511 research outputs found

    Dynamic edge-caching for mobile users: minimising inter-AS traffic by moving cloud services and VMs

    Get PDF
    In recent years, Cloud technology has revolutionized the way services are delivered to end-users. The advent of truly mobile computing in the form of smart phones and tablets has also driven the demand for Cloud resources in order to compensate for the inherent lack of local resources on these devices. Furthermore, modern mobile devices are equipped with multiple network interfaces and in combination with the rapid deployment of wireless networks, it is expected that they will always have Internet connectivity and access to Cloud resources. In this paper we will focus on traffic management for interactive multimedia services accessed by a mobile user by means of dynamic migration of a Virtual Machine. Network performance measurements are taken from a network of virtualization-enabled hosts that perform live migrations of a Virtual Machine which hosts multimedia content. The data is used as input to an equation that determines whether a migration would be beneficial in terms of traffic localization based on a user's mobility characteristics and network usage patterns. The contribution of this paper lies in the proposed mechanism of managing traffic for interactive services in the context of mobile cloud computing. This helps alleviate the increased network costs introduced by dynamic migrations driven by Quality of Service parameters and may result in increased network traffic for the benefit of improved QoS

    Software-Driven and Virtualized Architectures for Scalable 5G Networks

    Full text link
    In this dissertation, we argue that it is essential to rearchitect 4G cellular core networks–sitting between the Internet and the radio access network–to meet the scalability, performance, and flexibility requirements of 5G networks. Today, there is a growing consensus among operators and research community that software-defined networking (SDN), network function virtualization (NFV), and mobile edge computing (MEC) paradigms will be the key ingredients of the next-generation cellular networks. Motivated by these trends, we design and optimize three core network architectures, SoftMoW, SoftBox, and SkyCore, for different network scales, objectives, and conditions. SoftMoW provides global control over nationwide core networks with the ultimate goal of enabling new routing and mobility optimizations. SoftBox attempts to enhance policy enforcement in statewide core networks to enable low-latency, signaling-efficient, and customized services for mobile devices. Sky- Core is aimed at realizing a compact core network for citywide UAV-based radio networks that are going to serve first responders in the future. Network slicing techniques make it possible to deploy these solutions on the same infrastructure in parallel. To better support mobility and provide verifiable security, these architectures can use an addressing scheme that separates network locations and identities with self-certifying, flat and non-aggregatable address components. To benefit the proposed architectures, we designed a high-speed and memory-efficient router, called Caesar, for this type of addressing schemePHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146130/1/moradi_1.pd

    Cost and Latency Optimized Edge Computing Platform

    Get PDF
    Latency-critical applications, e.g., automated and assisted driving services, can now be deployed in fog or edge computing environments, offloading energy-consuming tasks from end devices. Besides the proximity, though, the edge computing platform must provide the necessary operation techniques in order to avoid added delays by all means. In this paper, we propose an integrated edge platform that comprises orchestration methods with such objectives, in terms of handling the deployment of both functions and data. We show how the integration of the function orchestration solution with the adaptive data placement of a distributed key–value store can lead to decreased end-to-end latency even when the mobility of end devices creates a dynamic set of requirements. Along with the necessary monitoring features, the proposed edge platform is capable of serving the nomad users of novel applications with low latency requirements. We showcase this capability in several scenarios, in which we articulate the end-to-end latency performance of our platform by comparing delay measurements with the benchmark of a Redis-based setup lacking the adaptive nature of data orchestration. Our results prove that the stringent delay requisites necessitate the close integration that we present in this paper: functions and data must be orchestrated in sync in order to fully exploit the potential that the proximity of edge resources enables

    Colony: Parallel functions as a service on the cloud-edge continuum

    Get PDF
    Although smart devices markets are increasing their sales figures, their computing capabilities are not sufficient to provide good-enough-quality services. This paper proposes a solution to organize the devices within the Cloud-Edge Continuum in such a way that each one, as an autonomous individual –Agent–, processes events/data on its embedded compute resources while offering its computing capacity to the rest of the infrastructure in a Function-as-a-Service manner. Unlike other FaaS solutions, the described approach proposes to transparently convert the logic of such functions into task-based workflows backing on task-based programming models; thus, agents hosting the execution of the method generate the corresponding workflow and offloading part of the workload onto other agents to improve the overall service performance. On our prototype, the function-to-workflow transformation is performed by COMPSs; thus, developers can efficiently code applications of any of the three envisaged computing scenarios – sense-process-actuate, streaming and batch processing – throughout the whole Cloud-Edge Continuum without struggling with different frameworks specifically designed for each of them.This work has been supported by the Spanish Government (PID2019-107255GB), by Generalitat de Catalunya (contract 2014-SGR-1051), and by the European Commission through the Horizon 2020 Research and Innovation program under Grant Agreement No. 101016577 (AI-SPRINT project).Peer ReviewedPostprint (author's final draft

