordingly, a should be '0 ' , but this contradicts our 

hypothesis that a is ' 1'. 

Thus, a = 0 if and only if a = 1. Such is the paradox. From this point, there are 

several avenues of sound reasoning. In intutionist logic, our assumptions of classical 

truth are weakened so as to block the derivation of contradictions. Alternatively, it might 

be argued that ipv(s*y is undecidable, and thereby the intersection of p? and s* is not 

required to have either value, ' 0 ' or T . It might also be argued thatp? is indefinable as a 

subset of EPI, thus excluding pF from (both) the pt (and PRED). Similarly, s* could be 

identified as an 'impredicative" (viciously self-referential) sentence, and for this reason s* 

may be excluded from the st. All of these treatments are motivated by fact of the 

consistency of the formal first-order arithmetic, for no inconsistent theory can provide a 

sound model of arithmetical truth. (However, a paraconsistent system can provide a 

model of arithmetical truth which is - or might be - negation-inconsistent, but which is 

not absolutely inconsistent.) My treatment of (EDA) does not have this virtue - that is, I 

do not propose a means of preserving consistency. Rather than present a novel means of 

preserving consistency with respect to the values ( '0' or "1'), I mean the analysis of 

(EDA) to indicate a novel diagnosis of the paradox. That is, I hope to say something 

novel about the cause of (natural language) diagonal paradox. It is not even my intention 

to say anything about the cause offormal first-order diagonal paradox. 

To diagnose a paradox, it must exist, and it must be paradoxical - otherwise, 

either there exists no paradox to diagnose or the paradox is unproblematic. For the sake 

of argument, we accordingly grant soundness to the argument which concludes with the 

contradiction that a = 0 if and only if a = 1. It is unclear how this contradiction is to be 
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represented on the array of (EDA), but let us first consider two ways of representing the 

value(s) of a which are not options as diagnoses of the present paradox. First, we cannot 

represent a as being simultaneously '0 ' and ' 1 ' . Otherwise, we must say that s* both is 

and is not a member of the (single) extension of pf. but then the extension of p? is not a 

set (because its membership is ill-defined), and a fortiori, this extension is not a well-

defined subset of SENT. But if py does not name a subset of SENT, then py is no 

predicate of natural language (leastways, not if the natural-language sentential predicates 

are conceived extensionally). I resist the conclusion that natural language has no 

extensional falsity predicate, since the speakers of (virtually) all of humanity's natural 

languages quite ordinarily use a falsity predicate, and moreover, that falsity predicates 

have extensions, i.e.. that natural language falsity extends to some set or other of false 

sentences. (Nevertheless, the natural language falsity predicate may not be universal - in 

the sense that this predicate may not have the same meaning for all uses and languages. 

Yet, natural language does have at least one falsity predicate which is stable for most 

applications within natural language.) So if we were to diagnose the paradox as a 

consequence of natural language's actually having no extension for the (ordinary6) falsity 

predicate, then we have failed to address the problem itself of ordinary natural-language 

falsity (where natural language is conceived extensionally). Second, I resist 

representation of a as '"neither '0 ' nor ' 1 ' ". Were we nevertheless to do so, then the 

membership of the extension of py is again ill-defined. We would have to grant that s* 

both is not in the extension of py and that it is not the case that s* is not in the extension 

6 Of course, quasi-ordinary falsity predicates are possible in various formal languages. But even to assert 
that the natural-language falsity predicates are actually quasi-ordinary falsity predicates, it must be 
presumed - for it certainly could not be proved - that the ordinary natural-language falsity predicates are 
completely modeled via formal notions of quasi-ordinary falsity. If this assertion is nevertheless granted, 
then we have failed to diagnose the problem itself of ordinary natural-language falsity. 
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of py (i.e., that s* is in the extension of p?). And it follows again that the extension of p? 

is not a well-defined set, and not a subset of SENT. And once again, the ordinary natural 

language notion of falsity has no well-defined extension. And thus we again will fail to 

address the problem itself of extensionally-conceived natural language falsity. 

In both of the above two (non-) options of diagnosing the paradox of ordinary 

natural language falsity, it is (or could be) argued that the contradiction of natural falsity 

entitles argument by reductio ad absurdum that natural falsity is incoherent in the first 

place, and thus that it is no disservice to natural language to replace natural falsity by 

formal quasi-falsity, for anything is better than attributing truth to a contradiction. But, 

as is well-known, argument by reductio can go to negate any assumption upon which the 

derivation of the contradiction (i.e., the absurdity) depends. In the reasoning above of the 

('first' and 'second') options for treatment of the falsity paradox, the reductio is 

employed to negate the assumption that natural language falsity predicates have well-

defined sets of (false) sentences as extensions. But there are other assumptions which the 

reductio can negate. We could soundly argue a reductio against the supposition that 

PRED is denumerable - though this is not our purpose. (In any case, a reductio such as 

this does nothing to solve the problem of how to determine extensions for the natural 

language falsity predicates. This is because natural fixed points, such as s* or the liar 

sentence, will remain even if (even though) PRED is not denumerable. Another 

supposition for possible negation by the reductio is that the sentential predicates can all 

be coherently assigned a well-defined extension. If we argue that p? has no (well-defined) 

extension, then we are brought to treat natural falsity as formal quasi-falsity, and so, to 

model natural language via a formal notion of natural language. If instead, we negate the 
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supposition that the sentential predicates can be treated extensionally. then we must 

advert to some non-extensional notion of natural language. It would not be enough to say 

that the non-extensional notion of natural language is intensional, since intensions are 

meaningless without their extensions.) 

Here, we employ the reductio to negate the supposition that there is a one-to-one 

onto function from the p, to EPI (i.e., the set of the extensions of the p,), and thus that EPI 

is uncountably large. (This treatment has already been suggested above.) Consequently, 

at least some of the p, must have multiple extensions. Otherwise, some extensions (some 

subsets of SENT) must lack a />, to express them, and then it could not be coherently 

maintained that natural language has the resources to express every extension. 

Accordingly, if natural language is to match every extension (every subset of (SENT), 

then some of the pt must express multiple extensions. It can be shown that py, in 

particular, extends to uncountably many subsets of SENT. Because of this, we can treat 

pt as an ambiguity, having multiple members of EPI for its extensions.. First (from the 

conclusion that EPI is uncountable), py has at least two extensions - one in which a = 0. 

and another in which a = 1. However, there are at least infinitely many fixed points on 

py. Trivially, there is an infinite series of the sentences, 

s*, (s* v s*), (s* v s* v $*), (s* v s* v s* v s*% and so on. 

Obviously, since we can reason that s* both is and is not a member of the extension of py, 

we can reason that (s* v .<?*) is in the extension of py, and that (s* v s* v s*) is not. For 

convenience, let us express the immediately above series of fixed points on py by the 

series, 
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such that s** is a disjunction of x-many s*. So for example, s* is. 

(S* V S* V S* V 5 * V 5 * V 5 * V S*). 

We now make explicit the presence of the $*' on (EDA), below. 

P2I 1 1 
P A L 0 0 

P F I 1 1 - OT 1 . . . A 2 . . . A 3 

With respect to the three first s*', each of the following series of 'O's and T s is a 

legitimate extension for py. 

1 1 . . 0 . . 0 . . 0 
1 1 . . 1 . . 0 . . 0 
1 1 . . 0 . . 1 . . 0 
1 1 . . 0 . . 0 . . 1 
1 1 . . 1 . . 1 . . 0 
1 1 . . 0 . . 1 . . 1 
1 1 . . 1 . . 0 . . 1 
1 1 . . 1 . . 1 . . 1 

Taking into account that the s*! are accordingly denumerably many, there are 

uncountably many series of 'O's and T s , each of which specifies a subset of SENT, and 

thus also, a possible extension for one of the p,. (This follows from the well-known fact 

that the set of infinite strings of 'O's and T s is uncountable.) 

so 
Pol 0 
P i I 1 

£ 1 
1 
1 

... s * 1 ... s s * 3 ... 

(EDA) 

23 



Once again, this treatment of the paradox of p\- is not intended as a solution, but 

rather as a diagnosis. But it may not yet be clear what this diagnosis has to say about the 

paradox - we return to this matter below. 

For another example of diagonal paradox, let us focus on Cantor's paradox. The 

universal set, U, is straightforwardly defined as the set of all the self-identical objects of 

the universe (or formally. U = { all objects, S, such that S = S } ). Of course, just like 

empirical objects such as apples, starlight and roadmaps. abstract objects are also self-

identical. The constellations, the theory of evolution, the westerly (270°) compass-

heading, the Charter of Rights and Freedoms, are all self-identical objects. Of course, 

sets are also self-identical abstract objects, and accordingly, they are members of U. 

Thus U includes all of its own subsets as members. (We will write '#(5)' for the 

cardinality of S; that is, for the number of members of S. Also, the powerset of S is the 

set of subsets of S, and we write this, ' p(S)\) Accordingly, the cardinality of the 

powerset of U is no greater than that of U itself (i.e., #(p(U)) < #(U), as everything in 

any set is already a member of U). But this cannot be, for Cantor's 1892 diagonally-

proved powerset theorem [CAN2] (see also [KLE2. pp. 180-183] and [MEN. p. 183]) 

proves that for all sets. S, #(S) < #( p (S)). (This theorem holds even when #(S) is a 

transfinite cardinality.) So, with U = S, it follows that #(U) < #(p(U)), by Cantor's 

theorem. But by the universality of U, there can be no more members in any other set 

than there are in U. In particular, this means that #(U) > #(p(U)), with p(U) as some 

'other set'. (Note that '#(11) > #(p(U)Y is equivalent to '-{#(£/) < #(p(U))}\) But this 

is now a contradiction. Thus, to evade the contradiction, one must give up on either the 

existence of U or on the soundness of the powerset theorem. For a time, the notion of U 
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would not be let go. But the powerset theorem also could not be let go - for no fault 

could be found in it. So long as neither the existence of U nor the powerset theorem 

could be given up. one remained mired in paradox. (Cantor's paradox is sometimes 

reasoned according to the assumption that there is a largest transfinite cardinality, rather 

than according to the assumption that there is a universal set. These two initial 

formulations of Cantor's paradox are equivalent.) 

Similarly, the liar paradox (i.e., Epimenides' paradox) is sometimes argued to 

show something that native speakers usually resist - that the natural language truth 

predicate is not extensional - that the set of all and only the true natural language 

sentences is ill-defined. That is, since either (a) the liar sentence and its negation are both 

in the set of the true natural language sentences - rendering this set inconsistent - or (b) 

neither the liar sentence nor its negation is a member of the set of the true natural 

language sentences - in which case the liar sentence is true, and thus the set of all (and 

only) the true natural language sentences does not contain at least one true sentence 

(namely, the liar sentence). In case (a), the set of all and only the true natural language 

sentences includes at least one falsehood (i.e.. either the liar sentence or its negation), and 

so the natural language truth predicate does not extend to a set of (all and) only the true 

natural language sentences. In case (b). the natural language truth predicate does not 

extend to at least one natural language truth: the liar sentence. Yet it is hard to see what 

is at fault with the liar paradox - its form, at least, does not appear to be invalid. 

However, that diagonal argument has counter-intuitive instances is well-known. Besides 

Cantor's powerset theorem, two other unexpected diagonal arguments are those of 

Russell's 1905 proof of the inconsistency of the set-theoretic fragment of Frege's 
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Begriffsschrift and Godel's 1931 incompleteness proofs. Godel's 1931 diagonal 

theorems are responsible for proving a variety of counter-intuitive philosophical-

sounding conclusions, including the failure of the logicist project and the inconflatability 

of proof with truth.7 At the time of their discovery, these conclusions were unexpected, 

but neither of them has ever been convicted of significant error. Notwithstanding their 

philosophical flavour, these results are formally provable. Accordingly, the philosophical 

consequences of these theorems are well-developed, rigorously obtained and they 

strongly resist refutation. One might even say that they are immune to refutation, since if 

they were refuted, then inconsistency would immediately follow. However, 

inconsistency does not in all cases block further logical analysis. There are rigorous 

systems of paraconsistent logic in which negation inconsistency does not imply absolute 

inconsistency - whereby inconsistency is non-trivially managed. 

The discussion above goes only to highlight the problem of deciding the (RA)s. 

The difficulty of making these decisions is well evidenced in the history of diagonal 

argument. Although mathematical logicians have accepted the correctness of Cantor's 

proof for over a century, it struck Cantor's contemporaries (including Cantor himself) as 

a mystery. Even now, talented and clear-minded (beginning) students resist Cantor's 

proof, since the first intuitions of most students report that there can only be one infinite 

cardinality.8 The intuitions of (beginning) students are similarly offended by 

7 That the first incompleteness theorem has these two consequences is well-known. An accessible 
discussion of some of these will be found in [KNE, pp.712-742]. Of course, Hofstadter's [HOF] also 
makes an accessible discussion. For a more formal treatment of Godel's theorems, see Boolos [ B 0 0 2 ] , 
Kleene [KLE1], or Mendelson [MEN]. 
8 This observation is based on no scientific evidence and no argument whatsoever. Rather, personal 
experience gained while tutoring beginning students of logic, and during general discussions on the logic of 
diagonal argument, the overwhelming majority have resisted - sometimes vociferously - the idea that some 
infinities are bigger than others (whether or not these infinites are completed or extant). Even professional 
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indefinability of the truth predicate, a diagonal result obtained by Tarski [TAR2]. 9 

However, the intuitions of present-day logicians are difficult to offend by diagonal 

arguments such as those noted above. Indeed, some kinds of diagonal argument have 

undergone extensive refinements and generalizations. In particular, Godel's 

incompleteness theorems are the subject of a voluminous technical literature - for two 

representative examples, see Smullyan's [SMU1] and Boolos in [JEF, chapters 26, 27 

and 30]. Godel's theorems have also been skilfully explained for the general public. 

Two well-known such explanations are due to Raymond Smullyan [SMU3] and Douglas 

Hofstadter [HOF]. It is also notable that an accessible article about incompleteness has 

been published in Scientific American [DAW2]. In the academic field of mathematical 

linguistics, first-order logic is studied as a means of modeling natural language, and thus 

the incompleteness theorems play a role in all such models (see [PART, part 'D ' , pp.317-

429]). These examples of diagonal argument are now so well developed and integrated 

that one could be easily forgiven for believing that diagonal argument holds no more 

surprises for logic. One could even hold the view that diagonal argument has been 

mastered by its theory in mathematical logic, and thus that if diagonal argument has been 

unintuitive in the past, this is only because the logicians of the past did not have the 

benefit of contemporary research. 

scientists (two, an astrophysicist and neuroscientist) have been unwilling to admit the validity of the 
diagonal method. 
9 There is no attempt here to draw conclusions about the correctness (or incorrectness) of anybody's logical 
intuitions. The claim is rather that the intuitions of students are usually, at first, violated by logical 
theorems such as Godel's incompleteness proofs. Of course, the student's intuitions are expanded and 
refined the further he advances in his logical training - but this does not diminish the fact that (most of) the 
beginning students start out by doubting the validity of diagonal argument. The content of beginning 
students' intuitions is not relevant - just the existence of differences between the student's and the 
professional's logical intuitions. It is not claimed that a student's intuitions show any conclusions of a 
logical kind - only the (loosely) wefa-logical fact that the student's intuitions and the professional's 
intuitions usually differ. 
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In this view, it may seem that the mysterious instances of diagonal argument (i.e., 

those diagonal arguments which conclude with the (RA)s) are just those instances which 

are not expressed within the formal languages of mathematical logic. Argumentative 

support for this view is found in the fact that these formal languages are highly general, 

both expressively and semantically. In consequence, very little is left which cannot be 

said, and very little else to speak of. The expressive generality of a formal language, say 

L, lies in L's adequacy to express the first-order formal arithmetic. (Hereafter, we say 

that a formal language is strongly expressive if it is sufficiently expressive to axiomatize 

the formal arithmetic.) But the axiomatization of the formal arithmetic requires only 

modest formal resources (such as a truth-functional syntax, some axioms - such as the 

Peano axioms - and a few rules of logical consequence), and thus Godel's 

incompleteness theorems can be proved in every strongly expressive first-order language. 

As is well known, the incompleteness theorems employ highly expressive devices, 

sometimes called Godel-functions, by which some of the metalanguage of the formal 

arithmetic is expressed in the object-language. These devices also require only the 

modest logical resources of the formal arithmetic. 

