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Abstract: Latency-critical applications, e.g., automated and assisted driving services, can now be
deployed in fog or edge computing environments, offloading energy-consuming tasks from end
devices. Besides the proximity, though, the edge computing platform must provide the necessary
operation techniques in order to avoid added delays by all means. In this paper, we propose an
integrated edge platform that comprises orchestration methods with such objectives, in terms of
handling the deployment of both functions and data. We show how the integration of the function
orchestration solution with the adaptive data placement of a distributed key–value store can lead
to decreased end-to-end latency even when the mobility of end devices creates a dynamic set of
requirements. Along with the necessary monitoring features, the proposed edge platform is capable
of serving the nomad users of novel applications with low latency requirements. We showcase this
capability in several scenarios, in which we articulate the end-to-end latency performance of our
platform by comparing delay measurements with the benchmark of a Redis-based setup lacking the
adaptive nature of data orchestration. Our results prove that the stringent delay requisites necessitate
the close integration that we present in this paper: functions and data must be orchestrated in sync in
order to fully exploit the potential that the proximity of edge resources enables.

Keywords: cloud native; edge computing; serverless; lambda; greengrass; FaaS; Function-as-a-
Service; distributed data store; data locality; Redis

1. Introduction

Cloud computing is widely used in the digital industry as a technology that enables
cheap and easy deployment not only for online web services but also for big data processing,
Industry 4.0 and Internet of Things (IoT) applications. The public cloud is supported by
physical data centers around the world that host virtual machines that are offered to
customers and users. The cloud concept empowers the user to replace their own hardware
with cloud server instances and creates a new economic model where the customer pays
only for the usage and not for the entire hardware itself. As a reverse trend, the remote,
central cloud is often extended, with private clouds and edge resources providing execution
environments close to the users in terms of latency, e.g., in mobile base stations. Latency-
critical functions can be offloaded from central clouds to the edge, enabling, e.g., critical
machine-type communication or real-time applications with strict delay bounds. As a result,
novel types of services and distributed applications can be realized on top of the edge
or fog environment [1]. Such an application domain is transport, covering services such
as automated driving, vehicle-to-vehicle communications, driver assistance, etc., which
can reshape our digital society and, indeed, necessitate an edge platform that provides
apt solutions for the latency-critical and data-intensive application requirements amid
the challenges of user mobility and the spatial and temporal dynamics of the application
load. Besides enabling infrastructural spread, i.e., edge nodes are potentially closer to
the end users, we argue that an edge computing platform must be locality-aware and
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proactive in terms of resource provisioning in order to further decrease end-to-end latency
for application users. We envision a dynamic system that allows for the migration of service
components and complete re-optimization of their placements periodically.

The virtualization techniques and the value-added services in the cloud demonstrate
a wide variety today to meet the heterogeneous customer demand. One can list pros and
cons for all types of cloud services: there is a diminishing burden on cloud tenants in terms
of application management from Infrastructure-as-a-Service (IaaS) through Container-as-
a-Service (CaaS) to Function-as-a-Service (FaaS), although this, of course, comes at an
increased price of resource units; built-in features and their resource usage are incorporated
into these prices. Adopting the stateless design in its core concept [2], FaaS, often referred
to as serverless computing, has recently become one of the most popular paradigms in
cloud computing. The paradigm emerged not only as a pricing technique but also as a
programming model promising to simplify development for the cloud. Using FaaS, de-
velopers do not need to take into consideration resource allocation, scaling or scheduling,
since the platform handles these. Numerous projects managed by companies and academic
institutions have built FaaS platforms, but the most widely used ones are underneath the
FaaS services offered by IT giants, i.e., Amazon’s AWS Lambda [3], Google Cloud Func-
tions [4] and Microsoft Azure Functions [5]. Most of these platforms operate with container
technologies; the user’s executable code is packed into a container that is instantiated
when the appropriate function call request first arrives. With this relatively lightweight
technology, it is easy to achieve process isolation and resource provisioning.

FaaS systems usually accommodate ephemeral functions and their load is hectic; hence,
their function placement logic to be applied must be fast and efficient. Function requests
arrive frequently and demand various resource amounts and a great level of elasticity.
Therefore, by its nature, the FaaS service platform must apply an online placement method,
probably with affinity constraints to consider in order to collocate functions that may invoke
each other [6]. Inherent to the FaaS concept, input data or internal function states are often
externalized—hence, the stateless operation. As network delay might cause serious QoS
degradation when remote data must be accessed by the functions invoked in the FaaS
platform, the placement of these is of paramount importance too [2,7].

In this paper, we advocate for the joint placement of functions and their respective
states in edge systems. Our contribution is three-fold. (i) We showcase an integrated plat-
form that simultaneously provides cost-optimal, latency-aware placement of FaaS functions
and access pattern-aware data relocation. Our platform builds on our previous prototypes,
implementing an application layout optimization and deployment framework [8] and a
distributed key–value store [7], respectively. (ii) We evaluate this integrated edge plat-
form through a comparison focusing on data access in our adaptive data store [9] and in
Redis [10] for use-cases where heavy user mobility is assumed across edge sites. (iii) We
show that the access patterns generated by our autonomous transport-inspired use-cases
call for the need of synchronization between function and data placement and that our
integrated solution achieves better performance, leveraging this functionality. Our goal
with this work is to demonstrate that a network delay-aware orchestration policy achieves
lower end-to-end delays for cloud applications that serve users moving frequently from
one edge site to another. Our presented platform not only adapts the location of compu-
tational entities across the cloud continuum to the actual geographical demand, but also
that of the related data. Opposed to the composition and placement of computational
entities that is driven by a cost optimization target while considering application latency
requirements as constraints, the orchestration of the application-related data is driven by
delay minimization as its ultimate objective.

Our work is motivated by the new era of the IoT that is driving the evolution of
conventional vehicle ad hoc networks into the Internet of Vehicles (IoV). IoV promises huge
commercial interest, thereby attracting a large number of companies and researchers [11].
As the number of connected vehicles keeps increasing, new requirements (such as seam-
less, secure, robust, scalable information exchange among vehicles, humans and roadside
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infrastructures) of vehicular networks are emerging [12]. We argue that, first and fore-
most, the stringent delay requirements must be met in IoV—hence, the motivation for our
edge platform.

This paper is organized as follows. In Section 2, we introduce the transport application
scenarios for which our proposed edge computing platform provides the necessary features,
i.e., compute resource and data orchestration. We give an overview of the research work
related to such features in Section 3. Building on our prior work, we provide a description
of our integrated edge platform in Section 4. Then, Section 5 delves into the quantitative
performance evaluation of our proposed platform in terms of data access delay of FaaS
instances associated with users that are moving from the vicinity of one edge site to another.
Finally, in Section 6, we summarize our findings and conclude the paper.

2. Use-Cases Involving User Mobility

In classical IoT use-cases, sensors infrequently wake up and send usually small quanti-
ties of data. The challenge of processing these data arises not from the latency-sensitiveness
of the applications but rather the myriad IoT devices and consequently the amount of data
to be processed. In Industry 4.0 use-cases, data processing and altogether application delay
becomes a more pressing issue as control processes might need to take action with stringent
latency requirements. Usually, these use-cases do not require the frequent relocation of
data processing tasks because the data sources are fixed or their mobility is limited.

