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Abstract. Although smart devices markets are increasing their sales
figures; their computing capabilities are not sufficient to provide good-
enough-quality services. This paper proposes a solution to organize the
devices within the Cloud-Edge Continuum in such a way that each one, as
an autonomous individual –Agent–, processes events/data on its embed-
ded compute resources while offering its computing capacity to the rest of
the infrastructure in a Function-as-a-Service manner. Unlike other FaaS
solutions, the described approach proposes to transparently convert the
logic of such functions into task-based workflows backing on task-based
programming models; thus, agents hosting the execution of the method
generate the corresponding workflow and offloading part of the work-
load onto other agents to improve the overall service performance. On
our prototype, the function-to-workflow transformation is performed by
COMPSs; thus, developers can efficiently code applications of any of the
three envisaged computing scenarios – sense-process-actuate, streaming
and batch processing – throughout the whole Cloud-Edge Continuum
without struggling with different frameworks specifically designed for
each of them.

Keywords: Edge · Fog · Cloud · Compute Continuum · Distributed
Systems · Programming model · Runtime system · Serverless · Function-
as-a-Service · Stream-processing · Task-based Workflow.

1 Introduction

Embedding computing and networking capabilities into everyday objects is a
growing trend; smart devices markets – e.g., phones, cameras, cars or speak-
ers – are rapidly increasing their sales. Since the computing power available
on them is often not sufficient to process the information they collect and pro-
vide a good-enough-quality service, such devices must cooperate in distributed
infrastructures to share the hosting and processing of data.

In recent years, the Fog has raised as a complement to the established Cloud
model by bringing down the compute and storage capabilities to the Edge. This
mitigates the economic expenses and the network-related issues – high latency
and low bandwidth – associated with the Cloud and enables new service op-
portunities relying only on on-premise, commodity devices. Mobile devices are
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a non-negligible source of resources; involving them in such platforms leads to
an increase of the available computing power. However, mobility introduces dy-
namism to the infrastructure but also unreliability requiring to change the com-
putational model to stateless and serverless.

Major Cloud providers relegate the Edge to be a serf of the Cloud neglect-
ing all the intermediate devices within the network infrastructure. We envisage
infrastructures not exclusively building on the Fog or the Cloud but exploit-
ing the whole Cloud-Edge continuum by combining both paradigms. This work
elevates the Fog as an autonomous peer of the Cloud functioning even when dis-
connected from it. This paper describes Colony, a framework for organizing the
devices within the Cloud-Edge continuum resembling organic colonies: commu-
nities of several individuals closely associated to achieve a higher purpose. Each
member of the colony – Agent – is an autonomous individual capable of process-
ing information independently that can establish relations with other agents to
create new colonies or to participate into already-existing ones. Agents offer the
colony their embedded resources to execute functions in a serverless, stateless
manner; in exchange, they receive a platform where to offload their computing
workload achieving lower response times and power consumption.

In such environments, we identify three possible scenarios that require com-
putation. On the first one, known as sense-process-actuate, the infrastructure
provides a proper response to an event detected on one of its sensors. A second
scenario is stream processing : sensors continuously produce data to be processed
in real-time. Besides computations triggered by data or infrastructure changes,
users can also request synchronous executions directly to the platform or submit
jobs to a workload manager; this third scenario, named batch processing, is gen-
erally used for launching data analytics applications to generate new knowledge
out of the information collected by or stored in the infrastructure. As discussed
in detail in Section 6, developers must use different state-of-the-art frameworks
to tackle each of these scenarios. To contribute to the current state-of-the art,
we propose a single solution that tackles the three scenarios by taking a task-
based approach. Converting the complex logic of the computation into an hybrid
workflow – supporting both atomic and continuous-processing tasks – allows to
parallelize and distribute the workload across the whole platform. For testing
purposes and without loss of generality, our prototype leverages on COMPSs [27,
30] to make this conversion, and we modified the COMPSs runtime to delegate
the execution of the nested tasks onto Colony. Nevertheless, other programming
models following a task-based approach, such as Swift [34] or Kepler [15], could
also be integrated in the framework with the appropriate glue software.

In summary, the contribution of this work is to bring together parallel pro-
gramming, Function-as-a-Service (FaaS) and the Compute Continuum. For doing
so, this paper describes Colony: a framework to create compute infrastructures
following the recommendations of the OpenFog Consortium [19]. In it, each de-
vice offers its embedded computing resources to host the execution of functions
in a service manner; however, by converting the logic of such functions into
hybrid workflows – composed of atomic and persistent tasks –, the device can
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share the workload with the rest of the platform to achieve an efficient, paral-
lel, distributed execution on any of the three computing scenarios. To validate
the viability of the described design, a prototype leveraging on the COMPSs
programming model is evaluated on two use cases.