Despite its modest resources, the formal arithmetic actually affords very generous 

degree of power, and is more than ample for the purposes of most mathematical 

logicians. Us semantic generality is given in two ways. First, by Us having all 

consistent models in its domain, be they finite, denumerable or uncountable. 1 0 Second, 

by the Church-Turing-GQdel thesis (hereafter simply Church's thesis) [CHU] any 

intuitively computable function is formally computable within L. Thus, provided that 

Church's thesis is true, it follows roughly that the functions of natural intuition reduce to 

1 0 That is, by Skolemizing one domain into another. (See [ B 0 0 2 ] , pp.147 & ff.) 
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functions which are formally computable in L. Accordingly, there is very little left for 

other systems of logic to analyze, which L cannot. It must nevertheless be granted that 

within formal language, diagonal argument is unproblematic, or at least that it is 

unproblematic so far. But it would be a mistake to suppose furthermore that problematic 

(i.e., mysterious) instances of diagonal argument - the (RA)s - can always be made 

unproblematic by revising the argument for treatment within a formal language. 

But this is no reason to think that (RQ) is closed in the general case - neither for 

diagonal argument in formal language nor for diagonal argument in natural language. 

Although there are several strategies for answering (RQ), these strategies tend to offer 

only partial answers. Keith Simmons' theory of diagonal argument achieves one such 

answer to (RQ), and it is the best and most general answer that I have yet encountered. 

For the present, however, I want to discuss some other treatments of (RQ). 
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HERZBERGER AND BOOLOS ON SEMANTIC PARADOX 

As confirmation of the fallibility of logicians' intuitions about absurdities, we 

consider articles by Hans Herzberger [HER1] and George Boolos [B003] . First, in his 

1980 article, 'New paradoxes for old', Herzberger argues that the semantic paradoxes are 

in a state of "eternal recurrence". 

There is familiar pattern whereby resolutions for old paradoxes engender 
paradox anew. ... [0]ne would like to hope there might possibly be a 
"way out". But the lessons of history offer no encouragement in this 
respect. And the ideas I want to pursue here only show us how to quicken 
the cycle of recurrence. [HER1. p. 109]. 

Herzberger's general conclusion is that no matter what devices one has for the 

pacification of paradox (that is, devices for deciding the (RA)s). there must always be the 

possibility of a new paradox, the provability of which is - as yet - unconstrained by any 

existing device. It is important to note that Herzberger's argument invokes considerable 

formal resources, but is not intended to lead to any formal results. Rather than being 

about paradox-in-formal-language, [HER1] is about paradox-in-natural-language. (Were 

there authentic paradoxes in a (non-trivial) formal language then it must be inconsistent, 

which conclusion is either to be flatly denied - since the classical systems of logic are 

assuredly not inconsistent - or we must advert to one or another paraconsistent system.) 

So if Herzberger is correct, then natural-language paradox is inescapable, and this is a 

near-absurdity to anyone who expects the eventual development of a (maximally 

complete and consistent) formal theory of natural language, for any such theory must 

admit one or more of Herzberger" s "recurring" paradoxes, and a fortiori, be inconsistent. 

Again, this inconsistency need not block rigorous logical analysis. Herzberger*s 
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paradoxes could be employed to motivate paraconsistent logic. But for the time being, 

we keep our focus on consistent (principally first-order) systems of logic. In 

consequence, it follows that Herzberger's arguments confirm a central thesis of this (my) 

essay, viz., that attempts to model natural language via formal language must be either 

incomplete or trivial. If otherwise, formal models are adequate to completely and non-

trivially express natural language, then it must follow (via a 'genetic' argument) that the 

natural laws of the workings of the brain (i.e., the laws of biology, chemistry, 

neurophysics, and so on) are formally inconsistent (i.e., all formal theories thereof are 

inconsistent). Of course, the actual expressions of natural language (i.e., those bits of 

natural language which have been actually expressed by some human - or perhaps, even 

some machine - at some past time) are inconsistent, since anyone can lie, mis-speak 

himself, change his mind, and so on, but these cases are beside the point. They are 

problems of the language-user, whereas our interest is in the problems imposed by the 

language itself. 

Having said this, it is important not to overstate the problem Herzberger presents 

for formal theories of natural language. Although there is always a formally undecidable 

natural language predicate, Herzberger's analysis shows that each new such predicate is 

more and more specific and limited with each new paradox-pacifying device. Thus with 

each successive iteration of these devices, the paradox becomes less and less problematic, 

and more and more like a "mere technicality". 

Second, in Boolos' very short 1990 'On "seeing" the truth of the Godel sentence' 

[BOOS], he observes that, 

[t]o concede that we can see the truth of the Godel sentence for PA, in 
which only a fragment ... of actual mathematical reasoning can be carried 
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out, is not to concede that we can see the truth of Godel sentences for 
more powerful theories such as ZF set theory, in which almost the whole 
of mathematics can be represented. [ B 0 0 3 , p.389] 

And furthermore, 

I suggest that we do not know that we are not in the same situation vis-a
vis ZF that Frege was in with respect to naive set theory ... before 
receiving ... the famous letter from Russell... It is, I believe, a mistake to 
think that we can see that mathematics as a whole is consistent. ... Are we 
really so certain that there isn't some million-page derivation of "0=1" that 
will be discovered some two hundred years from now? [B003 , p.390] 
[emphasis mine] 

Unlike Herzberger's, Boolos' article does not attempt an analysis or explanation of the 

'eternal recurrence' of authentic paradox - and in consequence, it is perhaps somewhat 

the weaker of the two articles. However, Boolos' comments pertain to the availability of 

authentic paradox for symbolic logic (rather than the formal theories of natural language), 

which Herzberger's arguments do not. This suggests that the problem of deciding the 

(RA)s remains a (potential) problem for symbolic logic. For the present, however, there 

is no valid reason to suspect that ZF actually is inconsistent, and so we work under the 

view that it is consistent. 
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H O D G E S O N T H E P H E N O M E N O N O F A M A T E U R R E F U T A T I O N S O F 
D I A G O N A L A R G U M E N T 

Wilfred Hodges discusses the fact that many 'amateurs' (as he calls them) have 

made, and likely will continue to make, unsuccessful and unpublishable attempts to 

refute diagonal argument. Nevertheless, it seems that many of these amateurs invested a 

great deal of careful thought, and a few have managed to produce answers to (RQ). the 

errors of which are not obvious. It should be noted that most of these amateur logicians 

propose to answer (RQ) by arguing that all diagonal argument is bad. Accordingly, these 

amateurs' answers can be immediately faulted, since it is (virtually) universally accepted 

that at least some diagonal argument is 'good'. In these cases, the error may not be 

obvious, but the fact that there is an error is not in question. 

The foregoing observations are given in Hodges' paper, 'An editor recalls some 

hopeless papers' [HOD]. In this paper, Hodges hoped only to discover the motivations 

of the amateurs' criticisms of diagonal argument, and not to develop an answer to (RQ). 

The question Hodges wants to answer is, '"why so many people devote so much energy to 

refuting this harmless little [diagonal] argument - what had it done to make them so 

angry with it? [HOD, p . l ] " Hodges does not propose to correct these 'hopeless papers'. 

Rather, the purpose is to present some of the reasoning behind the amateurs' (putative) 

refutations of diagonal argument, and thereby to help other editors when they are 

confronted with an amateur (putative) refutation of diagonal argument. Hodges 

concludes that some important points of basic logic are taught (by professional logicians) 

either "very badly, or not at all [HOD, p . l ] . " At greater length, Hodges says. 

a small number of the criticisms [of diagonal argument] are fair comment 
on misleading expositions [of logic text books]. A much larger number of 
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the criticisms are fair comment on some serious and fundamental gaps in 
the logic that we teach. Even at a very elementary level - I 'm tempted to 
say especially at a very elementary level - there are still many points of 
controversy and many things that we regularly get wrong. [HOD, p. 19] 

The "fundamental gaps' of logic instruction are not all gaps in the accuracy of the 

instruction - for in the formal case, diagonal argument is usually very technical, and 

would not have been taught in logic courses of a 'very elementary level', at all. 

Moreover, the errors made by the amateur logicians are principally errors which would 

vitiate any logical argument and so even a beginning student of logic could be expected 

to have avoided them. For example, some of the authors of the attempted refutations fail 

to realize the basic fact that "to attack an argument, you must find something wrong with 

it [HOD, p.5]." Other attempts to discredit diagonal argument include misguided attacks 

on justifications for suppositions or on the rules of logical consequence - justifications 

and rules which no well-trained mathematical logician would fault. All of these kinds of 

attempted refutations include obvious errors, and therefore do not bear further 

consideration. 

Yet there are two papers (neither of which is explicitly considered by Hodges 1 1) 

which attempt apparently stronger refutations. The first of these two papers (that of Leon 

Gumanski [GUM2]) shows that the author has considerable technical skill, but also 

includes a number of clear errors. It is not always obvious where Gumanski makes his 

errors, but the conclusions of his arguments are definitely mistaken. The errors of 

another paper (that of myself, [KIN]) are harder to see. [KIN] does not criticize diagonal 

argument in general, but only in the case of Godel's incompleteness theorems, and then 

1 1 In fact, Hodges' paper does not include any references to the papers he discusses, in order to not violate 
copyrights of their authors. 
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only by implication. [ K I N ] nevertheless includes at least three critical errors. Both 

papers were peer-reviewed and published. 
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G U M A N S K I ' S P U T A T I V E R E F U T A T I O N O F D I A G O N A L A R G U M E N T 

Gumanski's paper was apparently translated to English, possibly by Gumanski 

himself, from another language. Unfortunately, the translation is not quite fluent, and 

since Gumanski's argument is technically presented, it is sometimes difficult to 

understand the argument. It is appropriate, therefore, to grant Gumanski a degree of 

charity. Gumanski begins with the conclusion of his 1983, 'On decidability of the first 

order functional calculus' [GUM1], wherein he claims to have given a decision 

procedure for first order logic. [GUM1] was published, but only in abstract. It is 

therefore impossible to identify the errors of [GUM1], which seem to be the principal 

source of the errors of [GUM2]. Gumanski states that the result of his 1983 paper 

contradicts "the well-known Church's theorem [CHU], and so the problem arises what an 

error has been committed in the proof of the theorem [GUM2, p.45]" Already there 

should be alarm, since if first order logic were decidable - in such a way that Church's 

theorem is contradicted - then Godel's incompleteness theorems can hardly be sound. If, 

contra Church, first-order logic were decidable, then the provability of the Godel 

sentence, G, must also be decidable. If G is decided to be provable, then it is false, and 

then there is a proof of a false sentence, and the inconsistency of first-order logic follows. 

If G is decided to be refutable, then its negation. - .G. is thereby decided to be provable. 

(In the following, the predicate, 'PR' is the provability predicate, and the symbol f . . . T 

is Godel-quotation.) From the provability of - iG, it follows that PR(f- iG]) is provable, 

by derivability condition one, stated below on page 46. But it also follows from the 

provability of - .G that -I-IPR(TG~|), by Godel's first incompleteness theorem: G <-> 

-iPR(f G~|). Supposing that the logical rule of double-negation-elimination is available 
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(as we presently do), it follows that PR(TG]) is provable. But then both PR(T-iGl) and 

PR(f G~|) are provable. It is not exactly a formal contradiction for both PR(f-iG~|) and 

PR(fGl) to be provable, but it is an important inconsistency - for the set of sentences 

which satisfy the P R predicate must be inconsistent, and thusly, the provable sentences of 

first-order logic imply a formal contradiction. So if first-order logic is decidable, then 

first-order logic is inconsistent. The quasi-contradiction PR(fGl) a PR(T->G~|) can lead 

to inferences which do have the form of a contradiction. We write ' P R ' for the set of 

sentences which satisfy the P R predicate. Then, 

PR(f Gl) <-> (TGI e P R ) , and, 

PRCT-.G1) <-> (T-.G1 e P R ) . 

For non-paraconsistent systems, we now have 

[G a -,G~] e P R . 

If we already have proofs for both PR(TG1) and PR(T-iGl) , then we also have a proof for 

G a -iG, which formula clearly has the form of a contradiction. Another way of making 

the quasi-contradiction of PR(TG~|) a PR(f - iG]) , a contradiction of the form, A a —A, 

employs an unprovable formula, which we have already seen as ( K E ) and ( P P E ) : viz., for 

all formulas, A, ' PR(U1) -> A\ Supposing that ( K E ) is provable, P R ( [ G ] ) implies G, 

and PR(T-iG~|) implies -.G. By conjoining these two (supposedly) provable formulas, G 

and -iG, we can prove the explicit contradiction, G a —>G. However, as ( K E ) is 

unprovable, ( K E ) cannot actually lead to a proof of G a —,G. But there is still another 

step that strengthens the attempt to obtain an explicit contradiction from PR(fG]) a 
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PR(f-iGl). Although (KE) is not provable, its metalinguistic counterpart is a theorem of 

the metalanguage, namely, 

if |-- PR(U1), then \- A. (MKE) 

(for all formulas. A). Thus, if we already have a proof of PR(fG~|), then we can prove G. 

(The same holds for PR(f-iG~|); if it is provable then so is —iG. Thusly, if we already 

have proofs for PR(TG~l) and PR(T-iG~|), then G a - I G is provable. However, as (MKE) 

is metalinguistic, so is the conclusion it leads to: 

/ / ] - - PR(TG1) and \- PR(f-nGl), 
then |— (G a - I G ) . 

Furthermore, if Godel"s proof of incompleteness is unsound, then other central 

theorems of logical metatheory are also implicated in error. The unprovability of 

consistency, the inconflatability of proof with truth, the unsolvability of the halting 

problem and much of recursion theory could also be expected to fall. Because of this, 

Gumanski"s argument is already hard to take seriously - too many logicians would have 

had to make the same mistakes over and again, starting (at the latest) with Godel*s 1931 

[GOD1], and running continuously right up to the present. Yet Gumanski does 

apparently intend that these central theorems of formal logic should fall. Indeed, he 

wishes to implicate all diagonal argument with vitiating error. Gumanski states outright, 

The aim of the present paper is to demonstrate that despite its 
distinguished credentials the [diagonal] method is unreliable and all the 
purported proofs in which it is employed - though not necessarily their 
theses - ought to be doomed to oblivion. [GUM2, p.45] [Emphasis 
added.] 

One might already be tempted to put Gumanski's papers away, and never return to them. 

Yet, on the assumption that there actually is a problem with the diagonal method, then 
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we must expect it to be a subtle problem. If the problem were sufficiently subtle, then it 

is (at least weakly) plausible that it has escaped the notice of mathematical logicians for 

the thirteen or so decades since Cantor first introduced his diagonal method, however 

unlikely this seems. So we grant Gumanski another dose of charity and consider his 

arguments a little longer. 

Gumanski "s thesis pivots on the matter of whether or not the counter-diagonal 

exists. In indirect diagonal argument, the only assumption Gumanski allows for negation 

by reductio is the supposition that the counter-diagonal does exist. (Gumanski discusses 

his reasons for imposing this restriction, but they are contrary to the usual account of 

indirect argument and quite uncompelling.) Thus, for Gumanski, indirect diagonal 

argument can show only that the counter-diagonal does not exist, or else the argument 

must be unsound. Direct diagonal arguments are also criticized for not including proof 

that the counter-diagonal exists. In this case, Gumanski seems to be satisfied with 

argument to the effect that the existence of a definition of a counter-diagonal is not 

sufficient to demonstrate its existence. It is implied that there is no reason besides 

definitional fiat to think a counter-diagonal exists. Here, Gumanski seems again to argue 

contra a result of formal logic which is both long-standing and universally accepted. The 

fixed point theorems prove precisely that there are effectively specifiable formal 

constructions which work as counter-diagonals. But Gumanski neither mentions nor 

discusses fixed point theorems, and this appears to be a very serious omission. 

Gumanski's errors can be clearly and compellingly demonstrated. We consider 

Gumanski's claims as they relate to the diagonal ARRAY (EDA) [see p.19 above]. The 

diagonal of (EDA) is given by the ARRAY'S values at the intersections of po and SQ, p\ 
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and $\,p2 and sj, and so on. The value of the diagonal is thus, '0110. . . ' . Accordingly, 

the value of the counter-diagonal of (EDA) is '1001. . . ' . Now, if Gumanski is correct, 

and (EDA) has no counter-diagonal, then he must maintain that the counter-diagonal 

string does not exist. But Gumanski's inference here is very hard to take seriously, for it 

is intuitively obvious that our method of specifying the counter-diagonal of (EDA) is 

certain to yield an infinite string of 'O's and T s . A fortiori, (EDA)s counter-diagonal 

does exist. Gumanski might argue that although the value of our so-called counter-

diagonal exists, it is not the genuine counter-diagonal of (EDA). But this claim is also 

very hard to accept - for what else could the genuine counter-diagonal of (EDA) be? 