With autonomous driving and automated transport ever approaching, the automotive
industry is shifting towards being software-driven as well. Continental, one of the most
prominent suppliers of automotive parts, envisions an increase in on-board computing
power to enable cross-domain high-performance computing [13] to handle highly latency-
sensitive tasks over a unified computing platform. With the help of Amazon Web Services
(AWS) [3], the company has started to lean on cloud processing as well, albeit currently only
in aiding software design, testing and validation [14]. As this example shows, processing
might be done more cost-efficiently in data centers; thus, cloud technologies have already
started to find their way into automotive scenarios to enable faster development and
better maintenance.

In certain cases, however, such low latency is required that processing cannot be
offloaded to cloud data centers but needs to be located close to moving data sources. As
vehicular movements show strong geographical dynamics and can span countries or even
continents, edge processing proves to be adequate in such situations. Since vehicle traffic is
dynamic in nature, edge platforms need to meet requirements of high and fast scalability.
In recent years, FaaS solutions emerged as options for handling small processing tasks
with high dynamicity by providing fast request-based scaling features. This concept builds
on small stateless functions that might hinder transport use-cases that leverage historical
data, e.g., previous positions of nearby vehicles in order to estimate their trajectory or
speed in an automated overtake control scenario. While externalizing states solves the
issue of stateless functions in scenarios where computation tasks are always bound to fixed
processing nodes, in automated driving scenarios, this is not the case. Here, processing
tasks need to follow data sources over large geographical areas in order to always provide
low latency. This implies that data need to be synchronized or relocated among edge nodes
to provide the seamless transition of tasks between nodes.

We argue that in order to serve such use-cases, a platform needs to offer highly scalable
computing resource allocation and adequate data synchronization or relocation features.
We present our proposal for such an integrated platform in Section 4.

3. Related Work

In this section, we give a literature survey about current computing resource optimiza-
tion and placement techniques and tools, as well as summarizing cloud and edge data
storage options.
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3.1. Cost and Latency Optimization in Edge/Cloud Scenarios

In contrast to our platform proposed in this paper, to the best of our knowledge,
currently, there is no edge computing platform that altogether deals with (i) the latency
of the deployed applications, (ii) the cost of running the application in the edge/cloud,
(iii) the exact location of application data within the platform and (iv) the mobility of the
users. However, there exist multiple solutions [15–22] that consider and examine three out
of these four features.

The authors of [15] assume a single-operator scenario in a multi-cloud system, in
which they provide an offline mechanism to place the application elements among the
cloud data centers. Besides the delay and revenue, the device power consumption is also
targeted in terms of optimization objectives. Researchers in [16] suggest game-theoretic
techniques for virtual machine (VM) placement in edge and fog computing systems to
ensure the application’s performance by applying mobility patterns, while they aim to
jointly minimize infrastructure energy consumption and cost. Ref. [17] studies a multi-edge
infrastructure for which the authors formulate the edge device placement problem as a
virtual network function (VNF) placement task for reliable broadcasting in 5G radio access
networks (RAN). The problem is formulated as a multi-objective optimization problem
constraining bandwidth, service latency and processing capacity and minimizing the
composite objective function for reliability, deployment cost and service response time. The
particle swarm optimization and genetic algorithmic meta-heuristic approaches are used to
solve the optimization problem.

The research work [18] focuses on the customers’ aspects and optimizes the user
experience. It addresses the offloading of distributed applications (performance-sensitive
IoT applications) constructed by multiple connected (or, more generally, related) compo-
nents in a cloud-edge-terminal scenario. Besides the delay, the revenue is also part of the
optimization objective, and they consider bandwidth, computation and mobility in the
optimization problem as constraints. Ref. [19] considers the underlying infrastructure,
where the service components are mapped to, as a multi-edge computation system. The
novelty of this work lies within the aspect of application migration to optimize the system’s
delay and utilization properties.

The study [20] focuses on the medium-term planning of a network in an MEC environ-
ment. The authors define a link-path formalization along with a heuristic approach for the
placement of virtualization infrastructure resources and user assignments, i.e., determining
where to install cloudlet facilities among sites, and assigning access points, such as base
stations, to them. They calculate the mobility patterns and migrations and optimize them
for the revenue. The authors of [21] propose a system that supports mobile multimedia
applications with low latency requirements. Their study targets the problem of the dy-
namic placement of service-hosting nodes over a software-defined network (SDN)-based,
NFV-enabled MEC architecture to minimize operational costs. They focus on satisfying
the service level response time requirements. To this end, they present an online adaptive
greedy heuristic algorithm, which is also capable of managing the service elasticity over-
head that comes from auto-scaling and load balancing with a proposed capacity violation
detection mechanism. Ref. [22] recognizes the challenge caused by migrations in a multi-
edge infrastructure. It proposes an energy-aware optimization scheme that minimizes
the latency and the involved reallocation costs due to the limited edge server budget and
user mobility.

In recent years, further articles have been published on the topics of network function
virtualization (NFV) [23,24] and service function chaining (SFC) [25–28], which typically
provide applicable heuristics and methods for utilizing the virtualized resources of the
underlying cloud and edge infrastructures in an efficient way. These specific algorithms
utilize a wide variety of mathematical apparatus to determine the optimal placement of
the application components, considering different constraining factors and optimization
objectives, such as utilization, power consumption, revenue or application latency [29].
One of the crucial features of these placement methods is that they require topological
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information about the provider’s infrastructure, consisting of the available computational,
storage and network resources and the defined interconnections between them. Moreover,
these topology models usually include accurate and up-to-date information about the
low-level characteristics of these resources, such as the speed of the CPU, number of cores,
networking delay, etc., and their utilization, as well.

However, with the novel concepts of cloud-native and serverless computing [30,31],
the operational burdens of the application components are mostly taken off the shoulders
of the service maintainers. These paradigms also imply that the exact location of these
components (in the provider’s cloud), the allocated CPU types and the runtime utilization
of the underlying shared hardware are all unknown before the initiation and scheduling of
the related artifact units. The lack of relevant topological information prevents the lever-
aging of any placement algorithm for cloud-native service optimization and hinders the
efficient operation of latency-sensitive applications over today’s cloud and edge platforms.
Therefore, novel methods are required along with the specific service descriptors and cloud
platform models to tackle the emerging optimization challenges in serverless computing.

3.2. Cloud/Edge Data Storage Solutions

In the case of geographically distributed computing systems, there exist multiple
choices for a highly configurable and dynamic key–value store that aim to provide a data
layer where applications can externalize their internal data. We find that, in terms of the
data access time minimization, we can distinguish them according to the following aspects:

• Is it possible to make copies of the stored data?
• Does the storage optimize the locations of the copies or even the original data within

the storage cluster?
• Is making replications supported at node or data level?
• Does the storage support some kind of data access acceleration technique?