The article continues by casting a glance over the components involved in
our solution, and sections 3 and 4 respectively discuss the internals of an agent
and how colonies are organized. Section 5 evaluates two use cases to validate the
solution. Finally, Section 6 introduces related work and Section 7 presents the
conclusions and identifies potential research lines to complete it.

2 Problem Statement and Solution Overview

The Cloud-Edge continuum is a distributed computing environment composed
of a wide variety of devices going from resource-scarce single-board computers –
e.g., Raspberry Pi – to the powerful servers that compose the datacenters sup-
porting a cloud. Applications cannot assume any feature from the device where
they run. Those devices closer to the application end user – within a PAN or
LAN range – are often purpose-specific and dedicated to a single user. However,
the further the device gets from the user, the more likely it is to be shared among
multiple users and applications. For dealing with software heterogeneity and re-
source multi-tenancy, Colony proposes virtualizing the software environment
either as a virtual machine or a container. Such environments would ensure that
the necessary software is available on the devices running the application, and
provide isolation from other applications running on the device.

For the sake of performance, applications can exploit hardware hetero-
geneity by running part of their logic on GPUs, FPGAs or other accelera-
tors embedded on the devices. The underlying infrastructure might be com-
posed of a large number of nodes, and centralizing the hardware-awareness of a
dynamically-changing infrastructure on a single device might become a signifi-
cant burden at computational and networking level. Therefore, each node must
be able to work in a standalone manner and run the computation efficiently
using all the computing devices embedded in it. For that purpose, each node
of the infrastructure hosts a persistent service or agent that provides a Func-
tions as a Service (FaaS) interface to execute serverless functions using the
computational resources available on the device.

To overcome resource scarcity on edge devices, agent interaction is enabled
to offload task executions onto other agents either on other edge devices,
the Cloud or at any other device from an intermediate tier of the infrastructure.
A typical feature of edge devices worth highlighting is mobility; mobile devices
are likely to join and leave the infrastructure at any time with or without prior
notice. Thus, agents should be aware of that and take appropriate measures to
exploit all the computing resources at their best while preventing any failure
due to the departure of any device. Both, functions and tasks, are computations
totally independent of the state of the agent. All the necessary data bound to
the computation is shipped along with the request – or at least a source from
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where to fetch the value –; thus, tasks can run on any agent of the infrastruc-
ture in a serverless manner. When new nodes join in the infrastructure, agents
previously composing the infrastructure can offload onto them part of their com-
putation, and vice versa. Conversely, when nodes leave the infrastructure, the
fault-tolerance mechanisms must ensure the ongoing operations completion
by resubmitting to still-available resources those tasks offloaded onto the no-
longer-available agents.

Unlike traditional distributed computing, applications no longer have a single
entry point – the main method –; events may arise anywhere in the infrastruc-
ture and invoke a handler function to provide the appropriate response. When
a node triggers a new execution, it contacts its local agent which orchestrates
the effective completion of the operation. By leveraging on task-based paral-
lel programming models, the logic of such functions can be automatically con-
verted into workflows composed of several other isolated compute units (tasks)
whose parallel execution can exploit the whole infrastructure when delegated
onto other agents through Colony. Thus, if the programming model supports
both atomic tasks and persistent tasks with continuous input/output, Colony
can handle applications requiring any of the three aforementioned computing
patterns: sense-process-actuate, stream processing, batch processing.

3 Agent Architecture

Agents are the cornerstone of the Colony platform. The purpose of an agent is
to offer an interface where to request the execution of functions that will run
either on the computing resources embedded on the host device or transparently
offloaded onto other nodes on the Cloud-Edge Continuum. The entry-point to the
agent is its API which offers methods for requesting the execution of a function
with a certain parameter values and performing resource pool modifications.