Furthermore, even if we have failed to correctly determine (EDA)s counter-diagonal, 

then the correct counter-diagonal of (EDA) must be some other infinite and effectively 

specifiable string of 'O's and T s . 

Gumanski makes another serious error where he says, 

we must consider the existence of [counter-] diagonal sequences as highly 
uncertain and their definitions as inadmissible, at least as long as it is not 
demonstrated that the defined diagonal sequence exists. Consequently, if 
such a demonstration has not been given, we must recognize any proof 
(even a direct one) that employs the diagonal method to be fallacious. As 
a matter of fact, the demonstration is lacking in proofs which are not 
based on axiomatic set theory. [GUM2, p.51] 

The first and second sentences of this quote are not well supported by Gumanski's 

foregoing arguments. The third sentence is plainly mistaken. Godel"s 1931 is a 

paradigm example of diagonal argument, and it is not based on set theory, and since 

1931, there have been a great many non-set-theoretic re-formulations of Godel"s 

incompleteness proofs. There have also been a great many extensions of incompleteness 

to formal systems which are not characteristically set-theoretic. 
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Gumanski next announces "a new shape" for the "'problem of antinomies". (Read 

for '(NSA)', new shape of antinomy.) 

(NSA) An antinomy is not a mysterious logical puzzle, nor is it a threat to 
the very foundation of logic. It is simply a quite innocuous proof 
in which the derived absurdity demonstrates that ... the defined 
object [i.e., the counter-diagonal] does not exist and the applied 
definition is inadmissible. [GUM2, p.53] [Emphasis mine.] 

The keystone of Gumanski"s argument is the emphasized sentence above - all of his 

conclusions depend on it. While there is no obvious error with the above claim that there 

are no (true) antinomies for formal logic - that is, no 'show stoppers' - Gumanski's 

argument for this claim is not strong. Finally. Gumanski advances the following two 

conclusions. (For "(GCl)' and '(GC2)'. read Gumanski's conclusion one, and 

Gumanski's conclusion two.) 

(GCl) [W]e must consider all proofs constructed according to the 
diagonal method and based on axiomatic set theory as not 
convincing, as mere samples of logical deduction grounded on 
arbitrary assumptions. The method does not make a reliable 
instrument for scientific investigations. [GUM2, p.55] 

(GC2) A. Church in his proof that the functional calculus of first order is 
undecidable has made use of the diagonal method. And that is his 
mistake. The calculus has its own objective properties 
independent of our will. It is decidable as I managed to 
demonstrate in my paper [GUM1]. No arbitrary decisions, no 
assumptions, no axioms can help it. [GUM2, pp.55-56] 

Although (GCl) is expressed only for diagonal argument which is 'based on 

axiomatic set theory', we can strengthen it to include all classical first-order languages in 

which the formal arithmetic is expressable. But (GCl) is faulty whether or not it is 

strengthened, for (the emphasized part of) (NSA) is false. The fixed point theorems do 

precisely what Gumanski denies - they prove the existence of the fixed points concerned. 

Indeed, Haskell Curry has shown how to construct a fixed point combinator. 
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The first sentence of (GC2) is unobjectionable, but the second sentence is too 

bold by far, and is poorly supported in any case, since it depends on Gumanski"s false 

claim that fixed points do not exist. The third sentence may also be granted, but it is hard 

to see the connection it bears to the rest of the paper; this sentence appears more as a 

metaphysical thesis than a logical one. The fourth sentence may be true, but seems much 

more likely to be false. If 'the calculus' (i.e., first-order logic) were decidable, this 

would undermine a huge part of formal logic, namely, those parts which are consequent 

to incompleteness. The fifth sentence could also be granted, but seems to need further 

explanation, and in any case, this sentence appears to have more of a rhetorical purpose 

than a logical one. 

As a final comment, we may say that even if there are subtle causes which render 

diagonal argument unsound, Gumanski has been unsuccessful in his effort to reveal 

them. His reasoning depends uncritically on several mistakes, and until those (apparent) 

mistakes are addressed, Gumanski's conclusions must be evaluated as - to use 

Gumanski's own words - "highly uncertain" and "not convincing". 
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KING ON A PROBLEM CONCERNING DIAGONAL ARGUMENT 

My 2001 [KIN] can be construed as a challenge to the correctness of diagonal 

argument, although this was not my intent at the time it was written. (I have never 

conceived this paper as an attack on diagonal argument.) Like Gumanski*s paper, mine 

includes (at least two) vitiating errors, and there can be no serious debate about their 

existence. Unlike Gumanski's paper, mine is very short and the argument is reasonably 

clear, or leastways, reasonably clear to logicians. In spite of the brevity and clarity of 

[KIN], its errors are still hard to see - or at least, they were hard for me to see. (I believe 

that the errors were also hard for a number of professional logicians to see, though only 

for a short time. My errors were explained to me principally by Jonathan Seldin and 

Bryson Brown, who also brought me to a more complete understanding of the complex 

interplay of metalogical concepts and theorems. I am also indebted to Dov Gabbay, 

Charles Morgan and Solomon Feferman for helpful comments. Jeff Pelletier was also 

very helpful, sending me the papers by Hodges, Gumanski and Zvonimir Sikic [SIK].) 

[KIN] is divided into three parts. We will consider only a simplification of part 

one, which is fairly straightforward. In part two, we consider an argument that the 

formula, 'PR(U1) —> A', is provable (where 'PR' is a provability predicate, and A is an 

arbitrarily chosen well-formed formula). Part three will not be restated here, as it is only 

an object-linguistic proof of a formula which expresses Godel's first incompleteness 

theorem, in the formal language of Godel"s 1931 paper. The following (putative) proof 

is modified in two ways from its presentation in [KIN]. First, derivability predicates (or 

'turnstyles' - ' |~ ' ) are inserted before each line of (KP) in order to stress that this 

(putative) proof is meta-linguistic, and thus that it does not necessarily give an object-
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linguistic proof of either G or P. (Indeed, there is actually no object-linguistic proof of 

either G or P.) Second, it is made explicit that (KP) depends on the provability of the 

formula, {PR(TJF1) -> F] (which is stated shortly below as '(KE)'), and accordingly, the 

conclusion of (KP) is expressed as a conditional: 'if | - {PR(TF1) -> F), then |~ P ' 

(where F and P are any two arbitrarily chosen formulas). (For 'KP' , read 'King's 

paradox'.) Part one: 

(KP) Let I be a sound classical language in which the first 
incompleteness theorem is provable. Let PS(x,j/) express 'x is 
(the Godel number of) a proof schema for the formula (Godel-
coded by) y\ Let PR be a provability predicate for L. (We define 
'PR(x)' as '3.y{PS(y,x)}'). Let G be a Godel sentence for L, and 
let the formula P be arbitrary. 

(0) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

- {PR(TG1) -> G} [Assumption] 
- {G o - P R ^ G L ) } [The 1 s t incompleteness theorem] 
- {~~PR(TC?1) V G} [A consequence of (1)] 

P R ( [ G 1 ) [Assumption for v-elimination on (2)] 
- G [(0) and (3)] 
- G [Assumption for v-elimination on (2)] 
- G [v-elimination: (2) to (5)] 
- PR(TG1) [By 'if | - G then | - P R ( f G l ) ' ] 1 2 

- ~PR(FGL) [(1) and (6) by modus ponens] 

(7) and (8). when conjoined, form a contradiction. Now by ex 
falso quodlibet, it follows that ] - P. Whereas the assumptions at 
(3) and (5) have been discharged, that of (0) has not. Thus the 
conclusion is, ' / />- { P R ( T G ] ) - » G } , then | - P\ 

It is already well-known that, in consequence of Lob's theorem, if |— { P R ^ G ] ) - » G } , 

then the consistency of L must fail. This is the first error of my paper. 

1 2 This meta-linguistic formula ('if |~ G then J~ PR(F(?!)') is well-known as one of the derivability 
conditions. If anything can count as an axiomatization of provability, then so can the derivability' 
conditions. But there is also a formal proof of this derivability condition, outlined as follows. Let n = [G]; 
let m be the Godel number for the concatenation of lines (1) to (6). Then m is (the Godel number of) a 
proof schema for G. Thus PS(/w,«) holds, and as PS is computable, PS(m,n) is provable. A fortiori, PR(n) 
is also provable, and as n = TG], PR(TG1) is provable. 

44 



The second error occurs in part two, where I attempt to prove by mathematical 

induction that for all formulas, F, 

( K E ) |-- { P R ( T F 1 ) - > F } . 

(We shall henceforth call this formula, ' | - (PR(TF1) - » F\ King's error, or ' K E ' . ) I will 

not reproduce part two here. It suffices to note that my employment of mathematical 

induction is inessential and invalid, since the conclusion drawn does not actually depend 

on the correctness of the induction case. 

If ( K E ) were provable, then it would follow that Godel"s incompleteness 

theorems harbour an inconsistency. Since the incompleteness theorems depend on a 

diagonal argument, their inconsistency could be taken as an absurdity for reductio 

against the soundness of Godel"s diagonal argument. My first error is one of failing to 

acknowledge that there is already significant literature proving that (4) does not follow 

from (3) - leastways, not in any consistent formal system. The part-two attempt to prove 

( K E ) is much the same error as that of the first part. However, strictly speaking, the 

second error is not the attempt itself to find proof for ( K E ) , but the commission of a 

mistake in that attempt. 
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(KP) AND THE LOGIC OF PROVABILITY: HENKIN'S PROBLEM, 
LOB'S THEOREM AND THE DERIVABILITY CONDITIONS 

We now delve deeper into the literature on Henkin's problem, Lob's theorem and 

the derivability conditions, which proves the unprovability of ( K E ) . The implication of |-

- PR(TF]) from |— F is well known as the first "derivability condition' ( 'DC1' , shortly 

below). Informally, the reasoning behind this consequence runs as follows. 

For any formula, F, if we have |— F, then F is provable. Thus there is a proof 

schema, H, such that P S ( f / / i r / r l ) holds true. As P S is recursive, if follows that |~ 

PS([7/1J>1). By the above definition of P R , we now have |-- PR(J>1) . With 'F = "G\ 

we have |— G, and thus it follows that |— PR(fGl). (The reader may note that line (6) of 

( K P ) depends on the supposition of line (4) that | - (PR(f G~|) -> G), which is false. 

Accordingly, we should accept neither line (6) nor line (7) of ( K P ) . We will consider this 

error immediately below, but it nevertheless remains that (for all formulas, F) if |~ F then 

I-- PR(TF]) , and thus also, if |-- G then \- PR(TG]) . ) 

(DC1) is a metalinguistic formula. As might be expected, the validity of (DC 1) 

implies validity for its object-linguistic counterpart -- prima facie, "|— {F - » PR(fF~|)}' 

follows by conditional proof from "if |— Fthen |~ PR(TF~|)' . The converse of (DC 1) is 'if 

|— PR(TF1) then |— F\ which is a metalinguistic counterpart of (KE). (Let us call this 

formula, 'MKE', for 'metalinguistic KE'.) Both (DC1) and (MKE) are valid formas of 

inference. However, unlike the object-linguistic counterpart of ( D O ) , (KE) is not valid. 

This fact was first proved by Loeb, in his famous Loeb's theorem [LOB]. This theorem 

came as a reply to a problem presented by Leon Henkin. Henkin's problem is ( H P ) , 

following. 
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(HP) Where H is a formula of a strongly expressive system, T, such 
that \H\ = rPR(Ti/l)l, is H provable in T, or is H independent of 
77 (see [HEN, p.\60. problem 3] ) 

The formula, H, is a (so-called) 'Henkin sentence'. Stated more straightforwardly than 

(HP), Henkin's problem is, 

(HP*) is it provable or not that H <-> PR(j7/l)? 

Since it concerns the provability of a biconditional. (HP*) can be separated into the 

following two questions. 

(HP*1) Is it provable or not that H -> PR(T#1)? 

(HP*2) Is it provable or not that PR(TH~\) -> HI 

As has already been discussed, all formulas of the form ' F —> PR(TF]) ' , are provable, and 

thus H —> PR(Ti/l) is also provable. (This is due to the satisfiability of Lob's condition 

III and condition IV [LOB, p.l 16], which are now understood to be expressed by (DO) . ) 

It is (HP*2) w-hich Lob's theorem answers. Lob's theorem is (LT) below. 

(LT) For every formula, F, 
if | - ( P R ^ F I ) -» F), then | - F. (see [LOB]) 

It is an immediate consequence of (LT) that when F is a Henkin sentence, H (i.e., \F~\ = 

[H] = rPR{r//l}l), we have. 

\- {PR(H])-^H}, ( t ) 

and thus, 

\-H. 

It follows immediately that (HP*1) and (HP*2) are both answered in the affirmative, but 

this is so only when i f is a Henkin sentence. Otherwise, H might be a contradiction and 
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then by ( t ) a contradiction is immediately proved. Thus even though PR(T#1) —> H is 

provable whenever H is a Henkin sentence, it is not provable in the general case. 

For the sake of expositional completeness, it is necessary to state the other 

derivability conditions. These conditions appear to been first introduced by Lob, who 

counted five of them, but these have since been reduced to three. (Even in these three, 

there appears to be a redundancy, for (DCS) is a prima facie consequence of (DO) . ) 

The three are, 

for all formulas, A and B, 

( D O ) If | - A, then | - P R ( M ) . 

(DC2) |-- {?R(A^B~]) -> ( P R ( M ) -> PR(f5l))}. 

(DCS) I-- { P R ( U 1 ) -> PR(fPR{M}L)}. 

At the end of his short paper on (HP), Lob explains his (LT) as if it were a 

theorem of natural language. This explanation is strikingly similar to Curry's paradox, 

and it would be interesting to know whether Lob and Curry discovered this paradox 

independently of each other. (Curry's paradox plays a key role in the latter parts of this 

essay.) Lob writes, 

The method used in the previous proof leads to a new derivation of 
paradoxes in natural language. For let A be any sentence, and let B be the 
sentence, 

"If this sentence is true, then so is A." 

Now we easily see that, if B is true, then so is A. That is, B is true. 
Hence A is true. We have thus shown that every sentence is true. [LOB, 
p.l 17] 

Still, an apprentice logician could be forgiven for seeking a proof of (KE) - or so I 

believe - especially if he had not yet encountered the literature which proves the 

unprovability of (KE). Indeed, there is proof of a metalinguistic formula which strongly 
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(but erroneously) suggests that (KE) is provable, namely, (PPE) below. It is known that 

for all formulas, F, 

if |-- PR(npl) , then | - F. (PPE) 

(Read for ' ( P P E ) ' 'provability predicate elimination'. Note that (PPE) is (MKE).) If we 

now suppose |— PR(f.F~|) then by (PPE). it follows that |— F. Thus, if we already have |— 

PR(}>1), then by (PPE) we have |-- F. It thus appears that if we already have | - PR(|>1), 

then (PPE) implies (KE), but this appearance misleads. 

In order to use (PPE) to prove (KE), one must first have |— PR§F~\),for arbitrary 

F. It is not enough to assume the provability of PR(TF~}); one must have actual proof. 

This fact is manifest in the observation that whenever F is not provable, there is - in the 

first place - no n such that V&(nlF~\) holds, and a fortiori, PR(TF]) does not hold either. 

So, when F is not provable, the assumption PR(TF~|), is false, notwithstanding any 

assumption that it is true. In other words, P R ( T F ] ) immediately implies ~PR(fi7'l) 

whenever F is not actually provable. Accordingly, (KE) is no consequence of (PPE). 

The proof of (KE) from (PPE) is good-looking (at least for some beginning 

students of logic), but it is not good. (That is, the proof of (KE) from (PPE) is not 

sound.) That (KE) does not follow from (PPE) seriously undermines ordinary intuition, 

but this undermining does not - cannot - soundly imply the provability of (KE). 1 4 The 

result (that (KE) does not follow from (PPE)) is better understood as an unexpected fact. 

Yet if one were only an amateur logician, it would be easy to satisfy him or her that (KE) 

1 3 A person might think that I am here arguing that (KE) - '|— PR(TF1) -> F' - is provable in the object 
language. But this is not so, as re-consideration of sentences nine through fourteen of this paragraph will 
confirm. 
1 4 It might be thought that this comment is tempting only 'if we slide too easily from the meta-linguistic 
demonstration that there is a provability predicate to the assumption that a parallel argument can be laid out 
in the object language'. This thought is correct, since a beginning student might be ~ actually is (as I 
believe) - prone to committing the error of this slide. 
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does follow from (PPE) (even though (KE) does not actually follow from (PPE)), and 

thus that Godel's incompleteness theorems harbour inconsistency (even though there is 

no actual inconsistency in Godel's incompleteness theorems). This goes to show that 

there is mystery in Godel's diagonal argument, which could easily draw a student away 

from forming a correct understanding of the proof-theoretic issues surrounding (PPE) 

and (KE). 