Popular key–value stores such as Redis [10], Memcached [32], Cassandra [33] and
DynamoDB [34] use consistent hashing or a hash-slot/node association for data placement,
which, in terms of the data access time, is a random placement approach. If the data are
co-located with their reader and writer applications, the access time will be quite low due to
the lack of inter-node access. However, if the data are located on a different node, we have
to calculate with the additional network delay as well. The known solutions above—by
the random data placement—allow fast data lookups; however, they do not tackle the
minimization of remote state access. Moreover, data can be shared among multiple reader
or writer applications. In this case, the data can be replicated on multiple nodes to avoid
inter-node readings (or writings). The above-mentioned key–value stores support a fixed
data replication factor strategy, which means that all data will be replicated in the same
number; there is no difference between “hot” and “cold” data. Finally, in order to accelerate
the data access, they use cache solutions in the memory.

There are some approaches from academia as well. Anna [35] is a distributed key–
value store that uses a hash function to calculate the locations of the stored data within
the cluster, but it enables selective replication of hot keys to improve the access latency.
DAL [2] allows data access pattern-aware data placement, i.e., it handles individual data
items independently and attempts to find them the optimal target server to minimize the
access latency. Furthermore, it uses replication factors for each data entry individually.
As a data access acceleration technique, for each data entry, it maintains a list of servers
where access requests arrive and moves the data to the one generating the highest amount
of queries.

3.3. Automated Deployment to Cloud/Edge Infrastructure

Different tools exist that can determine and automatically configure the required
cloud resources in order to ease the complex task of cloud application deployment across
different platform service providers. For instance, the Serverless Framework [36] offers a
provider-agnostic approach to declare and manage resources over public clouds, using its
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own CLI interface and a YAML-based descriptor file. Similarly, Terraform [37] provides a
higher-level interface and a toolset to set up and manage cloud infrastructures spanning
over multiple public cloud domains. It allows customers to seamlessly migrate their
whole virtualized infrastructure from one provider to another by hiding most of the
provider-specific configuration parameters. There are other tools specifically designed
to apply external parameters from other services at deployment time, such as specifying
resource type or memory size. One such external service is Densify [38], which can make
cloud applications self-aware by leveraging its separate optimization and monitoring
components. It can collect CPU, memory and network utilization data about virtual
machines in Amazon with proprietary monitoring services, which then can be leveraged
by its machine-learning-empowered optimization component to model the application’s
utilization patterns, estimate the optimal compute resources and give recommendations
on the type and number of instance flavors for the application maintainer. In addition,
it provides automatic redeployment features relying on templating tools that support
dynamic parameter assignment or parameter stores.

Amazon also offers different services for managing cloud resources, which rely on
the common AWS API but realize functions over diverse complexity levels. In contrast
to low-level options, i.e., the web console, SDKs and the CLI, which are only suitable
for simpler resource management, the widely used AWS CloudFormation [39] can treat
a whole deployment as a unit of workload in the form of stacks or stack sets. It can
handle the setup, modification and deletion tasks of complex applications by way of its
proprietary templating language. Stackery [40] is another tool designed to accelerate the
deployment and operation of complex serverless applications through their life-cycle, on
top of AWS’s cloud.

Although the aforementioned tools provide a wide range of assets to manage complex
serverless applications over public clouds, they lack the support of hybrid edge-cloud
deployment scenarios where application latency is of concern. While AWS offers tools for
managing edge nodes, and its Compute Optimizer service [41] works as a recommendation
engine that helps right-sizing EC2 instances, none of the services offered by AWS can
handle optimization tasks for serverless applications. Other similar tools that consider
utilization for serverless resources also neglect to take application performance into account,
while they either completely lack edge infrastructure handling capabilities or introduced
similar features only recently. Besides these tools, only a few academic research papers
consider the cost-aware modeling and composition of serverless applications. The authors
of [42–44] propose pricing models and cost analysis for serverless deployment scenarios
but in an offline manner. Costradamus [45] offers online, per-request cost tracing features
to overcome the limitation of high-level billing schemes by leveraging a fine-grained cost
model for the deployed cloud application; however, there is no optimization support. Other
recent works [46–50] study cloud-native performance optimization over public clouds, but
they are missing any adaptation feature or automated application re-optimization.

4. The Proposed Edge Platform

Our system offers an integrated platform that enables four main features. First, it is
able to calculate the cost-optimal grouping and compute resource size assignment and the
placement of application components while still adhering to application end-to-end latency
constraints. Second, it is capable of deploying the tasks according to these considerations
onto edge and cloud resources. Third, it optimizes the placement of externalized data
accessed by the application components to provide the lowest achievable data access
latency. Fourth, it continuously monitors application performance and considers recent
measurements in the component optimization algorithm.

The platform takes advantage of our previous works exploring application deploy-
ment to cloud and mainly edge resources [8,51] and access pattern-aware data storage [9],
achieving synergies for providing better application performance. Figure 1 shows a high-
level view of our system. At the top level, the application developer or maintainer supplies
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two sets of data regarding the application itself: the source code and the description of
application invocation properties. In the second case, the developer defines the ingress
point of the application, as well as invocations and their rates among the components.
The exact method of discovering these aspects is outside of the scope of our current work,
but data can come from baseline measurements or external code analyzer tools. At this
point, the developer can also set an upper limit for the application’s end-to-end latency.
Automatic application deployment is performed in three stages. First, the Layout and Place-
ment Optimizer (LPO, discussed further in Section 4.1) determines application function
grouping, resource location and sizing utilizing the invocation properties and respecting
the given end-to-end latency constraint. Second, the Serverless Deployment Engine (SDE)
prepares deployable artifacts from the application code using the software layout given by
the LPO as a blueprint. These artifacts are then used for setting up the application itself and
the performance evaluation service. A unified edge-cloud management API is leveraged
to perform the actual deployment tasks to cloud and edge resources. Once deployed, the
application’s performance is monitored by a dedicated component that can alert the LPO or
the Offload Controller (OC) when performance criteria are not met. Based on performance
metrics that are not met, the LPO can recalculate the optimal resource assignment and initi-
ate the redeployment of the application. The OC, on the other hand, can perform limited
application reconfiguration and move application components between predetermined
placement locations.

Layout and Placement Optimizer

Serverless Deployment Engine

Management API:
AWS CloudFormation & Greengrass

Cloud Resources:
AWS Lambda

Amazon ElastiCache for Redis

Edge Compute Resources:
AWS IoT Greengrass

Edge Database:
AnnaBellaDB

Performance Monitoring:
Amazon CloudWatch MetricsOffload Controller

Application
Code Invocation

properties

Deployment
Monitoring
Alerting
Reconfiguration

Figure 1. High-level overview of the application layout optimization, deployment and monitoring
system with database options.