Users or applications request a function execution detailing the logic to exe-
cute, the resource requirements to run the task, the dependencies with previously
submitted tasks and the sources where to fetch the data involved in the oper-
ation. Upon the reception of a request, the API directly invokes the Colony
runtime system. The goal of this runtime is to handle the asynchronous execu-
tion of tasks on a pool of resources. To achieve its purpose, the runtime has four
main components. The first one, the Resource Manager (RM), keeps track of
the computing resources – either embedded on the device or on remote nodes
– currently available. Upon the detection of a change in the resource pool, the
RM notifies all the other components so they react to the change. If dynamic
resource provisioning is enabled, this component should also adapt dynamically
the reserved resources to the current workload. The second component is the
Task Scheduler (TS), which picks the resources and time lapse to host the exe-
cution of each tasks while meeting dependencies among them and guaranteeing
the exclusivity of the assigned resources. For that purpose, it keeps track of the
available resources in each computing device and a statistical analysis of previ-
ous executions of each function. The default policy pursues exploiting the data
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locality; it assigns new ready (with no pending dependencies) tasks to the idle
resource having more data values on its local storage; if all the resources are busy,
it will pick the ready task with more data values on the node at the moment of
the resources release. However, TS policies are designed in a plug-in style to allow
the extension of the runtime with application/infrastructure-specific policies; the
policy used by the TS is selected at agent boot time. The Data Manager (DM),
the third piece of the runtime, establishes a data sharing mechanism across the
whole infrastructure to fetch the necessary input data to run the task locally
and publish the results. For guaranteeing that the involved data values remain
available even on network disruption situations, the DM leverages on distributed
persistent storage solutions like dataClay [28]. The last component, the Execu-
tion Engine (EE), handles the execution of tasks on the resources. When the TS
decides to offload a task to a remote agent, the EE forwards the function exe-
cution request to the API of the remote agent. Conversely, if the TS determines
that the local computing devices will host the execution of a task, the EE fetches
from the DM all the necessary data missing in the node, launches the execution
according to its description and the assigned resources, and publishes the task
results on the DM. It is during the task execution when the task-based program-
ming models take the scene and convert the logic of the method into a workflow.
When the selected PM detects a task, instead of invoking the corresponding
runtime, it refers to the TS of the local Agent to create a new task indicating
the operation, the involved data and the dependencies that the new task has
with previously submitted tasks. The Colony runtime will handle the execution
of such task in the same manner as if it were an external request and the TS
will guarantee that dependencies with previous tasks are considered. Thus, the
expressiveness limitations to convert a function into a workflow depend on the
specific programming model selection rather of being a limitation of Colony on
its own. Figure 1 depicts the control flow followed by a function throughout the
runtime components when the TS decides to host the execution locally (leftmost
part of the figure) and to offload the execution onto a remote agent (rightmost
part of the figure).

To control the pool of resources, the Agent API offers three methods which
notify the desired change to the RM. To increase the pool with more resources,
the Agent API offers a method to indicate the name of the new node and its
computing capabilities. If the node is already a part of the pool, the agent
expands it with the provided resources. To remove resources from the pool, the
API offers two methods. The immediate removal method aims to support the
disconnection of a remote device, the agent assumes that all the non-completed
tasks offloaded onto the node have failed and resubmits them onto other nodes
of the infrastructure. On the contrary, the gentle removal method backs the case
when the system administrator wants to reduce the usage of a remote node. In
this case, the agent does not submit more tasks to the to-be-removed device until
there are enough idle resources to satisfy the removal request; then, it releases
the resources and continues to use the remaining ones, if any.
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Fig. 1: Function/Task flow throughout the Colony’s runtime components

4 Colony Organization

For infrastructures with a small number of devices, a single Colony agent can in-
dividually orchestrate the execution of the tasks on any of the other agents com-
posing the infrastructure. However, the bigger the infrastructure is, the higher
the complexity of the scheduling problem becomes and its computational bur-
den is more likely to grow bigger than the actual computational load of the
application and simply not fit in resource-scarce devices.

To overcome such problem, this article proposes to reduce the amount of
scheduling options by gathering resources under the concept of a colony. Colonies
are disjoint groups of agents that share their workload; one of the colony members
acts as the interaction gateway and orchestrates the workload execution within
the colony. Thus, agents no longer consider all the other agents to run the task;
it only picks a gateway agent to whom delegate the problem. This gateway agent
organizes the agents within the colony in sub-colonies and considers the rest of
the infrastructure as a new colony where the first agent acts as the gateway. Thus,
a computation triggered by an agent could run on any node of the infrastructure
without adding a significant overhead due to the scheduling.