It is also worthy of mention that the argument of [ K I N ] , which we now see is 

merely 'good-looking', could be converted into a "good" argument of the unprovability 

of consistency. (The possibility of this conversion was brought to my attention and given 

by Jonathan Seldin.) The fact that this conversion is possible is further evidence that 

although [KIN] includes vitiating errors, it is not garbage. (Hodges uses this word -

'garbage' - to describe the attempted refutations of the diagonal argument which he 

considers in his paper.) 
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TWO NOTIONS OF LANGUAGE: LINGUA CHARACTERICA AND 
CALCULUS RATIONATOR 

Via two notions (lingua characterica and calculus rationator) which predate 

Gottlob Frege's Be griffsschrift [FRE1] and the ensuing development of mathematical 

logic, we observe that natural language is a kind of mathematical logic only if natural 

language can be completely subsumed within a calculus rationator. I argue that natural 

language is not a calculus rationator, but rather a lingua characterica. In contemporary 

terms, this is the view that natural language is language-as-universal-medium-of-all-

discourse (i.e., the view of lingua characterica), and I oppose the view that natural 

language is language-as-logic (i.e., a calculus rationator). 

A paper by Jean van Heijenoort engages this distinction in the context of Frege's 

thoughts on the matter [vHE2]. As van Heijenoort explains it, the distinction between 

lingua and calculus concerns the semantic universality of formal logic, such that lingua 

characterica is the more universal, and calculus rationator the less. But the distinction is 

not exclusive. In Frege's view of logic, the propositional calculus is calculus but not 

lingua, whereas quantification theory (i.e., that of Frege's Begriffsschriff) is not merely 

calculus, but also lingua. It is a central point of van Heijenoort" s paper that Frege did not 

conceive quantification theory in the same way as it is now understood, say, within the 

discipline of symbolic logic, where quantification theory can be conceived altogether 

divorced from semantic issues. At least in its early days, Frege intended the 

Begriffsschrift to be embedded in lingua. (And when his successors went mathesis 

universalis (i.e., a semantically universal calculus rationator), Frege went vociferously 

anti-psychologistic.) Via its being embedded in the lingua characterica. Frege conceived 
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quantification theory as semantically universal. Frege seems moreover to have assumed 

that quantification theory is complete, in the sense that Frege - and later also Russell -

read the Begriffsschrift's judgement stroke (i.e.. the turnstyle: '|—') to express truth rather 

than provability, as it is now read. Van Heijenoort comments further, 

The universality of logic [i.e., of quantification theory] expresses itself in 
an important feature of Frege's system. In that system the quantifiers 
binding individual variable range over all objects. ... Boole [i.e., Boole's 
propositional calculus] has his universe class, and De Morgan his universe 
of discourse, ... [b]ut these have hardly any ontological import. They can 
be changed at will. ... For Frege it cannot be a question of changing 
universes. One could not even say that he restricts himself to one 
universe. His universe is the universe. ... Frege's universe consists of all 
that there is, and is fixed. [vHE2, p.325] 

Van Heijenoort observes that owing to the universality which Frege conceived for the 

Begriffsschrift. "nothing can be, or has to be, said outside of the system" [vHE2, p.326]. 

Although he recognizes that any formal system needs meta-systemic notions and rules 

(i.e., notions such as consistency, completeness, the independence of axioms), Frege 

never discusses any of these notions. 

Moreover, the Begriffsschrift-as-/mgt<a has to be learned in the same way as 

natural language is learned, as van Heijenoort explains, "by suggestions and clues". 

Also, 

Frege repeatedly states, when introducing his system, that he is giving 
'hints' to the reader, that the reader has to meet him halfway and should 
not begrudge him a share of 'good will'. The problem is to bring the 
reader to 'catch on"; he has to get into the language. [vHE2, p.326] 

Ultimately. Frege's conception of the Begriffsschrift-as-semanticallv-universal-/we?/a 

failed. The initial cause of this failure is the Russell set (hereafter, 'RS') . The definition 

of RS is both intuitively well-formed, and more important for Frege, it is an admissible 

definition in the language of the Begriffsschrift. But, as we well know, RS's membership 

52 



is inconsistent (i.e., since it can be proved in the Begriffsschrift both that RS e RS and 

RS g RS). It seems that Frege immediately recognized the scope of the problem which 

RS visits on the Begriffsschrift. for he despaired of the success of his philosophical thesis 

(i.e., the thesis contra Kant's doctrine of the synthetic a priori that mathematics can be 

completely represented in an analytic language, that is, in a logical language). This thesis 

of Frege's is now known as the Togicist' thesis, although Frege himself never used this 

term. In other ways, the Begriffsschrift was still a great success, for example, in virtue of 

Frege's creation of a generalized quantifier theory, the function-argument distinction and 

the sense-reference distinction. (The last of these was actually first presented in Frege's 

Sinn und Bedeutung [FRE3], but was nevertheless implicit in the Begriffsschrift.) So 

other logicians did not give up on Frege's insights, and made considerable efforts to 

maximize the successes of so-called 'Fregean' languages. After all, even though the 

consistency of the Begriffsschrift failed, it does not follow that Kant's synthetic a priori 

is thereby re-confirmed. In their Principia Mathematica [WHI], Russell and Whitehead 

adapted the pivotal insights of the Begriffsschrift to a new symbolic system for formal 

language. The two most important contributions of the Principia were a much-simplified 

and more intuitive notational system, and type theory. Type theory pacified the problem 

of the RS by rendering so-called 'impredicative' definitions (see [KNE, pp.513-521]) 

inadmissible - if the RS cannot be defined, then it has no membership relation, and no 

inconsistent membership and hence no contradiction (within the Principia) could be 

proved from the RS. 

But Russell sets are not the only kind of formal notions that weaken Fregean 

languages. The famous Godel sentence, which is similar to the RS in that they are both 
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fixed points, implies that not every mathematical truth corresponds with a mathematical 

proof. This result, due to Godel [GOD1], is widely regarded as proof that Frege's 

logicism is an unrecoverable failure, for it demonstrates not only that the Principia is 

incomplete, but also that every Fregean language is incomplete. It follows immediately 

that the formal arithmetic is incompletaWe as a Fregean language. However, research 

into Fregean language has not only continued, but flourished. 

Had Frege succeeded in his efforts, he would have achieved a mode of language 

which Jaakko Hintikka identifies as maihesis universalis [ H I N , pp.58-59]. In words we 

have already used, a mathesis universalis could be understood as a semantically universal 

calculus rationator. Were Frege to have achieved mathesis universalis for the 

Begriffsschrift, natural language could be subsumed within formal quantifier theory, 

without relevant loss of expressability. and with the added capacity to mechanically 

determine mathematical and logical truth and falsity. Of course, mathesis universalis still 

has not been achieved, and is moreover expected to be unachieva^/e via Fregean formal 

systems (in consequence of Godel's incompleteness theorems). 

In section two of his paper, Hintikka meets and further develops the lingua-

calculus distinction of van Heijenoort's paper. 

[Frege] is ... representative of the type of view labelled by van Heijenoort 
'logic as language," [i.e., lingua characterica] which perhaps rather ought 
to be called in more general terms the view of language as the universal 
medium of all discourse. According to this view ... we cannot escape the 
basic semantical relationships that connect our language with reality. 
Since they are presupposed in anything we say, they cannot be 
meaningfully talked about. [ H I N , p.58] 

That is, we cannot do the semantic theory of a language from within that language 

without begging the question of what should be the content of that semantic theory. And 
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this is why Frege eschewed formal semantics. On languages calculus rationator, 

Hintikka writes, 

on the view labelled by van Heijenoort Togic as calculus' [i.e., calculus 
rationator], we can meaningfully and nontrivially discuss the links 
between our own language and reality. ... In other words, we can to some 
extent at least think of our language and its logic as if it were a calculus, 
not in the sense that it is a meaningless formal game as a calculus is, but in 
the sense that it can be reinterpreted like a calculus. [HIN, pp.58-59] 

Of course, if calculus is subsumed within lingua, which it must be if our lingua is to be 

semantically universal, then the development of a semantics for the calculus inherits the 

problems of developing a semantics for the lingua. Accordingly we must assume that 

lingua can be reinterpreted as calculus - for otherwise, we can do no semantic theory at 

all. As Hintikka puts it, "the development of all serious truth-conditional semantics 

(model theory) obviously presupposes adopting the conception of language as calculus. 

[HIN, p.59]" Consequently, "we can practice systematical semantics only if we can 

meaningfully discuss these relationships as we cannot do on the view of language as the 

universal medium." In the calculus rationator view, the meta-systemic questions which 

Frege eschewed are straightforwardly definable. Hintikka again: 

[Ljogical validity is. when it is explicitly defined, a concept which 
requires a tacit reinterpretation of the representative relationships between 
language and reality: a [formal] sentence [of a calculus] is valid if and 
only if it is true on every possible reinterpretation of its nonlogical ... 
concepts. Hence a completeness proof (a proof that each logically valid 
sentence of a given language is provable) presupposes the idea of 
language as calculus. [HIN, p .59] 1 5 

Yet one is cautioned to avoid using truth-conditional semantics to explain or model the 

semantics of a lingua characterica. 

Hintikka's notion of validity here is the formal notion, not the notion of a necessary or tautological truth. 
Hintikka's notion depends only on our understanding of the calculus' logical constants. 
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[A] mistake - 'the first dogma of the philosophy of language' - often is in 
the offing when an attempt is made to elicit [universal] semantical morals 
from the rules of logical inference which naturally are formulated in 
syntactical (formal) terms and which establish, when correctly applied, 
logical truth rather than truth simpliciter. [HIN, p.61] 

It could be argued that as long as logical truth and truth simpliciter are indistinguishable, 

there is effectively no distinction between calculus and lingua. 

Simmons' comment, that the semantic paradoxes are "generated by diagonal 

arguments in exactly the same way that the set-theoretic paradoxes are generated"' [SIM, 

p.37]. This comment depends on the view that the arguments which produce the 

semantic paradoxes are all subsumable within a calculus rationator. Notwithstanding 

Simmons" comment, diagonal argument in general cannot be easily shown to be 

characteristically a kind of set-theoretic or first-order argument. The origin of diagonal 

argument - with Georg Cantor - resembles more closely a kind of mathematical 

argument than logical or set-theoretic. Moreover, it is diagonal argument which has 

consequences for formal systems of logic (and formal set theory) rather than the other 

way around - diagonal argument is not a feature of formal logic so much as it is a 

(sometimes metalinguistic) mode of argument about formal logic. This is seen clearly in 

consideration of, say, the incompleteness theorems. These theorems are established (in 

part) by diagonal argument, and since the incompleteness theorems also impose a 

limitation on formal proof (viz., that proof and truth are inconflatable), it follows that 

diagonal argument shows that consistent formal systems must be weaker (in the first 

place) than we might have hoped. But if all diagonal argument - and in particular, all 

bad diagonal argument - were argument in first-order logic, then why not, on account of 

its invalidity, simply banish all diagonal argument from first-order logic? Similarly, were 
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diagonal argument of a kind that is consequent of the axioms and rules of inference for a 

formal system, it should not be possible to use diagonal argument to derive antinomy in 

the first place - for these axioms and rules are known to yield consistent closure of the 

axioms of first order logic. Moreover, we cannot banish diagonal argument by fiat, so 

long as diagonal argument is well-founded in the rules and resources of proof in first-

order logic, which it is. 

In Simmons' defence, it must be noted that he did generalize upon the dimensions 

of a diagonal argument, but this generalization still affords only a partial account of 

diagonal argument, since it is already implied in formal set-theory and first-order logic. 

Thus generalization with respect to the number of dimensions of a diagonal argument still 

does not bring us to the conclusion that diagonal argument is subsumed within a calculus 

rationator. This constraint upon Simmons' theory is imposed not by an inherent 

limitation on diagonal argument in general (or at least, there is no independent support 

for the existence of an inherent limitation), but is rather imposed by the conception of 

diagonal argument as formal logic. Simmons' formal definition of ^-dimensional in 

finite) diagonal argument does not step beyond the contexts of formal set-theory or logic. 

Thus the generalization which Simmons provides can only be partial. 1 6 

Moreover, the fact that the form of a lingua characterica diagonal argument 

mirrors that of its formal cousins is no proof that the lingua characterica argument is best 

or most accurately analyzed as if it were a formal language (i.e., a calculus rationator). 

Formal proof does not constrain diagonal argument; rather, diagonal argument imposes 

constraints on formal proof. In what follows 'diagonal argument* shall mean the 

1 6 We are on the edge of inconsistency here, but not the inconsistency of first-order logic - only that of a 
lingua characterica, of natural language. 
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formally-unconstrained (lingua) kind of diagonal argument. Since the following diagonal 

arguments are in the lingua characterica, we are free to consider explanations and 

conclusions which would render a calculus rationator inconsistent. 

A person might think that 'without the rules of a calculus to tell us when we've got a real consequence 
and when we're jumping to conclusions, we can explore, but cannot be all that confident about our results." 
This thought apparently proceeds from the supposition that the rules of a sound calculus rationator 
argument (i.e., a sound first-order proof) are, or are monotonically preserved, within the rules of argument 
in lingua characterica. But to make this supposition appears to beg the question, 'is lingua characterica 
best, most completely, or most accurately analyzed as if it were a formal language (i.e., as a calculus 
rationator)?' However, if this question is begged, and the formal methods (i.e., those of a calculus) are 
impotent to provide an analysis of the question, then we might still expect an adequate analysis in a lingua. 
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S I M M O N S ' T H E O R Y O F D I A G O N A L A R G U M E N T , 
A N D R U S S E L L ' S Q U E S T I O N A G A I N 

In his book, Universality and the Liar [SIM], Keith Simmons offers a general 

theory of diagonal argument. Simmons' theory is contained in pages 20 to 44, and the 

following material is a paraphrase and simplification of Simmons' theory. What will not 

be well-represented in the following exegesis is that Simmons' theory of diagonal 

argument is formal - in virtue of its being written in a formal first-order language. 

Because Simmons' theory is formal, it is capable of strong results. For example, 

Simmons generalizes as to the number of 'dimensions' of a diagonal argument. The 

following summary' of Simmons" theory includes only such material as is needed to argue 

the rest of the essay. 

We begin with the following quote from Simmons, 

There are arguments found in various areas of mathematical logic that are 
taken to form a family: the family of diagonal arguments. Much of 
recursion theory may be described as a theory of diagonalization; diagonal 
arguments establish basic results of set theory; and they play a central role 
in the proofs of the limitative theorems of Godel and Tarski. Diagonal 
arguments also give rise to set-theoretic and semantic paradoxes. What do 
these arguments have in common: What makes an argument a diagonal 
argument? And to ask a question first raised by Russell, why do some 
diagonal arguments establish theorems, while others generate paradoxes? 
[SIM. p.20] 

In other words, Russell's question - (RQ) - concerns the problem of distinguishing the 

'good' diagonal arguments - those which eventually establish theorems - from the 

merely 'good-looking' diagonal arguments - those which establish antinomies. 

Presently, our usual means of deciding the (RA)s is to observe whether or not a 

given diagonal argument proves a falsehood or contradiction. This is part of Simmons' 

methodology for recognizing "bad' diagonal arguments. If a diagonal argument does 
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prove a falsehood then it must be unsound, for no sound proof proves a falsehood. The 

only thing we could do with a diagonally-proved falsehood is use the falsehood as an 

absurdity for a reductio argument. Nevertheless, as Simmons himself observes, there is 

nothing wrong with the reasoning (nor the validity) of a contradiction-proving diagonal 

argument [SIM, p.29] - for otherwise the argument could hardly be contradiction-

proving. Rather, it is the soundness of one or another supposition of the paradoxical 

diagonal argument which is at fault. For greater generality, it should be said that 

paradoxical diagonal arguments have absurd conclusions, since although every 

contradiction is absurd, not every absurdity is a contradiction. (Simmons does not note 

this important fact.) Also, the non-contradictor}' absurdities are not in all cases object-

linguistic, i.e., they are not all proved formally. (Of course, some non-contradictory 

absurdities are formally proved - such as Godel's proofs that the set of the formally 

provable sentences is not the same as the set of the true sentences. Such absurdities are 

generally re-interpreted as having always been non-absurd, as being unexpected facts.) 