To realize our general concept discussed above, we rely on AWS and its multitude
of services in cloud and edge computing and monitoring. We leverage a Function-as-a-
Service offering, AWS Lambda [52], in the cloud, and Greengrass [53], its counterpart at
the edge. Utilizing these provides us with a unified execution runtime for application
components. The serverless nature of these services offers low management overhead and
highly scalable request-based on-demand resource allocation that carries benefits even for
edge deployments. AWS Lambda grants predefined runtime environments for different
languages and fine-grained memory and CPU allocation schemes. A function instance is
started when there is no other instantly available instance to serve an incoming request.
This first start-up time is usually slower than all subsequent calls to the instance as, during
warm-up, certain parts of the user code are initialized and cached for later invocations.
In the cloud, function instances are terminated after a provider-calculated period of time
being idle. At the edge, they are kept warm until resource utilization at the edge node
allows it. Amazon CloudWatch Metrics is selected to monitor and store performance data
coming in from the application and edge infrastructure and provide alerting capabilities.
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As our chosen application execution platform offers runtime for stateless components,
state externalization is a fundamental requirement. In order to support frequent state access
at scale, a highly efficient storage option is needed. In cloud-only deployment scenarios,
ElastiCache for Redis is chosen as our previous performance evaluation [54] shows that it
offers low-latency data access even at high access rates and data sizes. In edge scenarios,
however, using a data store located in the cloud is not an option anymore because of the
possibly long delay between edge nodes and cloud data centers. In Section 5, we showcase
that selecting Redis in an edge-only deployment scenario where multiple nodes are used
can be disadvantageous, and using an option that can adaptively relocate data based on
the access location and frequency is a more viable alternative. We give a short introduction
to AnnaBellaDB [9], our choice of data store in multi-edge node setups, in Section 4.2.

4.1. Computing Optimization

Our platform’s Layout and Placement Optimizer (LPO) component builds on our
prior works [8,55]. In these, we discuss the optimization problem of cloud-native service
composition over hybrid edge and cloud infrastructures, focusing on Amazon’s serverless
offerings, i.e., AWS Lambda [52] and AWS IoT Greengrass [53]. Stated as the opposite
problem of decomposing a monolithic application into a microservice architecture, service
composition is the task of designating the main application components as standalone
deployable artifacts by selecting and grouping the basic building blocks of the application,
i.e., the cloud-native functions, in a bottom-up manner [56]. In addition to the function
grouping, it is also required to assign the appropriate runtime flavors, i.e., defining the
amount of resources for the application components. Therefore, one possible realization of
a cloud-native application can be described with the groups of compiled and assembled
functions along with the related flavor assignments, datastore selection and related deploy-
ment configurations, which are collectively referred to as the application layout. The main
observation regarding the feasible layouts of an application is that different partitioning
(also called clustering, equivalently) of the functions’ call graph results in different over-
all execution times based on the invocation patterns and involved invocation and data
access delays, but with diverse operational cost implications due to the runtime-based
pay-as-you-go billing schemes. In the case of combined edge/cloud infrastructures, the
varying capabilities, platform characteristics and cost implications of the central cloud
and dispersed edge nodes also need to be taken into account during the function parti-
tioning process. Moreover, latency-sensitive applications usually impose stringent latency
requirements, either in an end-to-end manner or on subchains of the given application [57],
which complicates further the selection of the cost-optimal layout. According to these
aspects, the main goal and the outcome of the optimization task, which is performed by
our LPO module shown in Figure 1, is to find the cost-optimal service layout over the given
capabilities of the provider’s cloud/edge infrastructure, while the user-specified latency
requirements are met.

For describing such cloud-native applications, the main call structure of the building
blocks is required to be formed as a directed acyclic graph (DAG). The nodes in the service
graph denote the basic functions, which can be invoked by only one other function, and also
a single datastore entity, whereas the arcs mark the read/write data accesses and function
invocations. Functions as stateless, single-threaded building blocks are characterized with
their reference execution time measured on 1 CPU core, while the arcs are described with
the average invocation rate and the blocking delay introduced in the invoker function.
The capabilities of execution environments are described by the general notion of flavors,
where edge nodes have distinct flavors. According to our previous performance studies
in [54,55], cloud resource flavors are specified by their offered vCPU fractions, as, for single-
threaded functions, the assigned flavor size is directly proportional to the computational
performance. This trend holds until reaching the peak value at 1769 MB, when one CPU
core is granted. The operational cost characteristic of each type of platforms, i.e., the central
cloud and the distinct edge nodes, is realized via a single dedicated cost factor. This factor,
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by definition, describes the unified cost of code execution given for a predefined unit of
time, which is typically 100 ms in Amazon’s cloud [58]. These factors are used for the cost
calculation of application components in feasible layouts, relying on the platform-specific
execution time of the components.

Our algorithms proposed in [8,55] use a recursive, dynamic programming-based
approach to define the minimal cost application partitioning by dividing the function
invocation DAG into groups of constituent functions. The bottom-up methods iteratively
derive the actual execution time of feasible partition blocks based on the serialized execution
of the encompassed functions, the invocation ratios, blocking delays and the assigned
flavor’s vCPU fraction, while invocation delays within a group are considered negligible.
The group costs are calculated using cost factors corresponding to the cloud provider’s
pay-as-you-go billing model. For the latency calculations and requirement validations,
an adjusted execution time formula is applied to correctly match the measured latency
metrics in the performance monitoring system. In detail, our proposed algorithm is
divided into two main procedures. The chain partitioning task can calculate the cost-
optimal grouping of a chain of functions, which can have latency constraints defined on
disjoint parts of the chain. This algorithm recursively decomposes the chain partition
problem into subproblems or subchains regarding the different latency limits, while the
optimal grouping and cost/latency values of the subproblems are calculated by relying on
previously calculated sub-solutions that are stored in dedicated dynamic programming
matrices. The algorithm calculates the optimal solution of the subchains starting from the
beginning of the chain and considers the following component in each iteration, until the
cost-optimal solution of the original application chain is found in the last step. The tree
partitioning is a generalized algorithm of the serverless application partitioning problem,
where the main application as a DAG is also decomposed into subproblems. Our algorithm,
following a similar recursive concept, can find the optimal solution by decomposing the
DAG into chains of the constituent functions while considering the latency constraints,
and it utilizes our chain partition algorithm to acquire the cost-optimal solutions for its
subproblems in a bottom-up manner. It also applies several subtasks, such as pruning a
distinct chain from a subtree or ensuring the latency constraints on the critical paths of the
DAG so as to comply with the preconditions of dynamic programming. Pseudo-codes and
exact formulas explaining the algorithm are detailed in our previous work [8], along with
the related time complexity evaluations.

4.2. Data Optimization

In geographically distributed systems, such as the edge computing platforms, the
latency of user applications depends not only on the computation platform and the network
but also on the placement of the application data within the cluster. Unless the application
data are not close to the end user, the smart location of the function is in vain, e.g., let us
assume that a smart car is connected to the nearest mobile base station, where—on an edge
computation node—a ‘road condition reporter’ application is located. If the road condition
data are stored in the edge node, during the road status query, the car experiences only the
vehicle-to-edge communication latency and vice versa. On the other hand, if the status data
are located in a central cloud, the query latency also includes the additional delay between
the edge node (where the function is running) and the cloud database (where the data are
located). One might imagine, e.g., in the case of slippery roads, that this road information’s
delay may significantly influence the chances of a safe passage.

There are multiple approaches for organizing application data within a distributed
system, both from industry [10,34] and academia [2,9,35]. The solutions differ in countless
dimensions, e.g., data placement methods, data replication management, used data models
or data access acceleration techniques. One of the major research questions—in terms of the
data access latency—is whether the data store determines the data locations based on some
form of hash function or whether it is so-called access pattern-aware, i.e., the data placement
is based on priority or on the monitored access properties of the stored data, such as the
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number of reads and writes from different nodes. Another challenging task is to determine
the optimal number of data copies with the goal of minimizing the access time, e.g., in the
case of frequently read and rarely written data, each application should maintain a local
copy of the original data, thus minimizing the read times. Furthermore, it is essential to
calculate with the used data model in the edge cloud storage. Several solutions assume
multi-parent (the original and the copies of each data instance are readable and writable),
while others prefer parent–child types (the data copies are only readable) of data. The
former results in increased data synchronization time in the case of parallel data writings,
while unavoidable children update time comes with the latter data model.