Combining this serverless capability of Colony with the ability to decompose
the logic of the computation into several tasks allows any request to use as many
resources as needed. If the tablet at home colony of the example illustrated in
Figure 2 requires some computation, its local agent could use the embedded
processor to host the function execution. After converting it into a workflow,
it offloads part of the execution of its inner tasks onto the agent on the fog-
enabled – with compute capabilities – Wi-Fi router. In turn, the Wi-Fi router
agent decides which part of the computation hosts, which part it offloads onto
the laptop, and which part submits to the remote parts of the platform – through
the agent on a cluster server. As with the previous agent, the server can host
part of the execution, forward it to the other nodes of the cluster or send it
to the smartphone or the server in the office. Regardless the device being the
source of computation requests, the computing load can be distributed across
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Fig. 2: Colony deployment example connecting devices from four different envi-
ronments: those at user’s home (laptop, tablet, and other devices connected to
the Wi-Fi), those at user’s office (the laptop and an on-premise server), those
moving with the user (smartphone and wearables) and a remote cluster with
large computing power. Each of these environments becomes a colony hierarchi-
cally organized and the gateway in the cluster acts as nexus among colonies.

the entire infrastructure and thus executed by any node. The decisions taken by
each agent will depend on the scheduling policy configured by the device owner.

Mobile devices may join or leave the infrastructure unexpectedly. When a
device – e.g., a smartphone –, which might be part of a colony – the personal
colony of the example –, joins the infrastructure, it attaches to an already-
member device – for instance, the Wi-Fi router of the home colony. From the
smartphone point of view, the whole infrastructure becomes a colony where to
offload tasks through the agent on the router; for those devices already part of
the infrastructure, the incoming device/colony becomes a new subcolony also
available through the router. Likewise, when a device disconnects, the commu-
nication link between two agents breaks and they both lose the corresponding
colonies. To ensure that ongoing computations finish, the involved agents need
to re-schedule the execution of the unfinished tasks already offloaded onto the
lost colony and assign them to still-available agents.

Currently, the platform topology is manually set up by the platform ad-
ministrator and can be changed dynamically using the resource management
operations of the Agent API. Good criteria to build the topology are the sta-
bility and latency of the network; this ensures that agents will always try to
offload tasks onto nearby resources, on the fog, rather than submitting them to
the Cloud achieving a higher performance. Besides, the system remains usable
even when the cloud is unavailable because of network disruptions.

5 Usage Scenarios and Evaluation

This section presents the results of the tests conducted to evaluate the viability of
the described proposal. For that purpose, a prototype leveraging on the COMPSs
programming model – whose runtime has been adapted to delegate the task
execution onto Colony – has been developed. The implemented tests are based
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on two use cases aiming two different platforms. The first use case, a service
running a classification model, aims to test the whole Cloud-Edge Continuum.
The training of the model (batch processing scenario) runs on the Cloud part and
allows to evaluate the performance and scalability of the solution; by submitting
simultaneous user requests simulating readings from multiple sensors (sense-
process-actuate scenario), we evaluate the workload balancing. The second use
case, a real-time video analysis, demonstrates the streaming support within Fog
environment without support from the Cloud.

5.1 Baseline Technology - COMP Superscalar (COMPSs)

COMP Superscalar (COMPSs) is a framework to ease the development of paral-
lel, distributed applications. The core of the framework is its programming model
with which developers write their code in a sequential, infrastructure-unaware
manner. At execution time, a runtime system decomposes the application into
computing units (tasks) and orchestrates their executions on a distributed plat-
form guaranteeing the sequential consistency of the code.

COMPSs’ main characteristic is that developers code applications using plain
Java/Python/C++ as if the code was to be run on a single-core computer. For
the runtime system to detect the inherent tasks, application developers need
to select, using annotations or decorators depending on the language, a set of
methods whose invocations become tasks to be executed asynchronously and,
potentially, in an out-of-order manner.

To guarantee the sequential consistency of the code, the runtime system
monitors the data values accessed by each task – the arguments, callee object
and results of the method invocation – to find dependencies among them. For the
runtime to better-exploit the application parallelism, developers need to describe
how the method operates (reads, generates or updates) on each data value by
indicating its directionality (IN, OUT, INOUT, respectively). Such data values
can be either files, primitive types, objects or even streams.

Upon the arrival of a new task execution request, the COMPSs runtime anal-
yses which data values are being accessed and which operations the task performs
on them. With that information, it detects the dependencies with other tasks
accessing the same values and constructs a task dependency graph. Once all the
accesses of the task have been registered, the runtime schedules its execution
on the available resources guaranteeing the sequential consistency of the orig-
inal code. Thus, COMPSs is able to convert the logic of any function into an
hybrid task-based workflow - data-flow and support the three compute scenarios
identified in Section 1.