For example, it is a non-contradictory but absurd thesis that the semantic theory of a 

lingua can be done from within that lingua itself, independently (i.e., without invoking) 

the actual semantics of that lingua, say English. Simmons* strategy of identifying the 

bad diagonal arguments depends on our already having an independent means -

presumably an algorithm of some sort - of identifying absurdities. But we have no such 

algorithm, for if we did, then (RQ) would be a closed question. Moreover, we should 

recall that the conclusions of several early diagonal arguments - e.g., those of Cantor, 

Russell and Godel - were at first thought to be absurd, but are now counted among the 

key theorems of formal logic. Since logicians' sense of absurdity has misdirected them 
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in the past, we should not expect contemporary logicians' sense of absurdity to be 

immune to such misdirection. 

Let us now delve into the technical points of Simmons' theory of diagonal 

argument. As has already been noted, a diagonal argument can have any finite number of 

dimensions, but we will be concerned only with the two-dimensional cases. The main 

components of a diagonal argument are (according to Simmons) the SIDE, the TOP, the 

VALUES, the ARRAY, the DIAGONAL, the value of the diagonal (hereafter. D.VAL), 

the countervalue of the diagonal (hereafter, C.VAL) and the ROWs of the ARRAY. 

Simmons defines each of these components in a first-order language of set theory, but we 

will specify them according to the ARRAYs pictured below. 

Consider (Al). 

t o t l t 2 t 3 . . . 
sO m w m w 
s i w w m w (Al) 
s2 w w w m 
s 3 m m w m 

The SIDE is the set, {sO, s i , s2, s3. . . . } ; the TOP is {tO, t l , t2. t3, . . . } ; and VALUES is 

{m, w}. The ARRAY of (Al) is the field of the symbols 'm' and 'w' . It will be helpful 

to define two sub-parts of the ARRAY, namely, the ROWs and the CELLs. A CELL of 

an ARRAY is an ordered pair, <sz', t/>, such that si e SIDE and tj e TOP. Thus the set of 

all the CELLs of (Al) is the set of all <si, t/> such that ijeNN. (We read for "NN' the set 

of the natural numbers.) For the value ( 'm' or 'w') of the CELL <si, tj>, we write, 

Thus «2,0» = w and «0,2» = m. (Simmons does not define the CELLs, but he might have 

done so, and perhaps as set out above.) For the A* ROW (hereafter, ROW;) of (Al), we 
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write, <d,0» «k, 1» «k,2» «k,3» ... The ARRAY of (Al) is now just the set of all its 

ROWs: {ROWo, ROWi, ROW 2 , ROW 3 , . . .} . 

The next two definitions are at the heart of a diagonal argument: D.VAL and 

C.VAL, D.VAL is the value of the 'leading' diagonal of (Al), which starts in the upper 

left and continues to the lower right. In general, the D.VAL of an ARRAY is «0,0» «1,1» 

«2,2» «3,3» ... Thus the D.VAL of (Al) is mwwm... The C.VAL of (Al) is the reverse 

of D.VAL. or wmmw... (For convenience, we might also write D.VAL as «d,0» «d, 1» 

«d,2» ... and C.VAL as «c.0» «c,l» «c,2» ...) In general, we define the C.VAL as 

follows. 

(DCV) For all natural numbers, n, 

«c,n» = { m if «d,m> = w, (that is, if «n,n» = w), 
{ and, 
{ w otherwise. 

(For ' D C V read, 'definition of C.VAL'.) Next. Simmons specifies what it means for 

D.VAL or C.VAL to occur as a ROW of an ARRAY. D.VAL occurs in (Al) as a ROW 

if and only if there is a natural number, n such that ROW„ = D.VAL. C.VAL occurs as a 

ROW of (Al) if and only if there is a natural number, n such that ROW„ = C.VAL. 

We are now prepared to prove what Simmons calls the basic diagonal theorem. 

The proof below is not formal, and in any case is only outlined. Nevertheless, the 

reasoning of the argument below is valid, and is formally proved by Simmons [SIM. 

pp.25-26. Theorem 2.1]. 

Suppose that C.VAL occurs as a ROW of (Al). Then there is a natural 

number, n, such that ROW,, = C.VAL. (Thus «c,m> = ««,«».) If «n,n» = 

m, then by (DCV), «c,n» = w. Similarly, if «n,n» = w, then «c,m> = m. 
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But if «n,n» = m, then as «n,n» = «c,n», we have m = «n,n» = «c,n» = w. 

And thus, m = w, which is false. If otherwise «n,n» = w, then we have w 

= «n,n» = «c,«» = m, and w = m, which is the same contradiction. Thus 

there is no n such that ROW„ = C.VAL. 

As already been mentioned above , Simmons distinguishes 'good' diagonal 

arguments from 'bad' diagonal arguments according to whether they prove theorems or 

establish paradoxes (respectively). Of course, the basic diagonal theorem is a 'good' 

diagonal argument, but could be either of two kinds of 'good' diagonal argument: the 

'direct' and the 'indirect'. (Jonathan Seldin has commented that every indirect diagonal 

argument can be equivalently expressed as a direct diagonal argument, but this need not 

invalidate Simmons' analysis.) 

According to Simmons, in a direct diagonal argument, the SIDE, the TOP and the 

ARRAY are all 'well-determined' sets, and D.VAL and C.VAL are well-determined in 

the sense that every 'digit' - m or w - of these values can be effectively determined. The 

conclusion of a direct diagonal argument is simply that the C.VAL does not occur as a 

ROW. 

In an indirect diagonal argument, one (or possibly more) of SIDE, TOP and 

ARRAY are assumed to be well-determined, for reductio ad absurdum. In (Al), SIDE is 

specified as a denumerable set of the si, such that each sy is paired uniquely with ROW/. 

Accordingly, we might say that sy is the 'name' of ROW,. To treat (Al) as though it were 

an indirect diagonal argument, we might assume (for reductio) that even though SIDE is 

denumerable, its members collectively name each and every infinite sequence of 'm's 

and 'w's. We assume, that is, that every possible value for a ROW of the ARRAY is 
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named by some member of SIDE. But SIDE is not well-determined, for the C.VAL is 

not named by any member of SIDE. Thus there is always a possible ROW value without 

a name. 

The 'bad* diagonal arguments are neither direct nor indirect. In a 'bad' diagonal 

argument, the components are all assumed to 'exist' (be well-determined), but one or 

more of them is actually not well-determined. Besides finding the presence or absence of 

unsound assumptions, Simmons presents no other means of identifying a 'bad' diagonal 

argument. He states also that "'there is nothing wrong with the reasoning of a bad 

diagonal argument - rather, what is at fault is the assumption that all of the diagonal 

components exist'" [SIM, p.29]. Moreover, it is a simple matter to convert a 'bad' 

diagonal argument into a 'good' one. A 'bad* diagonal argument can be converted into a 

direct or an indirect diagonal argument. To make it direct, replace the non-well-

determined component with one that is well-determined. To make it indirect, convert the 

unsound assumption into an assumption for later negation by reductio ad absurdum. 

Following the material on 'good' and 'bad' diagonal arguments, Simmons 

presents and analyzes many examples for discussion. We will consider a few of them in 

turn. Godel's first incompleteness theorem is analyzed as a direct diagonal argument. 

It is assumed that every predicate (what Godel calls a 'class sign') defines the set of 

numbers of which the predicate is true. In particular, the unprovability predicate, S. is 

assumed to be decidable (i.e. S is assumed to be provable of exactly those naturals of 

which it is true). (In general, a decidable predicate, S(x), is one such that for all natural 

numbers, x, either S(x) _L or ~S(x) _L.) S, along with the numbers of which it is 

1 8 Strictly speaking, Simmons does not argue via Godel's incompleteness theorems, but rather via the 
informal outline given at the beginning of Godel's 1931 paper [GOD1]. 
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true (or provable), functions very much as a countervalue. Under the constraint of 

omega-consistency, it follows that neither the Godel sentence, '[S;m]' , nor its negation. 

'~[S;m]' is provable. Thus S is not formally decidable in the object-language, although 

the same proof (i.e., Godel's incompleteness proof) supports the meta-linguistic decision 

that the Godel sentence is true. 

In Simmons' theory the set of all non-self-membered sets (the Russell set) is a 

countervalue for a bad diagonal argument. The unsound assumption is that the Russell 

set exists (i.e., that it is well-determined), and the conclusion by reductio is that this set 

does not exist. Simmons also considers a few more classic examples of diagonal 

argument. These include the unsolvability of the halting problem (which Simmons says 

is proved by a good diagonal argument); Georg Cantor's paradox of the universal set (a 

bad diagonal argument which is convertible to a good indirect diagonal argument); 

Cantor's powerset theorem (a good indirect diagonal argument); and the formal 

indefinability of the (informal) notion of total algorithmic function (a direct diagonal 

argument). 

Next Simmons argues an extension of his analysis of formal diagonal arguments 

to the informal cases of the semantic (i.e., natural language lingua characterica) 

paradoxes. It is via this extension that Simmons makes the (somewhat trifling) errors that 

I wish to highlight. Simmons' running example for these cases is the heterological 

paradox. (It is assumed that the reader is familiar with the basic form of this paradox. 

Here the SIDE is the set of the extensions of the English predicates.) These extensions 

are sets of individuals. TOP is the set of the predicate-signs of English; SIDE lists the 

domain, and the VALUES of the ARRAY - either, say, ' 0 ' or T - express set 
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membership.) Without significant discussion of the matter, Simmons proceeds to 

analyze, and eventually to solve, the heterological paradox via formal resources [SIM, 

pp.35-37]. In particular. Simmons invokes Tarski's indefinability theorem to explain 

heterologicality. However, it appears to me that the soundness of Simmons" assumption 

(that natural language heterologicality is accurately modeled via formal resources) is 

suspect. I hold this suspicion notwithstanding the fact that (as Simmons cites) Tarski 

weakly supports Simmons' assumption. 

Simmons considers the following as the possible treatments of the heterological 

paradox. First, we might implement a Tarskian hierarchy of languages. We thereby 

replace the general predicate, 'heterological' with a denumerable hierarchy of 

heterological predicates: 'heterologicalo', 'heterologicali', 'heterological' , and so on, 

such that neither 'heterological^' nor its negation is a member of the set of the 

heterological^ predicate-signs (for all natural numbers, n and m, such that m < n). (That 

is, the predicate-.s7g«, 'heterological^' is not a member of the extension of the predicate 

heterological^.) Second, we could deny that the heterological predicate has an extension, 

since if it did have extension, then that extension violates the law of the excluded middle. 

Third, it could be argued that although there is a concept of heterologicality for and in 

English, no English predicate expresses this concept. 

The second diagnosis is the closest to that which I advance in this essay. 

Commonly, from a violation of the law of non-contradiction one reasons via 'truth-gaps' 

or 'truth-gluts'. Thus when asked whether 'heterological' is heterological, we might 

answer, 'yes and no', or 'neither yes nor no' . Our account leans toward the notion of a 

truth-glut. However, it is not a glut of truth-values that we will employ, but rather a glut 
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of predicate-extensions. This kind of glut is easy to explain by distinguishing it from 

another possible notion of predicate-extension glut. For example, we might have a 

predicate-extension glut for a given predicate, P, by having (for some individual, \Q\) 

both \Q~\ G P and \~Q\ G P. The problem with this kind of glut is that it results in 

inconsistent predicate-extensions, via which contradiction may be easily derived. The 

alternative notion of a predicate-extension glut is to have multiple extensions. We might 

hold that the extensions of P are both {[Q0\ \QA \02\ ... [Qn\ ...} and {[Q0\ [Q\\ 

\QI\ ... \~Qn\, . . . } . But for the time being, we put this notion of an extension glut aside, 

and return brefly to Simmons' first and third diagnoses. 

Simmons' first and third diagnoses have the effect of imposing (or discovering) 

expressive limitations on natural language. In the first case, the general predicate 

'heterological' is eliminated in favour of a hierarchy of heterologicality predicates. (Of 

course, Tarski hierarchies are not unintuitive for mathematical logicians, but for present 

purposes, the more relevant opinion is that of ordinary people who know no formal 

logic.) The third diagnosis is even more unintuitive because it proposes that 

'heterological' is an inexpressable predicate, whereas this predicate is expressed by 

speakers of English, even though it cannot be consistently decidable. So the third 

diagnosis goes to deny a plain fact - that the speakers of natural language quite routinely 

use terms such as 'heterological', and that they successfully convey a meaning by the use 

of these terms. However, to be fair to the formal treatment of heterological predicates, it 

must be noted that the heterological paradox is not paradoxical without the supposition 

that there is one heterological predicate which applies to all possible cases of the 

predicate's use. But there is no compelling reason to think that this supposition is true, 
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for neither the formal heterological predicate, nor the natural. That is, it might be the 

case - in the first place - that heterology cannot be correctly modeled as if it were a 

single predicate which applies (or does not apply) universally to all predicates and/or 

words. There is confirmation of this view - that there is no universal heterological 

predicate - in Herzberger"s [HER1] where he considers many heterological predicates 

which have successively more and more restricted cases of application. 

It could be argued that the first and third diagnoses are effective explanations of. 

and suggest resolutions for, natural language predicates such as 'heterological'. But such 

an argument appears to depend on circular reasoning, since the principal reason for 

accepting this argument is just that it disarms the paradox of whether 'heterological' is 

heterological. There is no independent reason to believe that the only way to disarm the 

heterological paradox is along the lines of Simmons' first and third diagnoses, that is, 

along the lines that there is no universally applicable natural language heterological 

predicate. It is no solution of the paradoxes of natural language to assert that natural 

language is reducible to first-order logic, whether or not such assertions are supported by 

the supposition or discovery that natural language heterology predicates are not 

universally applicable. It cannot be the case that formal analysis alone proves that natural 

language is, or is subsumed within, the calculus rationator of first-order logic. It is 

apparent that mathematical logic is a strong and highly general means of modelling 

natural language, but even if such models enjoy stellar success, it does not follow that 

natural language is first-order logic. To put the matter differently, we have no proof that 

the best possible explanation of natural language paradox is the one provided by the 

calculus of first-order logic, even though it certainly provides the best existing account of 
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natural language. Even if parts of natural language can be successfully modelled 

separately from other parts, that is, by multiple mutually distinct formal models, the full 

(i.e., complete) modelling of natural language, by a single formal model may be too 

problematic to hope for. At the present, there is no such full model, although there is also 

no cause to believe that a full formal model of natural language is altogether impossible. 

Unfortunately, Simmons does not engage these considerations, and passes by the 

above challenge, that natural language is best understood as a system of first-order logic. 

Simmons' clearest support for the view that natural language is first-order logic is in the 

following single sentence. "These semantic paradoxes [i.e., the paradoxes of natural 

language] are generated by diagonal arguments in exactly the same way that the set-

theoretic paradoxes are generated. [SIM, p.37]" We can grant Simmons this claim 

without granting the unstated implication that the semantic paradoxes are set-theoretic. 

Nevertheless, it remains that natural language diagonal paradox is substantively 'parallel' 

with (i.e., similar to) the diagonal paradoxes of first-order logic. Accordingly, the 

resolutions of these kinds of paradox may also be substantively similar - it is possible (at 

least) that these kinds of paradox and their resolutions are identical. 

I have three criticisms of Simmons' theory of diagonal argument: (a), (b) and (c). 

(a) Simmons considers only those diagonal arguments which are formulable in (ZF) set 

theory or first-order logic. Thus, for Simmons to analyze natural language diagonal 

arguments via his theory of diagonal argument, he must assume that natural language 

diagonal arguments can be soundly and completely represented via set-theoretic 

resources. As has already been noted, this assumption may be sound, and at present, this 
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assumption provides the best existing theory of natural language and its paradoxes. 

Accordingly, Simmons" assumption is very well supported, for it is instrumental to the 

best existing theory of natural language. Moreover, Simmons" assumption does not 

commit us to the view that natural language actually is, or actually reduces to, the 

calculus of first-order logic. These calculus rationator models of natural language can 

serve as experimental confirmation of the thesis that natural language actually is calculus 

rationator, but not proof. Of course, such proof is not needed to justify the pursuit of 

calculus rationator theories of natural language, for all that Simmons must be committed 

to is the representability of natural language via a set-theoretic calculus. However the 

fact that there is (presently) no proof that natural language is a calculus leaves the 

question (infinitesimally) open, 'is natural language lingua actually formal calculus?' 

Before this question can be answered, there must be developed some successful non-

calculus account of natural language, or proof (of some semantically universal non-

calculus kind) that no such account can succeed. And it is unlikely that with existing 

analytic tools any account of natural language - whether via calculus or not - could be 

proved to be the same thing as natural language. A fortiori, it is unlikely that any 

professional logician would attempt to prove or disprove the claim that natural language 

actually is the same thing as, or is adequately and fully modelled by, this-or-that calculus 

or non-calculus account of natural language. 