For the platform presented in this paper, we propose to use our formerly published
AnnaBellaDB [9] (ABDB) solution, which realizes the state layer [7] of the edge platform,
where the user applications can externalize their operational data to. ABDB is an access
pattern-aware key–value store that uses a parent–child data model and data-level repli-
cation handling. This approach is the opposite of Redis [10], one of the most popular
key–value stores, since, instead of using range or hash partitioning for data placement, it
continuously re-optimizes the data locality in the cluster if the change in data access has
exceeded a predefined threshold. The architecture of ABDB is provided in Figure 2.

ABDB Bootstrap Server

Data Locality API

Data Placement
Module

Replacement
Initiator

Write/move
data

Initiate reoptimization
of data locality

Report data-server
placements

KVS
Access Pattern

Monitor
Infrastructure

Monitor

Data access monitoring

Data Locality API

KVS
Access Pattern

Monitor
Infrastructure

Monitor

Data access monitoring

ABDB Child Server 1
Data Locality API

KVS
Access Pattern

Monitor
Infrastructure

Monitor

Data access monitoring

ABDB Child Server n

Report data-server
placements

Latency measurement

Report network latency

Report data access patterns

Figure 2. Architecture of AnnaBellaDB.

AnnaBellaDB is a distributed key–value store, i.e., it forms a database cluster contain-
ing one bootstrap server and multiple children nodes. To minimize data access, each edge
server should include an ABDB server, either bootstrap or a child in an edge computing
infrastructure. Each ABDB server contains an Infrastructure Monitor, which sends pings
to other servers and measures the network latency between the edge nodes. As a result,
they periodically report the measured latencies to the Replacement Initiator module that is
located on the bootstrap server. Furthermore, all servers contain the actual key–value store
(KVS), where the users’ key–value pairs are stored. The user applications read from or write
into these KVSs. Meanwhile, the Access Pattern Monitor modules continuously monitor
the access patterns of the locally stored data, i.e., the number of readings and writings per
data entry. Moreover, they report these access patterns to the Replacement Initiator. Should
the access pattern of a datum change more than the predefined threshold, the Replacement
Initiator—as its name suggests—initiates the movement of the monitored data to the new
target server through the Data Placement Module. If an application wants to access a piece
of data, first, it asks the co-located Data Locality API about which server stores it, and it
then targets the KVS on the proper server. In the case of a first write, the Data Locality API
always returns the address of the Data Placement Module, which determines which server
will store the data. If a new writer or data movement happens, the Data Placement Module
reports to the other servers in the cluster about the new data server assignment.
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The Data Locality API components store and maintain the data distribution across the
cluster, i.e., a list of data and its corresponding storage server (data, server) pairs. When
the cluster is in a steady state, i.e., each Data Locality component has the same list about
the cluster’s data, all the functions obtain the same result about where to find the requested
data, independently of where they are located. Thus, they will know which server should
query for the given data. All Data Locality components are updated periodically by the
bootstrap server. However, if a co-located Data Locality component does not know or
knows poorly where the requested data are stored, it must retrieve the target server from
the bootstrap server. Consequently, the child servers will ask the bootstrap server only at
the first data request or when the queried data have been migrated and its local related
query has not been updated yet.

Determining the optimal locations of a set of data to minimize their cumulative access
latency is an NP-hard problem [7]. However, as [59] argues, if the ABDB servers would
have infinitely large capacities to store data, then calculating the optimal destinations within
the server cluster could be solvable in polynomial time. Based on this theorem, we have
created our heuristic placement solution in the Data Placement Module. First, we assume
that each server has infinite capacities and calculate the optimal node for each data using
their access patterns as inputs, i.e., the reader and writer functions, their locations and their
access frequency. As a result of this first step, it might occur that the placement overloads
a node with too much data to store. If this is the case, in the second step, the heuristic
algorithm picks the data from the most loaded server, which is accessed the least from
other nodes, and migrates them to the closest server, in which the free capacity is larger
than that from where the data are moved. The algorithm repeats the second step as long as
an overloaded server exists. The heuristic algorithm mentioned here is elaborated in [7].
AnnaBellaDB is open-source and available at https://github.com/hsnlab/annabellaDB
(accessed on 28 November 2021).

One might note that there exist other data access acceleration techniques, e.g., client-
level caching, which utilizes data caches in the applications besides a traditional key–value
store such as Redis. However, it is essential to see that this approach is not applicable
in the case of FaaS platforms since there is no one-to-one mapping of the clients and
their functions within FaaS. For example, suppose that multiple workers of the deployed
function live in the cluster waiting for the client’s invocations. In this case, the actual
worker that will execute the function is scheduled by the FaaS scheduler. Consequently, the
data are unnecessarily cached in one function if, in the next round, another function will
be activated for the same client’s invocation. Instead, the node-level caching could work,
in which the co-located functions have access to the node’s storage. Our presented ABDB
works similarly: each server has its own KVS, and the Replacement Initiator takes care of
the data migrations. This results in specific data being stored on a server from which the
majority of the access originates.

4.3. Application Deployment, Operation and Monitoring

Components responsible for application deployment and operation extend the capa-
bilities of the tools shown in our previous works [8,51]. After the Layout and Placement
Optimizer component calculates the optimal application layout, the Serverless Deployment
Engine (SDE) together with the AWS infrastructure management tools deploys the applica-
tion components to edge and cloud resources. Based on upper-level instructions, the SDE
is able to combine multiple application components, functions, into a single AWS Lambda
function. A crucial component that enables the creation of AWS Lambda functions in this
way is the purpose-built Wrapper that is injected into the application code by the SDE. It
encapsulates all application components and acts as an intermediary layer between the
AWS Lambda/Greengrass runtime and the application component. As shown in Figure 3,
every interaction between f I application components, deployed as FK AWS Lambda server-
less functions, passes through the Wrapper, be this data store access or the invocation
of another application component. The f I application components have to interact only

https://github.com/hsnlab/annabellaDB
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with their Wrappers’ unified interface to get in contact with the outside world. Two of the
value-added features of the Wrapper exploit this encapsulation. One supports monitoring
and sends actual invocation and data access rates, sizes and delays to Amazon CloudWatch
in order to extend application performance monitoring and help troubleshooting. The
other feature provides fast reconfiguration options. Here, an external Offload Controller
(OC), which can be located either in the cloud [8] or at the edge [51], notifies the Wrapper
to change the application layout on the fly without redeployment. In a scenario where
application function fi invokes f j and they are assigned to different serverless functions,
Fn and Fo, respectively, deployed to edge nodes A and B (as in Figure 3), the Wrapper can
be instructed by the OC to divert all further fi → f j calls from edge node A to the other,
effectively offloading f j to node B. Leveraging Wrapper capabilities, we also circumvent the
default AWS IoT communication methods when sending invocations from the edge to the
cloud [8] and between edge nodes [51] to significantly reduce the communication latency.