Conceptually, COMPSs tasks and Colony function execution requests are
similar; both refer to serverless, stateless executions; Thus, native support for the
COMPSs programming model within Colony is straightforward modifying the
COMPSs runtime system to delegate task executions onto the Colony runtime.
Upon the detection of a task and the registration of all the data accesses to
find dependencies with previous tasks, the COMPSs runtime calls the Colony
runtime to handle the execution of the tasks on the underlying platform as if
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it were a regular invocation of a function. Colony’s TaskScheduler runtime will
consider the detected dependencies and guarantee the sequential consistency of
the tasks and, therefore, of the user code following the COMPSs model.

5.2 Classification Service

This first use case deploys a classification service on the Cloud-Edge continuum.
On the one hand, the training of such model allows us to validate the system
running compute-heavy applications on a batch-processing scenario; usually, the
service administrator or a periodic task triggers the training of the model on
the Cloud. On the other hand, having nodes on the infrastructure acting as
sensors allows us to validate the behaviour of the system on sense-process-actuate
scenarios. These sensors submit their lectures to classify them and react to it.

The algorithm supporting the model, RandomForest, constructs a set of in-
dividual decision-trees, also known as estimators, each classifying a given input
into classes based on decisions taken in a random order. The final classification
of the model is the aggregate of the classification of all the estimators; thus, the
accuracy of the model depends on the number of estimators composing it. The
training of the estimators are independent from each other, each one consisting
of two tasks: a first one that selects a combination of 30,000 random samples
from the training set, and a second one that builds the decision tree.
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Fig. 3: Testbed for the sense-process-actuate experiment

To conduct the experiment, we deployed a 3-level infrastructure – depicted in
Figure 3 – on Marenostrum, a 3,456-node (48 servers of 72 nodes) supercomputer
where each node has two 24-core Intel Xeon Platinum 8160 and 98 GB of main
memory. Each node hosts the execution of an agent managing its 48 cores. All
the agents within the same server join together as a colony and one of them acts
as the gateway; in turn, one of these gateway nodes becomes the interconnection
point among all the server colonies (darker gray on the figure). Two of these
colonies are configured to act as the Fog parts of the deployment: one resource-
rich node with 24 CPU cores (green) and four Edge nodes with 4 CPUs each.
While four edge devices (depicted in blue) play a passive role and only provide
computing power to their respective colony, two edge devices of each colony
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(depicted in red) act as sensors submitting compute requests to its local agent.
To produce the workload, these nodes run an instance of jMeter [5].
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Fig. 4: RandomForest’s training time

Charts in Figure 4 depict the results of the scalability tests for the training of
the model varying to the number of agents on the Cloud. Figure 4a illustrates the
evolution of the training time when changing the number of resources to train
a fixed-size model demonstrating the benefits of parallelization: the larger the
infrastructure grows, the shorter the execution time becomes. Figure 4b presents
the efficiency (ratio between the speedup compared to the 1-agent execution
of the same-size problem and the size of the infrastructure) of the execution
revealing some scalability problems. Up to 2048 estimators, the performance loss
can be explained mainly by the load imbalance. The larger the infrastructure
is, the more resources remain idle waiting for others to complete the training. A
second cause is the overhead of COMPSs when detecting new tasks. COMPSs
sequentially detects tasks as the main code runs; the task creation delays build
up. Training one estimator requires about 7 seconds (running both tasks). To
keep the whole infrastructure busy on the 1,536 cores scenario, COMPSs must
generate a task every 2.25 ms. The granularity of the tasks is too fine given the
size of the infrastructure.

Beyond 2048 estimators, the performance loss is explained by the implemen-
tation of the Task Scheduler; it has a single thread that handles in a FIFO
basis both new task requests and end of task notifications. Hence, several end of
task notifications may stack up before a new task request leaving several nodes
idle waiting for a new task. Likewise, many new task request might accumulate
in front of the task end notification; thus, despite the resources are idle, the
scheduler is not aware of that and does not offload more work to the node.

For the second experiment, regarding the processing submitted by the sen-
sors, the cloud part of the infrastructure has 6 nodes on the same server. Figures
5a, 5b and 5c depict the evolution of the number of requests being handled by
each device when 10, 100 and 300 users submit requests at an average pace of
1 request per second (with a random deviation of ± 500 ms following Gaussian
distribution) during 15 minutes.
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Fig. 5: Number of tasks executed on each node. The colors of the bars match the
color from the respective node as depicted in Figure 3.