(b) As has already been noted, Simmons does not distinguish between absurdity 

and contradiction. But this is an important distinction, as all of the (RA)s are absurdities 

but not contradictions. Those diagonal arguments which conclude with an (RA) are 

highly interesting, whereas those diagonal arguments which conclude with contradictions 
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are plainly unsound (i.e., if they are not treated by a dialethic system of paraconsistent 

logic) and thus (except for the job of figuring out how the proofs of these contradictions 

have gone wrong), they are also uninteresting. It is necessary for any general theory of 

diagonal argument to explain all diagonal argument, specifically including diagonal 

argument which concludes with an (RA). 

(c) For Simmons, one of the marks of a 'bad' diagonal argument is that it assumes 

the existence of a non-well-determined set (TOP, SIDE or ARRAY), but not toward a 

reductio argument. However, Simmons does not adequately explain the notion of 'well-

determinedness*. It is implied in several places that a non-well-determined set does not 

exist. Otherwise, Simmons only suggests that we adopt the notion of well-

determinedness from. say. ZF set theory. It is hard to resist the impression that Simmons 

wants to hold that all non-well-determined sets are altogether trivial and uninteresting. 

Whereas it makes sense to say that no non-well-determined sets exist in ZF, it does not 

immediately follow that no non-well-determined sets exist at all. Even if it actually is the 

case that no existing set is non-well-determined, there are other rigorous notions of 

sethood, such as 'non-well-founded' [ACZ2] and 'fuzzy' sethood {see [DID], [ K L I ] and 

[ROS]). Not every fuzzy or non-well-founded set is well-determined. Thus well-

determinedness is not a requisite of all interesting or rigorously considerable sets. It 

would be helpful here to have the necessary- and sufficient conditions of well-

determinedness, but Simmons does not state these conditions. Presumably, a set is well-

determined if and only if its membership is well-determined. In turn, a set's membership 

is well-determined if and only if for every object, a, of the domain, a is either 

determinately in or out (but not neither and not both) of the set. When a set is said to 
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'exist', this properly means that the set's membership is well-determined. (As an aside, it 

should be noted that when we say that this-or-that set exists, we use this word in a 

semantically restricted sense, such that the applicability of the word - 'exists' - is not 

universal. A well-determined set exists, but not everything which exists is a set. (For 

instance, cats and dogs exist.) And not everything which does not exist is a non-well-

determined set. (For example, unicorns do not exist, but are not sets of any kind.) 

But fuzzy sets do not satisfy even this presumed notion of well-determinedness. 

An object, w, might be '75% in' the fuzzy set, Z. In this case, w is ' 25% out' of Z. Thus 

w is both in and out of Z (though to different degrees), contrary to the above presumed 

notion of well-determinedness. In consequence of this, the fuzzy notion of sethood 

appears to be independent of the notion of well-determinedness, for otherwise, fuzzy 

sethood is a trivially inconsistent notion. Let alone the fact that not every fuzzy set is the 

same thing as, nor even the same kind of thing as, some one or many well-determined 

sets, it is not even the case that fuzzy sethood can be consistently described or modeled 

via the notion of well-determinedness, for otherwise it must again be the case that fuzzy 

sethood is an altogether incoherent notion. So there are (there exist) rigorous non-trivial 

notions of sethood which are not compatible with the notion of well-determinedness, 

such as the notions of non-well-founded and fuzzy sethood. 
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W E L L - D E T E R M I N E D N E S S A N D W E L L - D E F I N E D N E S S 

Simmons adds to the puzzle of the meaning of 'well-determined" when he 

considers the paradox of Jules Richard [RIC]. I will not reproduce Richard's paradox 

here, as it is likely to be well-known by the readers, and in any event, the details of 

Richard's paradox are not relevant at this point. What we will focus on is Richard's own 

diagnosis of his paradox - that the set (which Richard labels, 'E ') of those numbers 

which are defined by an expression of French is non-well-defined. (For Simmons, if a set 

is non-well-defined, then this is sufficient to conclude that it is non-well-determined.) 

According to Simmons, the problem with Richard's set of definitions, E, is that 'we lack 

a clear notion of definability' [SIM, p.28], but this is a somewhat abstracted diagnosis of 

the paradox. A closer diagnosis is to say that under the supposition that E is enumerable. 

E is inconsistent. 

To show that E's enumerability implies a contradiction, we reason as follows. 

First, we set the TOP to be the digit-places of the numbers defined by the members of E. 

(TOP will be the set of the natural numbers.) SIDE is the set E, and the ROWs of the 

ARRAY are the numbers defined. Now the French expression, G (the counter-diagonal 

value), is a member of E. but the number defined by G cannot occur at any ROW of the 

ARRAY. (I omit proof of this claim.) Otherwise, if the number defined by G is 

stipulated to occur at some ROW, then the value (number) of that ROW is inconsistent -

either the number paired with definition G is not the number defined by G, or else the 

number defined by G is not the counter-diagonal of the ARRAY. 

One might be tempted to 'solve' this paradox by stipulating that G is not a 

member of E. This solution would be endorsed by Simmons - it is given by an indirect 
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diagonal argument which assumes for reductio that G is a member of E. However, the 

more economical solution appears to be to hold that the set of the numbers defined by the 

members of E is non-enumerable. According to this solution, none of the ROWs of the 

ARRAY has the number defined by G. Nevertheless, G is an expression of French, and it 

can certainly be enumerated among the other members of E. But since the number 

defined by G can never occur as a ROW, it follows that the set of the numbers defined by 

the members of E is non-enumerable, for there must always be an 'extra' number, for we 

are always able to effectively define a counter-diagonal number. (It is noteworthy that 

the numeral-naming resources of French are significantly limited. However, as a natural 

language, French is expansible from within the French language in such a way that a 

French speaker will understand the expanded numeral-naming resources.) 

Unless it is argued that enumerability is a necessary condition on well-

determinedness, we may not conclude that the set of numbers defined by the members of 

E is non-well-determined. However, the ZF-notion of well-determinedness is not the 

only interesting one, and as has already been noted, the non-well-determinedness of E 

does not imply that E is altogether non-existent. All that must be granted is that the set of 

the numbers defined by the members of E is non-enumerable, and since there are many 

well-known non-enumerable sets (such as the set of the real numbers, or of the powerset 

of the natural numbers), it is no vitiation if we discover another. It remains as a vexing 

puzzle that although E is enumerable, and supposing that each member of E defines a 

single determinable number, the set of the defined numbers is non-enumerable. 

Ordinarily, the non-enumerability of a set amounts to its having uncountably many 

members, but I think that in the case of the set of numbers defined by E we should resist 
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this additional conclusion. In the first place, no expression could legitimately be a 

definition of a (single) number if it defined either no number or more than one number. 

Thus, under the supposition that every member of E defines a single number, the number 

of numbers defined by the members of E can be no greater than the number of members 

of E. In the second place, constructivist logicians will not grant that the non-

enumerability of a set implies that it actually has uncountably many members. 

Constructivist logicians will grant that there is no one-to-one onto function from the 

naturals to the set of numbers defined by E, but they will not grant that the non-existence 

of this function implies that there are more numbers defined by E than there are members 

ofE. 

It appears to me that the real problem with E is not that it is non-well-determined. 

For set-wise determinedness is a matter of set membership, and more specifically of the 

membership relation ( ' e ' ) . But the membership of E is not in question until we reason 

upon it that a finite expression of English (for Richard, French) actually fails to define a 

number. When we do reason that G defines no number, we do not seem to be reasoning 

upon the set E, but upon a different set. say, E'. G clearly defines a counter-diagonal 

number (which Richard labels, ' N ' ) for E, notwithstanding the fact that N could not be a 

member of, and simultaneously a counter-diagonal for, E. But when N is added to E, we 

get a different set of numbers, E'. G defines N and N is a counter diagonal for E, and so 

N is not a member of E. We may argue that since G does define a number (namely, N), 

G must be a member of all of the finite expressions which define a number. But when we 

add N to E. we obtain a new set of numbers, E' (such that E' = E u { N } ) . There is still a 

finite expression (say, G') which defines a counter-diagonal for E', say N' . Now, N' is 
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not a member of E', even though G' clearly defines N'. If we now add N' to E' we obtain 

yet another set of numbers (say E"), for which there is yet another finite expression (say 

G") which defines yet another counter diagonal number (say N") . We could continue 

with this reasoning ad infinitum, always failing to include the counter-diagonal number 

(N*) in the set of numbers (E*) in the terms of which N* is defined. It appears that what 

makes Richard's paradox a paradox is just that in this (above) way, E fails to pick out all 

the numbers which its members define. 

It is therefore clear that no ARRAY can include all the numbers definable by a 

finite expression, but this is not quite the same as saying that the set of the defined 

members is non-well-determined - for any set, E, of the finite expressions which define a 

number, there is a set N of the defined numbers, and the membership of N is easy to 

specify. (That is, since the number defined by any given member of E can be specified 

digit-by-digit, that number can be exactly specified.) 

The discussion above suggests a further comment concerning sets such as E and 

N, and expressions such as G. Note that G is self-referential, in the sense that the number 

defined by G is specified in terms of each member of N. Under the supposition that G e 

E, the number defined by G is one of the members of N. Now, we let r be the row 

number at which the number defined by G (let this number be g) appears. Then the value 

of r t h row is simultaneously the value of the counter-diagonal of N. So the digit of g is 

defined in terms of the digit of the number at row r. Thus, as (by hypothesis) g = r,'\\ 

follows that the r t h digit of g is defined in terms of the rlh digit of g. In this way, G is 

self-referential. 
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Observe now that, according to the expression G, the k digit of g is different 

from the Jcth digit of the (number at the) kih row of the ARRAY of N. So it is impossible 

for the digit of g to be the same as the rth digit of the rlh row of the ARRAY given by 

(the enumeration of) N. Accordingly, the (number at the) r row of the ARRAY cannot 

simultaneously be g. Thus, the expressive capacity for self-reference carries (or seems to 

carry) enough expressive power to allow us to reach beyond the limits of sets like N -

that is, to reach beyond the membership of sets like N. No matter what the membership 

of N may be, we may yet identify numbers which are not members of N. In particular, 

we may always reach beyond the membership of well-determined sets, which must have 

fixed memberships. This notion of 'reaching beyond" the membership of well-

determined set has an intuitive counterpart in an informal problem about the size of the 

universe. Supposing that the universe is bounded (as are well-determined sets), we may 

yet coherently ask, 'what lies beyond these boundaries?" The answer may be 'nothing', 

but then we might simply propel something past those boundaries - say, a misanthropic 

executive of some insurance agency - and then the answer to the question could be, 'a 

just place for an insurance executive to be' . (This appears to suppose that beyond the 

boundaries, there is empty space for the executive to fill, but even if there is no empty 

space beyond the universe's boundaries, and there is absolutely nothing - no space, no 

existence and no possibility - then this would seem to be an even better place for the 

executive to be.) But the problem remains, for we have not freed ourselves from the 

executive; by propelling him into his just place, we have only pushed the boundaries of 

the universe outward, and made it a little bigger than it was before - for now there is 

something beyond what were the boundaries of the universe. 
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CURRY SENTENCES, FIXED POINTS AND UNDECIDABLITY 

It is Godel sentences which are the better known examples of fixed points, and so 

one might wonder why I have chosen to reason according to Curry sentences instead. As 

neither Godel sentences nor provability predicates are essential to the arguments I want to 

make, it is actually advantageous to exclude them from our consideration. The problem 

with Godel sentences is that they are so well-known that, in using them, a writer can 

easily become distracted or engulfed by the voluminous literature surrounding Godel's 

1931 results. This literature runs the range from philosophical explorations, to technical 

outlines, to strictly formal proofs and extensions. The incompleteness theorems also have 

implications for mathematics, computer science, artificial intelligence, computational 

linguistics, and generally any formal theory in which the formal arithmetic is a sub-theory 

- that is, virtually all formal theories. 

The following treatment of Curry sentences and predicates is adopted from the 

treatment given to fixed points by Boolos and Jeffrey in their [B002 , pp. 170-172]. (For 

Curry's own treatment of this paradox via the A-calculus, see his short 1942 [CUR2].) 

Curry sentences, (CS). are formulas, C, such that, 

for an arbitrarily chosen sentence, Q. It is a simple matter to derive a contradiction from 

Curry's original version of his paradox runs as follows. 

(CS) C = ' C - > g ' , 

2. 
3. 
4. 
5, 
6. 

C -» C [Postulated tautology] 
C -> (C -> 0 [ 1, Rule of equality] 
(C -> (C -> 0 ) -> (C -» 0 [Postulated tautology] 
C -> Q [2, 3, modus ponem] 
C [4, Rule of equality] 
O [4,5, modus ponens] 
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(CP) Let = ' ~ C . Thus by (CS), ' C = 'C -> ~ C . (*) Suppose |--
C. Then |~ (C —> ~C). By modus ponens, |~ ~C. So if |~ C then 
| C - and thus |— (C -» ~ Q , by conditional proof. So |~ C. 
(The supposition at (*) is discharged.) And then | C, whence 

contradiction. 

(Read for (CP), 'Curry's paradox'.) 

Now we show that if L is consistent, then C is undecidable. 
Suppose |— C. Then by (CP), | C, whence contradiction. So if L is 
consistent, then \-l- C. 

Suppose |~ ~C. Then by (CP), |~ ~~C, whence contradiction. So if L is 
consistent, then ~C. 

Therefore, if L is consistent, then C and \-l- ~C. A fortiori, either L is 
inconsistent or C is an undecidable formula. 

Below, much is made of the fact that Curry sentences are diagonal expressions, in 

the sense that Curry sentences are (or are expressable as) fixed points. By arithmetizing 

L, we gain Godel quotes and disquotes J...L We define a fixed point on the 

predicate, 

(1) JxL Q, 

as a natural number, n, such that, 

(2a) n = rJ«L el-

Let there now be a predicate, C(x), which might be called a 'Curry predicate', such that 

[C(xj] = rixL-> Q\ Therefore, 

(2b) \C(n)\ = n, 
and, 

(2c) n = \C(n) Q\ 

It is assumed that there is a fixed point theorem for Curry predicates, and that via this 

theorem, the numeral of n can be effectively computed. 
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Note that Curry predicates appear to be distinct from the ordinary predicates. 

Ordinary predicates can be understood as functions which take objects (of the domain of 

L) to truth letters (i.e., to 't ' or ' f ) . By contrast, Curry predicates appear more as 

functions from formulas to formulas. (As a side comment, it seems likely that this 

difference in kinds of predicates is connected to the interesting fact that in Church's X-

calculus and Curry's combinatoric logic, Curry predicates can be expressed without the 

use of Godel-quotes.) 

Curry predicates fall within a more general kind of predicate, which we will call 

substitution predicates. A substitution predicate is any Z-formula, R, which is open at the 

place of a sub-formula of R, say S. For example, let R be the formula, iA v [B A Q ' . If 

we open R at the place of the sub-formula. B, then we get a substitution predicate, R': \4 

v (JxL A Q ' . (We take x to range over the natural numbers - i.e., those natural numbers 

which Godel-code Z-formulas.) 

Let n be the Godel number of the Z-formula T. Then R'(n) = 'A v (T A 

C)\ Provided that L has the resources to arithmetize its own syntax, any substitution 

predicate may be expressed in the object language. In the above example, R'{n) is an 

object-linguistic predicate which is logically equivalent to the formulas 'A v (Jw|_ A Q ' 

and 'A v (T A Q ' . That is, 

R'(n) (A v (ITL A C)) 
<r>(A V(TAQ). 

Because substitution predicates are expressable in the object language, the distinction 

between them and ordinary predicates need not be troublesome. As long as L has Godel 
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quotation, all of the substitution predicates are expressed by some of the ordinary 

predicates. 

We now proceed to construct an ARRAY in which Curry sentences will be 

analyzed. 

(A2) f 0 f 1 f 2 f 3 . . . 
sO | 1 0 1 1 . . . 
s i | 0 0 1 0 . . . 
s 2 | 1 1 0 1 . . . 
s 3 | 0 1 0 1 . . . 
. I . . . . 
. I . . . . 

SIDE = the set of all substitution predicates in L 
= { sO, s i , s2, s3 . . . . } 

TOP = the set of all formulas of L 
= {f0. f l . f2 , f3 , . . .} 

CELLS = { <0,0>, <0,1>, <1,0>, <0,2>, <1,1>....} 

= the set of all ordered pairs of natural numbers 

VALUES = {0, 1} 

We interpret the values of (A2) as follows. For all naturals i and j , «/./'» = 1 if and only if 

s/(Tf/l) is true, and otherwise, «ij» = 0. We also require that the values of (A2) obey the 

law of the excluded middle. Accordingly, the rows of the values of (A2) express the 

extensions of the members of SIDE. Since the values of (A2) (i.e., at the cells of (A2)) 

also express truth, the array expresses truth as if it were extensional. Thus (A2) can be 

understood as a test of the notion that truth is extensional. 