    Storage systems for mobile-cloud applications

    Get PDF
    Mobile devices have become the major computing platform in todays world. However, some apps on mobile devices still suffer from insufficient computing and energy resources. A key solution is to offload resource-demanding computing tasks from mobile devices to the cloud. This leads to a scenario where computing tasks in the same application run concurrently on both the mobile device and the cloud. This dissertation aims to ensure that the tasks in a mobile app that employs offloading can access and share files concurrently on the mobile and the cloud in a manner that is efficient, consistent, and transparent to locations. Existing distributed file systems and network file systems do not satisfy these requirements. Furthermore, current offloading platforms either do not support efficient file access for offloaded tasks or do not offload tasks with file accesses. The first part of the dissertation addresses this issue by designing and implementing an application-level file system named Overlay File System (OFS). OFS assumes a cloud surrogate is paired with each mobile device for task and storage offloading. To achieve high efficiency, OFS maintains and buffers local copies of data sets on both the surrogate and the mobile device. OFS ensures consistency and guarantees that all the reads get the latest data. To effectively reduce the network traffic and the execution delay, OFS uses a delayed-update mechanism, which combines write-invalidate and write-update policies. To guarantee location transparency, OFS creates a unified view of file data. The research tests OFS on Android OS with a real mobile application and real mobile user traces. Extensive experiments show that OFS can effectively support consistent file accesses from computation tasks, no matter where they run. In addition, OFS can effectively reduce both file access latency and network traffic incurred by file accesses. While OFS allows offloaded tasks to access the required files in a consistent and transparent manner, file accesses by offloaded tasks can be further improved. Instead of retrieving the required files from its associated mobile device, a surrogate can discover and retrieve identical or similar file(s) from the surrogates belonging to other users to meet its needs. This is based on two observations: 1) multiple users have the same or similar files, e.g., shared files or images/videos of same object; 2) the need for a certain file content in mobile apps can usually be described by context features of the content, e.g., location, objects in an image, etc.; thus, any file with the required context features can be used to satisfy the need. Since files may be retrieved from surrogates, this solution improves latency and saves wireless bandwidth and power on mobile devices. The second part of the dissertation proposes and develops a Context-Aware File Discovery Service (CAFDS) that implements the idea described above. CAFDS uses a self-organizing map and k-means clustering to classify files into file groups based on file contexts. It then uses an enhanced decision tree to locate and retrieve files based on the file contexts defined by apps. To support diverse file discovery demands from various mobile apps, CAFDS allows apps to add new file contexts and to update existing file contexts dynamically, without affecting the discovery process. To evaluate the effectiveness of CAFDS, the research has implemented a prototype on Android and Linux. The performance of CAFDS was tested against Chord, a DHT based lookup scheme, and SPOON, a P2P file sharing system. The experiments show that CAFDS provides lower end-to-end latency for file search than Chord and SPOON, while providing similar scalability to Chord

    Enabling Scalable and Sustainable Softwarized 5G Environments

    Get PDF
    The fifth generation of telecommunication systems (5G) is foreseen to play a fundamental role in our socio-economic growth by supporting various and radically new vertical applications (such as Industry 4.0, eHealth, Smart Cities/Electrical Grids, to name a few), as a one-fits-all technology that is enabled by emerging softwarization solutions \u2013 specifically, the Fog, Multi-access Edge Computing (MEC), Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) paradigms. Notwithstanding the notable potential of the aforementioned technologies, a number of open issues still need to be addressed to ensure their complete rollout. This thesis is particularly developed towards addressing the scalability and sustainability issues in softwarized 5G environments through contributions in three research axes: a) Infrastructure Modeling and Analytics, b) Network Slicing and Mobility Management, and c) Network/Services Management and Control. The main contributions include a model-based analytics approach for real-time workload profiling and estimation of network key performance indicators (KPIs) in NFV infrastructures (NFVIs), as well as a SDN-based multi-clustering approach to scale geo-distributed virtual tenant networks (VTNs) and to support seamless user/service mobility; building on these, solutions to the problems of resource consolidation, service migration, and load balancing are also developed in the context of 5G. All in all, this generally entails the adoption of Stochastic Models, Mathematical Programming, Queueing Theory, Graph Theory and Team Theory principles, in the context of Green Networking, NFV and SDN

    Hipster: hybrid task manager for latency-critical cloud workloads

    Get PDF
    In 2013, U. S. data centers accounted for 2.2% of the country's total electricity consumption, a figure that is projected to increase rapidly over the next decade. Many important workloads are interactive, and they demand strict levels of quality-of-service (QoS) to meet user expectations, making it challenging to reduce power consumption due to increasing performance demands. This paper introduces Hipster, a technique that combines heuristics and reinforcement learning to manage latency-critical workloads. Hipster's goal is to improve resource efficiency in data centers while respecting the QoS of the latency-critical workloads. Hipster achieves its goal by exploring heterogeneous multi-cores and dynamic voltage and frequency scaling (DVFS). To improve data center utilization and make best usage of the available resources, Hipster can dynamically assign remaining cores to batch workloads without violating the QoS constraints for the latency-critical workloads. We perform experiments using a 64-bit ARM big.LITTLE platform, and show that, compared to prior work, Hipster improves the QoS guarantee for Web-Search from 80% to 96%, and for Memcached from 92% to 99%, while reducing the energy consumption by up to 18%.Peer ReviewedPostprint (author's final draft
    • …
    corecore