On the 10-user case, the Edge nodes receiving the request are able to host
all the workload; only 3 requests out of 36,000 were offloaded to the Fog nodes
on peak-load moments. The average response time was 104 ms. On the 100-
user case, the nodes cannot assume the whole workload and offload onto their
respective Fog colony which handles most of the requests. On Colony1, one of
the edge nodes receives the requests at a periodic pace; thus, it is able to assume
the whole workload (90,000 requests) by itself. On the other edge node, the
requests arrive in bursts, and the scheduler decides to offload tasks to the Fog
node (58,432). On Colony2, both edge nodes also receive the request in bursts,
and both offload tasks to the Fog node which actually processes up to 116,041
requests. This Fog node cannot assume the whole workload and decides to offload
part of it to the idle edge nodes (3,738 and 3,142 requests, respectively). The
average response time is also 104 ms. Finally, on the last case, with 300 users,
both colonies cannot assume the workload locally and a large portion of the
requests (464,999/1,080,000) are offloaded onto the Cloud. The average response
time slightly increases to 109 ms.

5.3 Real-time Video Processing

On the real-time video processing use case, the application obtains a video-
stream directly from a camera, processes each of the frames to identify the people
in it, and maintains an updated report with stats of their possible identifications.

Figure 6 depicts the workflow of the use case deployed on a 2-device testbed
composed of a Raspberry Pi (rPi) equipped with a camera and a laptop. The
watch task is a persistent task that obtains the input from a webcam and pub-
lishes frames onto a stream. By defining constraints for the task, the agent
ensures that the task runs on a camera-enabled device (rPi). For each frame,
a detectPeople task finds the areas in the picture containing a person using a
pre-trained Caffe implementation of Google’s MobileNet Single-Shot Detector
DNN 1. Each detection triggers the execution of an IdentifyPerson task. Identi-
fyPerson detects the face of the person – using a DNN provided by OpenCV [18]

1 https://github.com/chuanqi305/MobileNet-SSD



12 Francesc Lordan, Daniele Lezzi, and Rosa M. Badia

watch

frame1 frame2 frame3

detect
People

identify
Person

update
Report

identify
Person

detect
People

identify
Person

update
Report

identify
Person

detect
People

identify
Person

update
Report

identify
Person

... ... ...

Fig. 6: Testbed and workflow of the video-processing use case

–, aligns the image by recognizing 68 landmarks on the face, and extracts 128
features – using OpenFace’s [16] nn4.small2 DNN. Finally, a SVM classification 2

– identifies the person. Finally, the update report task relates the people detected
on the current frame with people appearing on the previous ones – tracking –
and the individual information is aggregated into a Report object that can be
queried in parallel.

The average time to process a frame containing one person on the rPi is 41,293
ms – detectPeople lasts 18,920 ms and IdentifyPerson, 22,339 ms – providing a
framerate of 0.024 fps. As baseline for the comparison on distributed systems,
we implemented the service as two different applications communicating through
a TCP Socket. The application running on the rPi obtains the images from
the webcam, serializes the frame and ships it through the socket; thus, the rPi
produces a frame every 453 ms. The second application, running on the laptop,
reads from the socket and processes the frame (132 ms). Thus, hand-tuned code
is able to process 2.14 fps. Finally, we conducted the test running the service
taskified with COMPSs obtaining a processing rate of 2.79 fps. The analysis of
the time elapsed on each part of the application revealed that the performance
difference between both versions lies in the frame serialization, which shrinks
from 120 ms to 20 ms. Both tests run with the same JVM and they use the same
code to perform the operation; therefore, we attribute this difference to the JVM
internal behavior – probably, JNI verifications – or to OS memory management.

6 Related Work

This papers aims to bring together Function-as-a-Service (FaaS) with the Com-
puting Continuum. Regarding FaaS, Zimki was the first framework to offer
serverless computing in 2005; in 2014, Amazon introduced Lambda [3], becoming
the first large cloud service provider to offer FaaS, followed by Google and Mi-
crosoft that respectively launched Cloud Functions [8] and Azure Functions [6].
In 2016, IBM announced an open-source FaaS project, OpenWhisk [13], that
allowed FaaS deployments on private clouds; Microsoft adapted its solution to
support the execution on on-premise cloud. OpenWhisk broke the vendor lock-
in by supporting the execution on container managers and IBM branched the

2 model trained with 10,000 images of 125 people from CASIA-WebFace facial dataset
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project to release Cloud Functions [10]. Two other open-source alternatives to
OpenWhisk are OpenFaaS [12], supported by VMWare, and Fn[14], backed by
Oracle.