ABDB
Server A

fi

Edge Node A
AWS IoT Greengrass Runtime

Fn

Wrappern

f j fk

Fo

Wrappero

Edge Node B

fl

Fp

ABDB
Server B

Monitoring

Reconfiguration

Fo

f j fk

Greengrass

Figure 3. Simplified overview of application operation.

In the edge platform proposed in this paper, we extend the Wrapper’s list of supported
data stores (local and Redis) with AnnaBellaDB. The Wrapper connects to ABDB via its
Python client library. When software layout blueprints arriving from the LPO indicate the
use of ABDB, the f I functions will use this option without any modification needed in their
code. As the Wrapper is context-aware, it can configure access to ABDB child servers so that
functions running on a certain edge node would have access to the ABDB child running
on the same node, enabling low-latency access. Wrapper functionality also enables the
logging of data store access performance to Amazon CloudWatch to provide monitoring
and alerting capabilities.

In the next section, we exploit the above-mentioned monitoring and function of-
floading features to provide a comparison between the performance of AnnaBellaDB and
Redis in scenarios where all application functions are deployed to edge nodes using our
deployment framework.

5. Results

In order to evaluate the performance of our platform, we show two sets of comparison
measurements in this section. In both cases, we deploy generalized benchmark applications
to an edge environment using our deployment solution. The sample application is then
operated by the AWS Greengrass runtime. Data store access to ABDB and Redis is realized
by our Wrapper component. Using the monitoring capabilities of our platform, we record
data read and write delays for both data stores and show that, in cases with large data sizes
and multi-node, multi-function environments, data locality becomes a key factor in the
application performance.

5.1. Size Dependency of Data Access Delay

In order to determine data access performance under varying data sizes, first, we set
up a sample edge environment consisting of two edge nodes, as shown in Figure 4. A
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single-node setup of Redis is deployed on Edge node 1 with the default configuration and
password authentication enabled. For ABDB, a child server is set up on the same node
and a bootstrap server on the other. Lenovo System x3550 M5 servers equipped with two
physical Intel Xeon E5-2620 v3 CPUs, each having 12 cores running at 2.40 GHz, 64 GB
memory and Broadcom BCM5719 quad-port 1GBASE-T Ethernet controllers are used as
edge nodes. The nodes are connected through an HP 3500yl-24G PoE+ switch. Our sample
application consists of a single function that is also deployed to Edge node 1. The single
benchmark function performs one write operation of a random string value, followed by a
read operation for both data stores. Evaluation is done for data sizes between 10 bytes and
1 MB, and operations are repeated 100 times with a warmed-up function instance. The data
stores are reset between subsequent runs (used keys are deleted).

Edge node 1:
Redis
ABDB Child Server 1

ABDB
Bootstrap

server

Figure 4. Experimental edge and network setup for evaluating single (child) node performance.

Figure 5 shows average, minimum and maximum read and write delays for every case.
At low data sizes, the delay of accessing Redis is half of ABDB’s because of the additional
processing overhead of the latter, while, for larger chunks of data, the gap is smaller between
the two options but Redis always remains the faster option. We note that, comparing Redis’s
performance to that of its cloud counterpart [54], we can observe that, at small data sizes,
our edge deployment’s performance falls between that of a cache.t2.micro (standard cache
node with 1 vCPU, 0.555 GiB memory and low to moderate network performance) and
a cache.r5.large (memory optimized node with 2 vCPUs, 13.07 GiB memory and up to
10 Gigabit network throughput) ElastiCache for the Redis instance. Writing 1 MB-sized
data is slightly faster than with a cache.r5.large instance, but reading is still faster with
cache.r5.large when a Lambda function is deployed in the cloud.

1 10 100 1k 10k 100k 1M

100 µs

1 ms

10 ms

Data size [bytes]

D
el

ay

ABDB read Redis read ABDB write Redis write

Figure 5. Data access latency of functions deployed to an edge node where an ABDB child and a
Redis server are both available. Maximum, average and minimum values are shown.

We evaluate read and write performance in a simple remote access case on an extended
edge setup, depicted in Figure 6, where we add a second ADBD child server. In this case,
we deploy two benchmark functions: the first one is deployed on Edge node 1 and performs
an initial read and write operation and then calls the second function located on Edge node 2
that accesses the specified key once per second, obtaining 100 samples, similarly as before.
We note that, in Redis’s case, this results in actual remote access, while ABDB relocates the
key from Edge node 1 and then accesses it locally on Edge node 2, giving the same average
performance as seen in the previous case. Our measurements show that the round-trip time
between each node pair is around 0.155 ms on average with small data sizes. Round-trip
time gradually increases due to network delay to around 0.4 ms at 10 kB and 1.6 ms at 65 kB
as reported by ping.
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Edge node 1:
Redis

ABDB Child Server 1

Edge node 2:
ABDB Child

Server 2

Edge node 3:
ABDB

Bootstrap
server

Figure 6. Experimental edge and network setup with three edge nodes.

Measurement results obtained during the tests, displayed in Figure 7, show that the
additional latency for data sizes below 100 kB does not slow down Redis operations enough
for ABDB to catch up with them. ABDB’s ability to relocate data shows a more prominent
effect above 100 kB of data size, from which it starts to perform significantly better than
Redis for both operations.

1 10 100 1k 10k 100k 1M

100 µs

1 ms

10 ms
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ay

ABDB read Redis read ABDB write Redis write

Figure 7. Data access latency of functions deployed to an edge node where only an ABDB child
is available. Redis can be accessed on a separate node with a delay of approximately 0.155 ms.
Maximum, average and minimum values are shown.

Additional network delay can further worsen Redis’s performance. Repeating the
same test with an additional delay of 5 ms highlights the potential of the data relocation
mechanism of ABDB. As Figure 8 clearly shows, average ABDB access delays are much
lower than those of Redis. For data sizes under 10 kB, the average difference is around 4 ms,
as can be expected from the configured delay, while, at 100 kB, it is 17–19 ms, and for 1 MB,
it is 20–34 ms, depending on the operation type, i.e., read or write.

We note that Redis can run in multi-node setups as well, however, it has a dedicated
instance where all write operations have to be forwarded. Thus our observations apply
to cases when functions perform write operations on nodes other than the Redis master.
Although replicated data can be read from other nodes in the Redis cluster, replication
would still suffer from network latency and reading a replica might return stale data.

In conclusion, we can say that in cases when a single function accesses a key and
during the lifetime of the application when the function is relocated in a setup with multiple
edge nodes, ABDB is a better choice for our platform than Redis when data sizes are above
100 kB or the round-trip time between edge nodes is above 1.5 ms. The observation can be
extended to cases when multiple functions access the same keys but are relocated together.
In the following section, we investigate this aspect.
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Figure 8. Data access performance of functions deployed to an edge node where only an ABDB
child is available. Redis can be accessed on a separate node with a configured delay offset of 5 ms.
Maximum, average and minimum values are shown.