It is worthwhile to note that it is already well-known that truth-in-(the object 

language of)-Z is not extensional, leastways, not wherever the syntax of Z can be 

arithmetized. (Truth-in-L is extensional in the metalanguage - provided that 'true' is not 

also an object-linguistic predicate.) It amounts to much the same to say that truth-in-Z is 
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not extensional if L has the resources necessary for Godel-qotation. It is furthermore 

well-known that no truth predicate for L is decidable in L, in consequence of Tarski "s 

theorem of the undefinability of truth [TAR1]. And the undecidability of truth predicates 

is tantamount to their not being extensional. (In the present example, we expressly omit 

truth predicates and provability predicates from SIDE.) Yet (A2) goes to show the non-

extensionality of some members of SIDE in a different - and hopefully novel - way. 

For convenience, we define the rows of (A2) as follows. 

For all natural numbers, /, 

ROW/ = "«/.0» «z,l» «/,2» «/,3» 

We are now sufficiently prepared to form diagonal arguments in terms of (A2). The 

simplest such diagonal argument on (A2) is exemplified by Georg Cantor's famous proof 

of the uncountability of the real numbers. For this argument, we need specifications of 

the value of the "leading" diagonal (i.e., the diagonal from the top left cell of (A2) toward 

the bottom right), and its countervalue. D.VAL is the value of the leading diagonal, and 

C.VAL is the counter value. 

D.VAL = '«0,0» «1,1» «2,2» «3,3» ..." 
= ' 1 0 0 1 ..." 

C.VAL = '0' at digit-place x if «x,x» = '1', and 7 ' otherwise 
= '0 1 1 0 . . . ' 

(We write for the substitution predicates for D.VAL and C.VAL, 'so" and ' s r 

respectively.) We have already considered diagonal arguments of the form of (A2) and 

so we state only an outline of the present diagonal argument. We assume for reductio 

that SIDE includes all of the substitution predicates in L. But this cannot be so, since if it 

were, there must be some natural, n, such that ROWw = C.VAL. If ROWra = C.VAL, 
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then «n,n» = 0 if and only if «n,n» = 1. But this is a contradiction, and therefore, there is 

no such n, and a fortiori, sc is not a member of SIDE. 

To set the point aside, the above diagonal argument can be taken to show that 

there are uncountably many possible extensions for the substitution predicates of L. 

However, SIDE is countable, since every substitution predicate is a finite string of the 

basic symbols of L. These strings can then be ordered serially, first according to the 

length of a string, and then alphabetically within each length. (For convenience, we omit 

consideration of all those strings which do not express a substitution predicate.) In 

particular, sc is a finite string of the basic symbols of L, and thus it is expressed at some 

(finite) place in the serial ordering of the substitution predicates. Since every substitution 

predicate occurs at some finite place from the beginning of the list, the set of substitution 

predicates (i.e., SIDE) is countable. But it remains that the extension of sc cannot 

consistently appear as a ROW. 

In systems of mathematical logic, problems of this kind - i.e., those of counter-

diagonals such as sc - are already solved. In the solution via mathematical logic, sc is 

said to be undecidable or undefinable. The extensions of an undefinable predicate then 

pose no difficulty, because they are not accessible to mathematical logic, that is, because 

the language does not have enough predicate signs to name every possible predicate 

extension. In a loose sense, then, mathematical logic solves the problem of undefinable 

predicates via the observation that not every extension is picked out by some substitution 

predicate - that is, by observing that not every possible extension is definable, nor even 

nameable, by some substitution predicate. Yet mathematical logic's treatment of 

undefinable predicates preserves consistency while still providing a high degree of 
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expressability. And this is strong confirmation of the correctness of mathematical logic's 

treatment. 
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LEIBNIZIAN LANGUAGE 

The Leibnizian notion of language, developed below, is not drawn from Leibniz" 

logical work, but rather from his Discourse on Metaphysics (hereafter simply 'the 

Discourse"). The logic of the Discourse is furthermore not easy to uncover, for even if 

Leibniz did have a clear conception of his metaphysical logic, he certainly did not have 

the tools of contemporary formal logic. Without these tools, Leibniz can do little more 

than suggest the logical system of the Discourse. (The main tools which Leibniz lacks 

are those of set theory and the diagonal method of proof. The bulk of the other 

contemporary tools were developed in the context of Frege"s Begriffsschrift, including 

quantification theory, recursion theory and proof theory. But it is only the diagonal 

method which is relevant to the following discussion.) Because Leibniz did not know of 

diagonal proof, it might appear that he could hardly have had a clear notion of the 

Leibnizian notion of logic. But it is not at all unlikely that Leibniz could conceive of 

Leibnizian language. Leibniz was a highly talented deductive thinker - he created the 

infinitesimal calculus independently of Newton, and it is Leibniz* symbolism which is 

still used, rather than Newton's. Leibniz also conceived of actual infinities at a time 

when most thinkers could conceive only potential infinities. (Contemporary 

constructivist logicians still deny the existence of actual infinities, and there is good cause 

for this denial. But the constructivist denial does not preclude the utility - in non-

constructivist contexts - of supposing the existence of actual infinities.) Another 

important logical contribution attributed to Leibniz is the notion of a possible world. 

Besides the difficulty of extracting a notion of language from the Discourse, there 

are some others. First, the logic of the Discourse is ontological and it is particularly an 
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ontology of God and creation. Accordingly, the logic of the Discourse is not subject-

neutral, whereas contemporary logic is subject-neutral. Indeed, the subject-neutrality of 

first order logic is one of its strengths - a subject neutral logic can be employed to 

analyze (virtually) any semantic domain. Prima facie, however, the logic of the 

Discourse applies only to the metaphysics of God, or theology. Second, Leibniz employs 

God as an explanatory device, whereas some quite sophisticated philosophical analysis 

denies the existence of God. Russell went so far as to attempt to remove God from the 

Discourse, according to his supposition that Leibniz included God only so as to not 

contradict 'the prevailing opinions of his time'. But Russell's interpretation is deeply 

flawed, since whether or not God exists, and whether or not Leibniz believed that God 

exists, it remains that God is an instrumental component of the Discourse. Leibniz 

defines God very simply as the absolutely perfect being. The definition of God has an 

axiomatic role in the Discourse: it never changes, and virtually all the rest of Leibniz' 

metaphysics hangs on it. Third, the predicate/object distinction of contemporary logic is 

backwards from that of Leibniz. In contemporary logic, (with '<()' being a predicate, and 

'/V an object) '<f>(£)' means approximately, '/> is a ((>'. In the logic of the Discourse, the 

expression is more helpfully written, '/?(<)))", meaning approximately '<)> is a (predicate of) 

b\ Just as in contemporary logic, Leibniz conceives as a predicate and b as an object. 

Thus in contemporary logic, we take two objects, x and y, to be identical if. for all 

predicates, Z, Z(x) is true if and only if Z(y) is true. This is an expression of Leibniz' law. 

However, for his Discourse. Leibniz' law is properly, 'two predicates W and Z, are 

identical if and only if for all objects, x, x(W) is true if and only if x(Z) is true. The 

problem of this predicate/object reversal is not very serious, as it requires only a simple 
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re-conception of the distinction. (It is unclear at this point whether or not the two 

predicate/object distinctions are equivalent, such that anything accomplished via Leibniz' 

distinction can also be accomplished via the contemporary distinction. It would be 

interesting to explore this question, but it is not strongly relevant to this essay.) 

On the other hand, Leibniz employs some notions which approximate to key 

contemporary notions. Principally, these are the notions of decidability, analyticity and 

necessity. Furthermore, Leibniz employs consistency in two ways, both evocative of the 

role of consistency for first order logic. First, the predicates true of a substance must be 

consistent with each other - for no inconsistent substances can exist. (In first order logic, 

no inconsistent set of formulas has a model; that is, no inconsistent models exist.) This 

notion could be called intra-consistency. Second, all existing intra-consistent objects 

must be consistent with each other. This could be called inter-consistency. The need of 

intra-consistency is clear, as it corresponds tightly to the ancient principle of non

contradiction. The need of inter-consistency (which Leibniz calls 'compossibility') is 

somewhat less clear. Inter-consistency is given by Leibniz' argument that an intra-

consistent object exists if and only if the object is compossible with the other objects of a 

maximally perfect domain of objects. 

The logic of the Discourse includes logics of both human rationality and divine 

knowledge, but it does not strongly connect humanity with divinity. It is obvious that 

Leibniz violates the adage, 'dare not to ponder the mind of God', as he manages to say 

quite a lot about divine knowledge, but nevertheless, Leibniz fails to render divine 

knowledge intelligible to human rationality - as Leibniz himself indicates at several 

places. The disconnect between human rationality and divine knowledge is a disconnect 
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between kinds of understanding. For an explanation of this disconnect, Leibniz invokes a 

matter of infinity. Whereas God can conceive actual infinity 'in one intuition', humans 

cannot, and can work only with potential infinities. The incomprehensibility of divine 

knowledge by humans is perhaps the most critical problem facing the Discourse, since it 

greatly weakens its theodical impact. If human rationality and divine knowledge are too 

completely disconnected, then God becomes so different from humanity that He bears 

little or no relevance to humans, human values, successes and foibles. However, if we 

are prepared to accept the incomprehensibility of divine knowledge, then we need not 

propose that one system of logic characterizes both human rationality and divine 

knowledge. 

Indeed, there is high utility in the hypothesis that human logic and divine logic 

are two distinct (even disjoint) kinds of logic. We shall call this hypothesis the 'two 

languages hypothesis', or '(2LH)' for short. We will not be hereafter concerned to 

develop the logic of human rationality, except according to its distinctions from the 

divine logic. It is the divine logic which we will develop into the 'Leibnizian' notion of 

logic and language. 

The atomic components of the Discourse are the objects, which Leibniz calls the 

'substances'. A substance is uniquely determined by the collection of those predicates 

which are true of the substance. Thus the substances are not material; they are not even 

empirical. (For Leibniz, the substances are representers of the actual constituents of 

reality. So the substances are not material, but are more like minds, though these minds 

are in general simpler and more limited than a human's mind. Indeed, Leibniz is explicit 
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about this in a letter , where he says that there is no contradiction in supposing that there 

are two 'conflicting' substances, but only 'disharmony'.) For the collection of predicates 

true of a substance, Leibniz uses the term 'notion'. We will not use Leibniz' term since 

we have already used it in a different sense. Instead, we continue to use the term 

'extension' for what Leibniz calls a 'notion'. Put in more familiar terms, a substance is a 

set of predicates. It is unclear whether or not Leibniz would agree that a substance is a 

set. but the Discourse strongly suggests this view. We shall call this view the 'set-

substance analogy'. 

One reason for Leibniz to have denied the set-substance analogy is that he 

conceived the intra-wconsistent substances to be incoherent and thus non-existent, but 

contrariwise, it is not the case that for every inter-inconsistent pair of set-substances, X 

and Y, either X or Y is incoherent. That is, it does not follow from the fact that X and Y 

are inter-inconsistent that (at least) one of them is intra-inconsistent. Where X and Y are 

inter-inconsistent, Leibniz does say that one of them - or rather, one of their 

corresponding substances - does not exist, but here Leibniz conceives 'existence' as 'the 

actual existence of the substance, X or Y, in the world. Of course, the intra-inconsistent 

sets are also non-existent, but here there are two kinds of non-existence. If X is intra-

inconsistent, then it does not exist in the world. But then X is also non-existent as an 

abstraction. That is, X does not qualify as a set-substance because its membership is 

inconsistent, and thus X cannot be even a candidate for set-substance-hood, nor even for 

sethood. When it is said that some set-substance, X, exists, we take this to mean that even 

if X is inter-inconsistent with some other set, say Y - such that X does not exist in the 

world -Xmight still exist as an intra-consistent set. 

2 0 At present, I do not have a citation for this letter. 
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We now show that there are non-denumerably many substances in God's 

language. First, we assume that there are denumerably many predicates, and that they 

can be put into a list, as below. (For '(LP)' read 'the set of the listed predicates', and for 

'/V„ read 'the nlh predicate of the list'.) 

(LP) {p(),pi,p2.... } 

In the set-substance analogy, which may or may not be strongly supported by the 

Discourse, we allow every set of predicates to be a substance. Of course, not all such 

substances actually exist. For example, the set-substance analogy permits a substance 

with the predicates, "... is a (kind of) horse', '... cannot be harnessed', '... perceives and 

shuns evil ' , ' . . . is big and white and strong', ' . . . is magical', and '... has a single long horn 

growing from the forehead'. This is the substance of a unicorn, and of course, unicorns 

do not actually exist. But the set-substance analogy does not compel us to hold that there 

are actually-extant unicorn-substance-sets. Rather, all the set-substance analogy requires 

is that there exists an abstraction of the unicorn substance. Similarly, we say that the 

substance-set of the number 2, with predicates such as, '... is an even prime'. '... is 

between 1 and 3 ' , and so on, actually exists. The substance of 2 is an abstraction, but not 

merely so, for it actually exists as a term of the actually extant language of English. By 

contrast, the substance with the predicate '... is the second even prime' is a mere 

abstraction, and exists only as such. In this way. we can speak non-trivially of substances 

with impossible predicates such as '... is a square circle'. '... is the last natural number', 

'... is green and red all over', and so on. Thus the set of all the abstractly extant 

substances is just the set of all subsets of (LP). In the above assumption, every predicate 

is uniquely subscripted by a natural number. Accordingly, every set of predicates is 
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expressable by a subset of (NN). (This follows trivially from the fact that there is a total 

one-to-one onto function from (LP) to (NN).) Thus the substance-extension. 

{ P4, P&, P92, P3012 } 

is expressed by the subset of (NN), 

{ 4, 8,92,3012 }. 

Conversely, every subset of (NN) expresses a substance extension. It therefore follows 

that there are as many substance extensions as there are subsets of (NN). The set of all 

sub-sets of (NN) is the powerset of (NN). written,' p (NN) ' . (For the cardinality of a set, 

A - i.e., the number of members of A - we write "#(AY.) Now by Cantor's powerset 

theorem (which is a diagonally-proved result), it follows that #(NN) < #(p(NN)) . By 

definition, (NN) is denumerable, and thus p (NN) has more than denumerably many 

members. There are more members of p(NN) than there are members of (NN) - to wit, 

p (NN) is uncountable. 

In the context of the set-substance analogy, we now have it that there are non-

denumerably many substances, or at least, that there are potentially non-denumerably 

many substances. (The constraints imposed by intra- and inter-consistency might restrict 

the number of really possible substances to a merely denumerable quantity.) And it 

immediately follows that the deific logic has non-denumerably many truths. The 

insufficiency of human language to express deific language is a consequence of the fact 

that human language can have only denumerably many sentences. If there is only one 

truth per sentence, then human language can potentially express only denumerably many 

truths, and can actually express only a finite number of truths. 
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The language which Leibniz attributes to God. I have dubbed 'Leibnizian'. 

Nevertheless, Leibniz is able to use his theory of God's language to solve some of the 

most persistent problems about God. such as those of free choice, culpability for sin. the 

existence of evil, and the existence of God. While it is not possible to know exactly how 

Leibniz would explain God's language, it is clear that this language is supposed to be 

adequate to 'do' Leibniz' metaphysics. Via human language and within the limits of 

human understanding, we cannot 'do' metaphysics, and must accept the compromise of 

'doing' mere physics. It is certain that Leibniz would not have explained God's language 

as I propose below - for I will use contemporary logical resources for my proposal, and 

these resources were not available to Leibniz. In particular, Leibniz did not know the 

formal treatments of diagonal argument, fixed points or impredicative (self-referential) 

paradox. And of course, Leibniz did not know about Curry's paradox, in the terms of 

which I present the notion of Leibnizian language. Accordingly, 'Leibnizian language' is 

a mainly honorary appellation. 
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A ' L E I B N I Z I A N ' T R E A T M E N T O F C U R R Y ' S P A R A D O X 

Let sm be a Curry predicate; thus sm is also a substitution predicate. We write the 

extension of sm as follows. 

«m,0» «m,l» «m,2» ... 