For economic reasons – it is cheaper to provision the resources directly as
cloud instances –, all major FaaS solutions limit the execution time for each func-
tion inhibiting long-lasting (batch-processing) computations. To develop such
computations, cloud vendors usually offer programming solutions perfectly inte-
grated in their platforms; otherwise, developers manually set up the cluster to
use a myriad of distributed programming models. For instance, to develop work-
flows and scientific computing, they can turn to Swift [34], COMPSs [27], Ke-
pler [15], Taverna [23] or Pegasus [21]; on the data analytics field, MapReduce [20]
and other solutions building on it – such as Twister [22] or Apache Spark [35].
Likewise, major cloud providers also offer their own stream-processing alterna-
tives such as Amazon Data Pipeline [1]. However, developers frequently use the
stream-oriented low-level frameworks, such as Apache Kafka [25], or dataflow
models like Apache Storm [32], Apache Spark-Streaming [36] or Heron [26].
Apache Beam [4], COMPSs [30] and Twister2 [24] have gone a step further
aiming to merge both workflows and dataflows in one single solution.

Towards exploiting the Compute Continuum, all the solutions from the ma-
jor cloud vendors (Amazon IoT Greengrass [2], Microsoft Azure IOT Edge [7]
and Google Cloud IOT [9]) maintain the cloud as a necessary part but allow
the manual deployment of function executions on Edge devices. The Osmosis
framework [33] also follows this top-down approach. The developer defines mi-
croElements (MELs) and describes how these MELs relate to each other. From
the cloud, Osmosis orchestrates MEL deployments and migrations taking into
account resource availability, each MEL’s QoS and the infrastructure topology.

As of today, for all major Cloud providers the Edge is totally reliant on the
Cloud; it should become autonomous and function even disconnected from the
Cloud, and, in that direction, a lot of research is being done. Selimi et al. [31]
attack the problem from a bottom-up approach and propose a framework for
placing cloud services in Community Networks. Ramachandran et al. identified
the challenges to provide a peer-to-peer standing for the Edge to the Cloud [29].
Departing from a real-world case of study, Beckman et al. [17] diagnose the
technical shortcomings to implement a solution; they consider Twister2 for data
analytics and indicate the necessary implementations.

The novelty of the work presented in this paper is to bring together pro-
grammability, FaaS and Compute Continuum. Unlike other frameworks target-
ting the Continuum, Colony offers a FaaS approach to submit computations.
Compared to FaaS solutions on the Cloud, able to delegate tasks on Edge de-
vices, Colony allows to automatically convert the logic of the function into a
workflow; thus, being able to parallelize and distribute its execution to achieve
lower response times and better infrastructure exploitation. By leveraging on
the COMPSs programming model, the overall solution is able to tackle the
three described computing scenarios: batch processing, stream-processing and
sense-process-actuate.
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7 Conclusion and Future Work

This manuscript introduces Colony: a framework to develop applications run-
ning throughout the whole Cloud-Edge Continuum. This framework proposes a
hierarchic organization of the computational resources building on the concept of
an Agent: an autonomous process running on each device that allows executing
software in a Function-as-a-Service manner. By automatically transforming these
functions into task-based workflows, an Agent is able not only to parallelize the
execution; it can also distribute the workload offloading part of the execution
onto other Agents. Thus, the workload is balanced across the whole platform
while taking advantage of the low-latency network interconnecting nearby re-
sources. COMPSs is a task-based programming model that supports not only
atomic tasks, but also persistent tasks producing/consuming a stream of data. By
natively supporting COMPSs, Colony offers a common programming interface
to deal with the three computing patterns necessary on Cloud-Edge services.

Section 5 suggests some shortcomings of the proposal. The current prototype
only allows the detection of tasks on the main function, enabling the detection
during the execution of any task would allow to parallelize the task generation,
and thus, improve the application performance. The default scheduling policy
problem aims to keep the resources busy unnecessarily offloading tasks as shown
on the 100-user test on Section 5.2. Other scheduling policies – maybe based on
QoS and SLA with time-constrains – would distribute the workload differently.

Other Cloud-Edge-related issues remain open for further investigation, for
instance, the automatic resource discovery and configuration of the resources.
Regarding data, privacy/IP-sensitive data should never abandon the device or
on-premise resources, extending the model with data-access/movement control
policies is also a future research line. As Section 3 explains, Colony delegates the
data management; significant infrastructure divisions may entail misbehaviours
in the used solution and some data values become unavailable. We aim to enable
a fault-tolerance mechanism – e.g., lineage – to recompute missing values.