5.2. Placement Dependency of Data Access Delay

In the next tests, we utilize a slightly modified edge network setup, shown in Figure 9,
where we introduce a Redis instance deployed to the AWS cloud and slightly modified
network round-trip times are assumed according to Table 1. The network delay between
Edge node 1 and the cloud is the actual round-trip time between our premises and the closest
AWS region, located in Frankfurt. For the rest of the connections, we emulate locations that
are slightly farther away from the data center. For Cloud Redis, we deploy a t2.micro Amazon
EC2 instance, with Redis installed with default settings and password authentication in the
same way as in our edge setup. This setup is used as an alternative to ElastiCache for Redis
in the cloud, as its instances can only be accessed from within an Amazon VPC (Virtual
Private Cloud, logically isolated network within an AWS region), and Greengrass functions
on the edge cannot access these by default.

Edge node 1:
Redis

ABDB Child Server 1

Edge node 2:
ABDB Child

Server 2

Edge node 3:
ABDB

Bootstrap
server

5 ms

1.5 ms

2.5 ms
Cloud Redis

18 ms

20.5 ms

23 ms

Figure 9. Experimental edge and network setup with three edge nodes and connection to the cloud.

Table 1. Round-trip times between endpoints in the test setup.

Edge node 1 Edge node 2 Edge node 3 Cloud

Edge node 1 <0.1 ms 6.5 ms 7.5 ms 18 ms
Edge node 2 6.5 ms <0.1 ms 4 ms 20.5 ms
Edge node 3 7.5 ms 4 ms <0.1 ms 23 ms

Cloud 18 ms 20.5 ms 23 ms N/A

In this setup, we deploy an application consisting of 21 functions, with which we
emulate complex applications. All application functions are mapped to standalone Lambda
functions in this case to achieve the widest range of function mobility and placement
options. We have a dedicated Controller function that invokes all other functions once in
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every minute. The rest of the functions run for one minute and they perform read and
write operations on the same key according to the intensities specified in Table 2 in every
second. If data store access delay prevents a function from reaching the specified number
of operations, these are skipped and will not be retried. In a real-life application, this would
manifest as increased end-to-end latency and an increased number of parallel function
instances. The dedicated Controller function is always deployed to Edge node 1, whereas data
store access test functions f1– f20 are deployed to all edge nodes according to predefined
schemes. All function instances on all edge nodes are warmed up before the test starts.

Table 2. Read and write intensities of functions in the experimental setup.

Function Read [1/s] Write [1/s] Function Read [1/s] Write [1/s]

f1 6 8 f11 3 2
f2 13 8 f12 12 10
f3 8 10 f13 8 10
f4 14 7 f14 13 10
f5 6 11 f15 5 5
f6 10 7 f16 6 5
f7 8 11 f17 10 8
f8 6 13 f18 7 12
f9 11 8 f19 10 5
f10 7 13 f20 9 11

5.2.1. Effects of Function Relocation

With this iteration of tests, we set ABDB’s Access Pattern Monitor and Replacement
Initiator so that access pattern changes are searched within a 20 s time window. Figure 10
shows the test results when we deploy our benchmark application and move functions
among edge nodes every 2 min, leveraging the functionalities provided by the Offload
Controller component of our platform. The function to node assignment scheme can be
seen in the bottom part of the figure, while access delay changes can be observed in the
top part. As is visible in the figure, access pattern changes are usually handled by ABDB
within the allotted time window of 20 s (see the 4 and 8 min marks). At the startup of
the application, this process is even faster (see the 0 min mark) but occasionally slower
(minutes 2 and 6). Comparing this to Redis’ performance, we can observe that it has
much less variation in access delay as data are never relocated. In the beginning, most
functions are assigned to Edge node 2; this makes it possible for ABDB to calculate an
optimal assignment for the single key to this edge node, and move the key there. This also
means that accessing data in the Redis instance, located on Edge node 1, obtains a significant
penalty and the average difference between the two data stores’ access delay can reach
4.5 ms in our test setup. This is smaller than the maximum possible delay of 6.5 ms (the
round-trip time between Edge node 1 and 2) as function f20 is assigned to the node on which
Redis is available and ABDB’s access is generally slower than Redis’. As we move forward
in time, function assignment between edge nodes becomes more balanced. In the sixth
iteration (minutes 10–12), the assignment is the most balanced and ABDB’s and Redis’
performance are the closest. In the last iteration, most functions are moved to Edge node 1,
which favors Redis; however, the few functions left on other nodes modify read delays just
enough so that ABDB is almost on par with Redis in this aspect. As access delays for the
Redis instance located in the cloud domain show, the best performance is reached at 19 ms,
while, in most cases, the access delay is around 20 ms, which can be a deal-breaker for most
latency-sensitive applications.
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Figure 10. Comparison of ABDB and Redis access performance (top) while relocating functions
among nodes according to a predefined scheme (bottom).

We can summarize our observations in the following way: ABDB receives a perfor-
mance boost whenever functions are not located strictly on the same node as Redis. In
the following section, we explore this aspect on aggregated results gained from multiple
deployment scenarios.

5.2.2. Aggregated Results

In the following series of tests, we execute 62 different test cases altogether. Half
of them contain deployment schemes that favor Redis, i.e., functions gravitate towards
Edge node 1. The other half of the cases consist of schemes where functions are deployed to
Edge node 2 or 3. These cases cover all configurations made possible by the three physical
edge nodes at our disposal. We categorize the measurement results of the cases based
on the dispersion of functions between the edge nodes. As the measure of dispersion,
we use the standard deviation of the number of functions on each edge node, i.e., in the
most balanced case, where 7 of the total 20 test functions are assigned to Edge node 1 and
Edge node 2, respectively, and the remaining 6 to Edge node 3, we obtain a dispersion value
of 0.47. In the most unbalanced case, i.e., when every function is assigned to the same node
(to Edge node 1 in this case), the metric is 9.43. In order to analyze trends in the results,
we group the cases into 10 bins; thus, the first case in our example above would fall into
the first bin and the other into the last. We use the balanced case given in the example,
and select a less extreme case for the other end of the spectrum, where all edge nodes run
at least one function. During these simple tests, we utilize the same access intensities as
shown in Table 2 and run them for 2 min without function relocation. Here, we note that
the number of test cases is not mapped uniformly to the dispersion intervals, as depicted in
Figure 11, and thus our interpretation inherently manifests as higher variance in the access
delay in the midsection of the figures showing the results.
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Figure 11. Number of cases in each dispersion interval.

Figure 12 shows aggregated results gained from running the cases where Redis is
favored. The figure’s top half shows read, the lower part write performance. Looking at the
figure, we can observe that, in a balanced case (i.e., in the [0, 1) dispersion interval), ABDB
and Redis are almost on par with each other. Here, ABDB’s read delay is slightly lower
than that of Redis (the exact difference being 351 µs), while its write delay is 218 µs higher
than Redis’. As can be expected, this changes quickly as the function placement starts to
gravitate more towards Edge node 1 until we reach a difference of 1.27 ms in read delay and
1.87 ms in write delay at the highest dispersion.
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Figure 12. Comparison of ABDB and Redis read and write delays in the “Redis-favored” scenario.

