286 research outputs found

    Observing Success in the Pi-Calculus

    Get PDF
    A contextual semantics - defined in terms of successful termination and may- and should-convergence - is analyzed in the synchronous pi-calculus with replication and a constant Stop to denote success. The contextual ordering is analyzed, some nontrivial process equivalences are proved, and proof tools for showing contextual equivalences are provided. Among them are a context lemma and new notions of sound applicative similarities for may- and should-convergence. A further result is that contextual equivalence in the pi-calculus with Stop conservatively extends barbed testing equivalence in the (Stop-free) pi-calculus and thus results on contextual equivalence can be transferred to the (Stop-free) pi-calculus with barbed testing equivalence

    Deriving Barbed Bisimulations for Bigraphical Reactive Systems

    Get PDF
    We study the definition of a general abstract notion of barbed bisimilarity for reactive systems on bigraphs. More precisely, given a bigraphical reactive system, we define the corresponding barbs from the contextual labels given by the IPO construction, in a general and systematic way. These barbs correspond to observe which names on the interface are actually involved in reactions (and how). As examples, we apply this construction to the (bigraphical representation of the) pi-calculus and of Mobile Ambients, and compare the resulting barbed equivalences with those previously known for these calculi

    Trees from Functions as Processes

    Get PDF
    Levy-Longo Trees and Bohm Trees are the best known tree structures on the {\lambda}-calculus. We give general conditions under which an encoding of the {\lambda}-calculus into the {\pi}-calculus is sound and complete with respect to such trees. We apply these conditions to various encodings of the call-by-name {\lambda}-calculus, showing how the two kinds of tree can be obtained by varying the behavioural equivalence adopted in the {\pi}-calculus and/or the encoding

    Characteristic Bisimulation for Higher-Order Session Processes

    Get PDF
    Characterising contextual equivalence is a long-standing issue for higher-order (process) languages. In the setting of a higher-order pi-calculus with sessions, we develop characteristic bisimilarity, a typed bisimilarity which fully characterises contextual equivalence. To our knowledge, ours is the first characterisation of its kind. Using simple values inhabiting (session) types, our approach distinguishes from untyped methods for characterising contextual equivalence in higher-order processes: we show that observing as inputs only a precise finite set of higher-order values suffices to reason about higher-order session processes. We demonstrate how characteristic bisimilarity can be used to justify optimisations in session protocols with mobile code communication

    Reversible Barbed Congruence on Configuration Structures

    Get PDF
    A standard contextual equivalence for process algebras is strong barbed congruence. Configuration structures are a denotational semantics for processes in which one can define equivalences that are more discriminating, i.e. that distinguish the denotation of terms equated by barbed congruence. Hereditary history preserving bisimulation (HHPB) is such a relation. We define a strong back and forth barbed congruence using a reversible process algebra and show that the relation induced by the back and forth congruence is equivalent to HHPB, providing a contextual characterization of HHPB.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Observational equivalences for linear logic CC languages

    Full text link
    Linear logic Concurrent Constraint programming (LCC) is an extension of concurrent constraint programming (CC) where the constraint system is based on Girard's linear logic instead of the classical logic. In this paper we address the problem of program equivalence for this programming framework. For this purpose, we present a structural operational semantics for LCC based on a label transition system and investigate different notions of observational equivalences inspired by the state of art of process algebras. Then, we demonstrate that the asynchronous \pi-calculus can be viewed as simple syntactical restrictions of LCC. Finally we show LCC observational equivalences can be transposed straightforwardly to classical Concurrent Constraint languages and Constraint Handling Rules, and investigate the resulting equivalences.Comment: 17 page

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page
    • …
    corecore