Automatically triggering executions based on events related to stored data or
external webservices (Eventing) is supported by most of the framework named
in Section 6. Colony does not include such component; applications need to run
a persistent task monitoring a state/value/stream that triggers the computation
when certain condition is met or reliy on external services like IFTTT [11].

Finally, as discussed in the related work section, large cloud providers enforce
users to follow their own software. To overcome this vendor lock-in while using
their cloud platforms, Colony must use their IaaS solution and deploy an agent
there. Another line of research to delve into is Interoperability; implementing
software to let Colony offload tasks onto these large clouds through their FaaS
software would entail a significant improvement in terms of cost efficiency.

Acknowledgements

This work has been supported by the Spanish Government (PID2019-107255GB),
by Generalitat de Catalunya (contract 2014-SGR-1051), and by the European



Colony: Parallel Functions as a Service on the Cloud-Edge Continuum 15

Commission through the Horizon 2020 Research and Innovation program under
Grant Agreement No. 101016577 (AI-SPRINT project).

References

1. Amazon Data Pipeline. https://aws.amazon.com/datapipeline/

2. Amazon Greengrass. https://aws.amazon.com/greengrass/

3. Amazon Lambda. https://aws.amazon.com/lambda/

4. Apache Beam. https://beam.apache.org/

5. Apache JMeter. https://jmeter.apache.org/

6. Azure Functions. https://azure.microsoft.com/services/functions/

7. Azure IoT-Edge. https://azure.microsoft.com/en-us/services/iot-edge/

8. Google Cloud Functions. https://cloud.google.com/functions

9. Google IoT Cloud. https://cloud.google.com/solutions/iot/

10. IBM Cloud Functions. https://www.ibm.com/cloud/functions

11. IFTTT. https://ifttt.com/

12. OpenFaas. https://www.openfaas.com/

13. OpenWhisk. https://openwhisk.apache.org/

14. The Fn project. https://fnproject.io/

15. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler: an
extensible system for design and execution of scientific workflows. In: Proceedings.
16th International Conference on Scientific and Statistical Database Management,
2004. pp. 423–424. IEEE (2004)

16. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Openface: A general-purpose face
recognition library with mobile applications. Tech. rep., CMU-CS-16-118, CMU
School of Computer Science (2016)

17. Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore, T., Reed, D., Beck, M.:
Harnessing the computing continuum for programming our world. Fog Computing:
Theory and Practice pp. 215–230 (2020)

18. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

19. Consortium, O., et al.: Openfog reference architecture for fog computing. Archi-
tecture Working Group pp. 1–162 (2017)

20. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6. p. 10. OSDI’04, USENIX Association, Berke-
ley, CA, USA (2004), http://dl.acm.org/citation.cfm?id=1251254.1251264

21. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani,
R., Chen, W., Ferreira Da Silva, R., Livny, M., Wenger, K.: Pegasus, a workflow
management system for science automation. Future Generation Computer Systems
46, 17–35 (2015). https://doi.org/10.1016/j.future.2014.10.008

22. Gunarathne, T., Zhang, B., Wu, T.L., Qiu, J.: Scalable parallel computing on
clouds using Twister4Azure iterative MapReduce. Future Generation Computer
Systems 29(4), 1035–1048 (2013). https://doi.org/10.1016/j.future.2012.05.027,
http://www.sciencedirect.com/science/article/pii/S0167739X12001379

23. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn,
T.: Taverna: A tool for building and running workflows of services. Nucleic Acids
Research (2006). https://doi.org/10.1093/nar/gkl320



16 Francesc Lordan, Daniele Lezzi, and Rosa M. Badia

24. Kamburugamuve, S., Govindarajan, K., Wickramasinghe, P., Abeykoon, V., Fox,
G.: Twister2: Design of a big data toolkit. Concurrency and Computation:
Practice and Experience 32(3), e5189 (2020). https://doi.org/10.1002/cpe.5189,
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5189, e5189 cpe.5189

25. Kreps, J., Narkhede, N., Rao, J.: Kafka: a Distributed Messaging System for Log
Processing. ACM SIGMOD Workshop on Networking Meets Databases (2011)

26. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel,
J.M., Ramasamy, K., Taneja, S.: Twitter heron: Stream processing at scale. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
vol. 2015-May, pp. 239–250 (2015). https://doi.org/10.1145/2723372.2723374

27. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Álvarez, J., Marozzo,
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