The second setup disfavors Redis by mostly avoiding Edge node 1 for function place-
ment. Figure 13 shows that, in such cases, ADBD always performs better in both read and
write operations. Here, ABDB provides lower read and write delays even in the balanced
case, with the read difference being 847 µs and write difference 280 µs. We note that this
difference is attributed to the fact that, using our 20 functions, we cannot create a completely
balanced case, and, in the previous, “Redis-favored” scenario, we placed 7 functions on the
Redis node, while, in this “Redis-disfavored” case, only 6 of them are placed on the node.
When the performance gap is the widest, ABDB can read data 4.88 ms faster than Redis
and write 4.33 ms quicker on average.

It might happen that, due to a specific dispersion of the functions, the experienced
mean delay significantly differs from the other measured values of the same bin. We depict
these deviations as outliers in the figures. As an example, we examine the case where nine
functions ( f2– f11) run on Edge node 3, ten of them ( f12– f20) run on Edge node 2 and only one
( f1) is deployed on Edge node 1. The standard deviation of the number of functions on the
nodes is 4.93, which means that the case goes to the bin [4, 5). The ABDB will optimize
the location of the data and move them to Edge node 3, resulting in a 4 ms access delay for
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f2– f11 and 7.5 ms for f1. In this case, the mean overall delay of all the functions ( f1– f20)
is around 2 ms, which is an outlier compared to the other measured values (around 4 ms)
from this bin.
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Figure 13. Comparison of ABDB and Redis read and write delays in the “Redis-disfavored” scenario.

To summarize the results, on average, Redis can be a good solution only if functions
are located on the edge node where it is running. Therefore, in use-cases where the users
of the edge application are moving across edge sites, and the ephemeral functions of the
application necessitate externalized data to travel with them, an adaptive location-aware
data store is needed, such as ABDB. ABDB is on par with Redis even in local data access
scenarios, but, particularly in cases when Redis is obliged to access remote data, ABDB
relocates data based on the observed access pattern instead, and thus performs significantly
better in terms of latency.

5.2.3. Data Access Simulation of a Complex Automotive Application

Thus far, basic atomic operations such as data read and write have been examined
in terms of the data access latency within different data store scenarios. However, most
autonomous driving tasks are more complicated, e.g., as Yi et al. argue [60], in the auto-
motive industry, control applications consist of multiple independent tasks, commonly
modeled by Directed Acyclic Graphs (DAGs), which represent periodic tasks and their
read–write dependencies. The authors present a reference autonomous driving application
from Bosch.

In our previous works [8,61], we conducted experiments with a sample application
performing image preprocessing and two-stage object detection. The application acquires
a video feed showing a traffic scenario with varying numbers of vehicles. During pre-
processing, the image size is reduced and the first stage of object detection determines
bounding boxes for detected vehicles on the scaled-down images. At a later stage, the
original high-resolution image is split according to the output of the first-stage detection,
and the second stage of object detection is executed on the cropped images to gather more
details about the objects. The application is deployed by our deployment engine based on
the layout computed by our Layout and Placement Optimizer, and we examine application
performance during component relocation to the cloud utilizing a single Redis instance
deployed on the single edge node as a data store.

Another example use-case from the automotive industry appears in [62], in which
the authors introduce an end-to-end autonomous driving application, i.e., a reference



Electronics 2022, 11, 561 20 of 24

application that provides proper throttle, steering and brake signals to drive a vehicle
through a predetermined map of way-points. They identify the individual application
tasks and the necessary data exchanges between them, as depicted in Figure 14. All in all,
nine tasks read and write 16 pieces of data in a period. The authors assume that each task
is independently activated once within a period, i.e., they could read or write a single piece
of data into the storage once per period, which gives 16 writes and 21 reads per period
as the access pattern of this reference application. The access pattern shows which tasks
write (blue arrows originating from the compute layer) and read (green arrows originating
from the data layer) which data during a period. The authors further elaborate on how the
application’s tasks operate.
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Figure 14. Access pattern of the examined autonomous driving application [62].

One might notice that the access pattern, or, more precisely, the access delay of data, has
a significant effect on the end-to-end execution time of the entire application. Consequently,
an access pattern-aware data store should be used in such latency-sensitive cases as the
presented autonomous driving application. Let us assume a vehicle that is driven by the
above-mentioned self-driving application that uses the network setup of Figure 9. As
the self-driving application has a strict end-to-end execution latency requirement, all the
individual tasks should run on the nearest edge node. The question is where to store the
application’s internal data. If the vehicle is close to Edge node 2, the ABDB will detect it and
minimize the summarized access latency by migrating all the 16 data to this node. Another
option is to use Redis either on Edge node 1 or in the cloud. Assuming that all the data in
the access pattern are 100 kB, Figure 15 depicts the average time that the application must
spend to read and write data per period in different data store scenarios.
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Figure 15. Data read and write delay of the autonomous driving application in case of different data
store options.

As ABDB is the only storage option where data placement is optimized based on
locality, it achieves the lowest latency both in terms of reading and writing data per period.
Therefore, in the case of ABDB, all data will be eventually co-located with the accessing
tasks on Edge node 2. The farther the data are located from the vehicle’s application tasks,
the higher is the data access latency that the application has to suffer during a period,
which is clearly shown by the increased access delay in the case of the single Redis edge or
cloud instance.
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6. Discussion

With the emergence of the enabling technology, novel latency-critical applications
can now be deployed on edge or fog resources, offloading energy-consuming tasks from
end devices. Such an application domain is automated and assisted driving, in which it is
essential to run computing functions geographically close to the end-user vehicles in order
to ensure that end-to-end latency requirements are not compromised. Besides the proximity,
though, the edge computing platform must provide the necessary operation techniques in
order to avoid added delays by all means. In this paper, we propose an edge computing
platform that comprises orchestration methods with such objectives, in terms of handling
the deployment of both functions and data. We build the platform on prior research results
and we show how the integration of the function orchestration solution with the adaptive
data placement of a distributed key–value store can lead to decreased end-to-end latency
even when the mobility of end devices creates a dynamic set of requirements. In the
integrated framework, the computing optimization is responsible for the cost-effective and
delay-aware composition of the serverless applications’ components, while the adaptive
placement of data entries within the distributed key–value store server instances closely
follows the access patterns of these components towards their externalized data. Along
with the necessary monitoring features, the proposed edge platform is capable of serving
the nomad users of novel applications with low latency requirements. We showcase this
capability in several scenarios, in which we articulate the end-to-end latency performance
of our platform by comparing delay measurements with the benchmark of a Redis-based
setup lacking the adaptive nature of data orchestration. Our results prove that the stringent
delay requisites necessitate the close integration that we present in this paper: functions
and data must be orchestrated in sync in order to fully exploit the potential offered by fog
or edge environments.
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CPU Central Processing Unit
DAG Directed Acyclic Graph
EC2 Amazon Elastic Compute Cloud
FaaS Function as a Service
IoT Internet of Things
KVS Key–Value Store
LPO Layout and Placement Optimizer
MEC Mobile Edge Computing
NFV Network Function Virtualization
OC Offload Controller
RAN Radio Access Network
SDE Serverless Deployment Engine
SDK Software Development Kit
SDN Software-Defined Network
SFC Service Function Chaining
vCPU Virtual Central Processing Unit
VM Virtual Machine
VNF Virtual Network Function
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