As sm is a Curry predicate, there is a natural, n, such that sn is a Curry sentence. Thus 

«m,n» = 0 if and only if «m,n» = 1. (Proof is omitted.) We are just as well supported in 

saying that the extension of sm is, 

«m,0» «m, 1» «m,2» ... «m,(«-l)» 0 «m,(«+l)» ... (5a) 

as that it is, 

«m,0» «m,\» «m,2» ... «/«,(«-1)» 1 «m,(n+l)» ... (5b) 

For purposes of the following investigation, let us accordingly say that sm has at least two 

extensions, (5a) and (5b). It is apparent that in order for sm to actually have the two 

above extensions, we must violate the law of the excluded middle with respect to the 

requirement that each of the si may have exactly one extension. Allowing sm to have two 

extensions is counterproductive if each of the si must have exactly one extension. Indeed, 

if our present reasoning were expressed in a formal language such as L, no predicate has 

multiple extensions (except for the undecidable predicates, which either have no 

extension or an only partial extension). But we do not follow the one-extension-per-

predicate rule here. So we violate the law of the excluded middle with respect to 

predicate extensions, but we do not violate this law with respect to the cells of the array. 

That is, we still hold that (for all naturals, i and /) «ij» is 0 or 1, but not neither and not 

both. 
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It is well to note that even if we assert the excluded middle with respect to all the 

components of (A2), there will remain a contradiction which must be pacified in some 

way. If we propose to solve the treatment of sm's extension by allowing sm to have 

multiple extensions, which is a counterintuitive notion, we are still not straying too far 

from the solutions by Russell, Godel and others, since they also forward counterintuitive 

claims (or rather, these claims were once thought to be counterintuitive). On the other 

hand, our treatment of sm's extension cannot accurately be characterized as a solution -

since it is not at once obvious how to rigorously and consistently apply multiple 

extensions to single predicates. (So far as I know, there is no literature in which treats 

'Leibnizian' language as a language of ambiguity, but of course there is a great deal of 

literature on ambiguity and ambiguity logic. 2 1 I am hopeful that that at least some of this 

literature has helpful or compelling suggestions of how to 'fill out' the Leibnizian notion 

of language which I only begin to develop here.) Nor will a rigorous and consistent 

solution be attempted. Rather, we use the notion of assigning multiple extensions as a 

diagnostic tool. The conclusion we will attempt to reach is that although there are only 

countably many predicates, the fact that they cannot all be listed together with their 

extensions is indicative of the uncountability of the extensions of the substitution 

predicates. Some substitution predicates, then, are diagonalized out of the (denumerable) 

set of substitution predicates, in the terms of which the diagonal predicate is defined. So 

even though the expressions of a language are countable, the extensions of the counter-

diagonal expressions cannot be listed one-to-one with the expressions of the substitution 

Owing to time constraints, I have not yet built a bibliography of this material. However, any further 
development of the themes of this (my) essay must include a substantive consideration of the literature on 
ambiguity. 
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sentences in general. Thus a countable language may (if self-arithmetized) have an 

irreducably uncountable set of predicate extensions. 

Let us illustrate the matter with a new array, (A3). 

fO f 1 f2 f 3 . . . 
sO 1 0 1 1 . . . 
s i 0 0 1 0 . . . 
s2 1 1 0 1 . . . 
s 3 0 1 0 1 . . . 

As the set of all substitution predicates of L (i.e., SIDE of (A3)) is denumerable, there is a 

natural number, p, such that sp is a Curry predicate. The set of all the well-formed-

formulas of L (i.e.. TOP of (A3)) is also denumerable. Included in TOP are infinitely 

many Curry sentences. We list some of the Curry sentences below. 

C(q) such that q = \C(q)~] 
C(q') such that q' = [C(q) a C(q'j\ 
C{q") such that q" = [C(q) a C(q') a C(q"j] 

and so on. for all formulas C(qx), and for x, a string of x-many primes (with x e NN). 

Clearly, there are denumerably many Curry sentences. We add this detail to (A3), 

yielding (A4). 

(A4) fO f l . . C (g )= fa . . C ( q , ) = f b . . C ( g " ) = f c . . 
s O | 1 0 . . 1 . . 1 . . 0 
s i | 0 0 . . 1 . . 0 . . 0 

s p | «p , 0» «p , 1» . . «p , a» . . «p , h» . . « p , c» 

As sp is a Curry predicate and as each of the values «p,y» (for fy one of C(q), C(g'), and 

so on) is a Curry sentence, it follows that the values «p,a», «p,b», «p,c», and so on, are all 

inconsistent. That is, for every «p,y» (such that fy is a Curry sentence) it may be proved 
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that «p,y»=0 if and only if «p.y»=\. Let us now simplify (A4), so that TOP lists only the 

Curry sentences, csO, csl , cs2, and so on. 

csO C S 1 cs2 c s3 
sO | 1 0 1 1 
s i I 
. 1 

1 0 1 1 

. 1 
s p | [p ,0] [p , l ] [p ,2 ] [p,3] 

There are now uncountably many extensions for sp in (A5). The set of all extensions for 

sp is the set of all infinite strings of Os and 1 s. (The proof of this - that the set of all 

infinite strings of Os and Is is uncountable - is already easy to see and is not reproduced 

here.) Finally, as sp has uncountably many extensions, the set of all extensions of SIDE 

is uncountable. 
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L E I B N I Z I A N L A N G U A G E , F O R M A L L Y 

The main concepts of Leibnizian language are defined as follows. 

P = The set of all the predicates. (It is assumed that P is denumerable, 

though it might be (as I think, probably is) uncountable. It is also 

assumed that the logical properties of P-as-denumerable hold 

monotonically valid within the logical properties of P-as-

uncountable. It is a consequence of these two assumptions that 

the arguments below are not made unsound by re-interpreting 

them for P-as-uncountable.) 

po, pu pi, ••• The predicates themselves. These are also sometimes 

referred to collectively as 'the pt\ The fact that the pt are listable 

in the way above follows from the assumption that P is 

denumerable. is used as the name of the X t h predicate. 

S - The Leibnizian 'universe' - the set of all the (abstractly extant) 

substances. As every subset of P is the extension of a substance, 

S = p (P) = { all sets, Q, such that Q^P } . 

so, s\, sj.... The substances themselves, sometimes referred to 

collectively as 'the s/. '.sy is used as the name of the X t h 

substance. 

lsx(py)) = The semantic valuation of the formula, '^(p^)' - one of the 

truth-letters, T and ' F ' . 
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(Here again is a place where the literature would illuminate my essay, but which 

literature I have not (yet) researched. I refer to Alexius Meinong's existence/subsistence 

distinction. According to this distinction, a 'golden mountain* does not exist, but does 

subsist, and as a subsistent entity, we may talk meaningfully about the mountain and the 

gold of which it is composed.) 

One version of substance-comprehension. ' S C - a close cousin of set-

comprehension - and two versions of the principle of the excluded middle ( 'EMI ' and 

'EM2') for Leibnizian language: 

(SC) Corresponding to every intuitively comprehensible substance-

extension, there is an actual (abstract) substance. For example, 

the substance of 'truth' is comprehensible as the set of all true 

instances of the schema, 'Sx(pyy. 

(SC) is treated as if it were true, notwithstanding any possible arguments contra. But the 

truth of (SC) is not provided by mere fiat - for we have a good meta-theoretical reason to 

hold truth for (SC). We must preserve consistency with Leibniz' ideas, or fail to describe 

a genuinely Leibnizian notion of language. For suppose, contra (SC), that some intuition 

of a substance fails to consistently define a substance-extension. For example, the 

membership of the Russell set is inconsistent or non-existent. If there is a 'Russell 

substance', then it too has an inconsistent extension. Of course, there are trivially-

inconsistent substance-extensions, such as those of a 'square circle' or a 'married 

bachelor'. Clearly, there are no empirically-extant square circles or married bachelors, 

and thus, there are no such substances either. But it is a different matter to conclude that 
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an inconsistent substance is non-existent altogether. No inconsistent substance has 

empirical existence, but it does exist as an abstraction. This is not an unfamiliar notion 

of existence. Hereafter, ' a exists" means ' a exists as an abstraction'. We note 

furthermore that the set-substance-analogy requires that every subset of the set of 

predicates is a substance-as-abstraction, even when its membership is inconsistent. (An 

inconsistent membership of a substance, E. occurs whenever there is a predicate, <j), such 

that we can reason either. 

(a) both (|> e E and ~<|) e E, or, 

(b) both <j) e E and <j> i E. 

Note that the inconsistency of (a) is among predicates, whereas that of (b) is among 

substance-extensions.) 

The law of the excluded middle does not in general hold true for Leibnizian 

language, unless (SC) is false. Two notions of the excluded middle, (EMa) and (EMb). 

which correspond with the two notions, (a) and (b), of substance-inconsistency, above. 

(EMa) For all substances sx and predicates py, 
either py e sx or ~py e sx. 

(EMb) For all substances sx and predicates py, 
either py e sx or py £ sx. 

\$x(py)\ = { T ifp y e sx, 
{ 

{F otherwise. 

At this point we must make a distinction among substance-names which is 

peculiar to Leibnizian language. Leibniz" metaphysical logic is treated throughout the 

Discourse as working differently for God than for humans. In particular, God knows the 

membership of all substances for every predicate. (We say that, in this sense, God knows 
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every substance 'to infinity'.) Humans, on the other hand, can generally know the 

membership of a substance only finitely - that is, for a finite number of predicates. Of 

course, humans can know some substances to infinity - for a few trivial examples, there 

are the substances of all the even-numbered predicates, the empty substance and the 

'universal' substance, which has every predicate. Hereafter, we represent a substance, 

say sm, which is known only finitely, up to say, the nth predicate, by, '5,,,"'. Similarly, a 

substance (the m^) w-hich is known to infinity is represented by, \vm*'. The distinction 

between the finitely- and infinitely-known substances enables us to express a notion of 

predicate-extension conflation. We define the conflation of two substances by a 

substance name as follows. 

For every finitely-known substance, s, there are rri and m" such that sd 

conflates sr with Srfj" if and only if, 

(1) q>n;and, 

(2) eitherp q e s$' andp q £ s$", 

or pq £ s$' and pq e s$": and, 

(3) Sfrl' and Sjf}" are identical with Sm up to and including 
predicate p„. 

We can now identify an undecidable substance, namely, the 'truth-substance', or 

ST. It is a tricky task to have a predicate be an expression of a given truth while at the 

same time being a predicate true of sr, as the Leibnizian subject/predicate distinction 

requires. Once this task has been accomplished, the formal definition of sj will be 

ungainly, whereas a simpler (but not exactly Leibnizian) notion of ST will suffice. 

100 



Accordingly, we use the following simplified notion of the truth-substance. The 

simplified notion of ST requires that a truth-expressing predicate be written with 

subscripts for both a substance and a predicate. Thus the truth-expressing predicates will 

be written as, "pxy, where x is the subscript of a substance and y is the subscript of a 

predicate. p x y is taken to express the formula, sx(py), or the sentence "py is a predicate of 

sx . Note that every truth-predicate, p x y , is identical to some other singly-indexed 

predicate, p z . To match a truth predicate with its singly-indexed equivalent, we employ a 

function, say / , which takes ordered pairs of natural numbers to natural numbers. That is. 

/ i s a total one-to-one function from NNxNN into NN. One function like / i s suggested 

by the Godel-coding function, viz.: 

Pz = px,y if and only if z =2X x 3y. 

According to the simplified notion of the 'substance of truth', ST, 

ST= {Px,y\Py € Sx } . 

Similarly, the 'substance of falsehood' is Sf, 

SF= {Px,y\Py £ $x}- (1) 

Let us now set x = m, and note that the formula, 'py £ Sm has exactly one free (subscript-) 

variable, y . ('py g Sm is a kind of substitution predicate.) We now define a fixed point on 

the formula, 'py g sm\ as a subscript, n. such that p„ = p m M . (Proof that there actually is 

an n such that p n =pm>n is omitted, in the assumption that there is an instance of the fixed 

point theorem for the formula, 'py g sm\) Now consider the formula, 'py g sp, and a 

fixed point on it, q, such that p q =pF,q-
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We now reason as follows. Suppose p q e sp. Then as p q = ppq, p F q e sp. Then 

by (\),pq <£ SF, whence contradiction. Now suppose p q <£ sp. Then by (l),pp>q e sp. But 

as p q = pp.q, it follows that p q e sp, whence contradiction. So p q e sF if and only if p q i 

Sp. 

In mathematical logic, when confronted by such a contradiction, one reasons 

according to some paradox-pacifying device, some of which we have already considered. 

(These include, for example, Russell's type theory and Tarski's predicate hierarchies.) It 

might be observed that the definition of sg is impredicative, in such a way that Russell's 

vicious circle principle is violated, and sg is accordingly not admissible in Russell's 

(ramified) type theory. 

In its extension to Leibnizian language, Russell's principle forces us to say either 

that sg is not a substance (even though it is a subset of P), or else that no subset of P is the 

extension of the intuitive definition of sg. But there is a third option. According to the 

hypothesis above, we may understand the p t and the Sj to be conflationary, understood 

under the restraint imposed by the finitude of all our calculations. (That is, let us not 

suppose that all the memberships of all the st are completely determined, simply because 

a name or definition is applied, for the definitions are also conflationary.) Some 

extensions are definable digit-by-digit to infinity, e.g., 1111111... or 1010101010... 

Other extensions are simply not yet computed (such that distant digits - say, the 

l̂ooooooyh ^jgji 0 f n ^ o r gj-g n o t computable within the next, say, two trillion years. So as 

sg conflates an uncountable infinity of substances, we may suppose (for the time-being, at 

least) that the extension of sg is not the countervalue of the extension of ~sg. (This 

appears as a double negative, and a trivial notion for that reason.) But I do not propose to 

102 



treat the extensions of sg and ~sg classically. I deny the law of double negation (as do 

also intuitionist logicians) with respect to the extensions of the substances. It is not 

always the case that px e sy if and only if px g ~sy. Of course, this also goes to deny the 

excluded middle for Leibnizian language. 

We can suppose that sg conflates two extensions sg • and Sg", such that pt e sg% 

and pi <£ sg". And 5^'and sg "are not known to differ with respect to any predicate other 

than PJ. Accordingly, Sg(pi) can be said true in the choice of sg = sg>. And ~Sgip,) can be 

said true in the choice of sg = sg». But if we force sg to have either pt e sg or pt <£ sg, 

then we have both. Thus, we should not think that sg can ever be completely resolved 

(for all predicates). sg must always conflate sg>and sg», for otherwise, the membership 

of sg is inconsistent. Of course, this means that - technically - sg cannot qualify as a 

Leibnizian substance, for if it is any subset of P, then it conflates the membership of pt 

with its non-membership. 

But this disqualification (of sg from substance-hood) need not be a problem. 

Leibniz has already said that only God knows the complete membership of a substance -

since whereas God can, humans cannot know the membership of all substances. (Even 

where the Vo-string is known for all digit-places, we will eventually not know the 

predicate which corresponds to some distant digit-place.) Because humans cannot know 

the complete membership of a substance, all of those substances are ambiguous as to the 

membership of some substances. So human analysis of substance must conflate (in the 

sense of being ambiguous among) some of the substances. Usually, we do not know 

which extensions are conflated by the human notion of a given substance. In general, 
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there are always some conflated extensions, which we cannot access. Let us call the sorts 

of extension-conflations the expressive conflations - conflations due to the incapacity of 

humans to even name all of the substances. 

However, via reasoning according to paradoxical fixed points, we can analyze a 

different kind of ambiguity. This second mode of conflation is due to the fact that 

substances such as sg cannot have only one subset of P as its extension - because if it did 

have a single extension, then it must be inconsistent as to the membership of pt. I 

propose that we interpret the inconsistency of sg's extension as a symptom of ambiguity. 

In the context of these comments, when Sgip,) is true, this is because sg is conflated with 

sg', and pt e sg>. When sg(pi) is false, this is because sg is conflated with sg», and pt g 

sg". Clearly, sg> * sg». Also clearly, it is no contradiction for an object, say a, to be a 

member of one set, say B, and to not be a member of another set, say C. Thusly, in the 

hypothesis that some substances conflate a (possibly transfinite) number of extensions, 

the human proof of the paradox, though it has the form of a contradiction, need not entail 

inconsistency. Once de-conflated, the paradoxical conclusion, 

Sg(pd <-» ~sg(pd 

resolves to 

Sg'ipd <-> -Sg-ipt), 

which is not the form of a contradiction. 

Finally, the substance of truth, ST, need not imply a contradiction. Rather, sr 

conflates (infinitely) many extensions. The liar sentence is true in some extensions, say 

ST', and false in others, say ST". Thus, with the liar predicate being pi, we obtain, 
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ST'(PL) <-> ~$T-(PL), 

which is not a contradiction. In this way, paradox is pacified. 
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