7 research outputs found

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF
    While randomized online algorithms have access to a sequence of uniform random bits, deterministic online algorithms with advice have access to a sequence of advice bits, i.e., bits that are set by an all powerful oracle prior to the processing of the request sequence. Advice bits are at least as helpful as random bits, but how helpful are they? In this work, we investigate the power of advice bits and random bits for online maximum bipartite matching (MBM). The well-known Karp-Vazirani-Vazirani algorithm is an optimal randomized (11e)(1-\frac{1}{e})-competitive algorithm for \textsc{MBM} that requires access to Θ(nlogn)\Theta(n \log n) uniform random bits. We show that Ω(log(1ϵ)n)\Omega(\log(\frac{1}{\epsilon}) n) advice bits are necessary and O(1ϵ5n)O(\frac{1}{\epsilon^5} n) sufficient in order to obtain a (1ϵ)(1-\epsilon)-competitive deterministic advice algorithm. Furthermore, for a large natural class of deterministic advice algorithms, we prove that Ω(logloglogn)\Omega(\log \log \log n) advice bits are required in order to improve on the 12\frac{1}{2}-competitiveness of the best deterministic online algorithm, while it is known that O(logn)O(\log n) bits are sufficient. Last, we give a randomized online algorithm that uses cnc n random bits, for integers c1c \ge 1, and a competitive ratio that approaches 11e1-\frac{1}{e} very quickly as cc is increasing. For example if c=10c = 10, then the difference between 11e1-\frac{1}{e} and the achieved competitive ratio is less than 0.00020.0002

    On the List Update Problem with Advice

    Get PDF
    We study the online list update problem under the advice model of computation. Under this model, an online algorithm receives partial information about the unknown parts of the input in the form of some bits of advice generated by a benevolent offline oracle. We show that advice of linear size is required and sufficient for a deterministic algorithm to achieve an optimal solution or even a competitive ratio better than 15/1415/14. On the other hand, we show that surprisingly two bits of advice are sufficient to break the lower bound of 22 on the competitive ratio of deterministic online algorithms and achieve a deterministic algorithm with a competitive ratio of 5/35/3. In this upper-bound argument, the bits of advice determine the algorithm with smaller cost among three classical online algorithms, TIMESTAMP and two members of the MTF2 family of algorithms. We also show that MTF2 algorithms are 2.52.5-competitive

    The Advice Complexity of a Class of Hard Online Problems

    Get PDF
    The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that log(1+(c1)c1/cc)n=Θ(n/c)\log\left(1+(c-1)^{c-1}/c^{c}\right)n=\Theta (n/c) bits of advice are necessary and sufficient (up to an additive term of O(logn)O(\log n)) to achieve a competitive ratio of cc. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (TCS 2011) and B\"ockenhauer et al. (TCS 2014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halld\'orsson et al. (TCS 2002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c)\Theta (n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, B\"ockenhauer et al. (ISAAC 2009) gave a lower bound of Ω(n/c)\Omega (n/c) and an upper bound of O((nlogc)/c)O((n\log c)/c) on the advice complexity. We improve on the upper bound by a factor of logc\log c. For the remaining problems, no bounds on their advice complexity were previously known.Comment: Full paper to appear in Theory of Computing Systems. A preliminary version appeared in STACS 201

    On the Power of Advice and Randomization for Online Bipartite Matching

    Get PDF

    Randomization can be as helpful as a glimpse of the future in online computation

    Get PDF
    We provide simple but surprisingly useful direct product theorems for proving lower bounds on online algorithms with a limited amount of advice about the future. As a consequence, we are able to translate decades of research on randomized online algorithms to the advice complexity model. Doing so improves significantly on the previous best advice complexity lower bounds for many online problems, or provides the first known lower bounds. For example, if nn is the number of requests, we show that: (1) A paging algorithm needs Ω(n)\Omega(n) bits of advice to achieve a competitive ratio better than Hk=Ω(logk)H_k=\Omega(\log k), where kk is the cache size. Previously, it was only known that Ω(n)\Omega(n) bits of advice were necessary to achieve a constant competitive ratio smaller than 5/45/4. (2) Every O(n1ε)O(n^{1-\varepsilon})-competitive vertex coloring algorithm must use Ω(nlogn)\Omega(n\log n) bits of advice. Previously, it was only known that Ω(nlogn)\Omega(n\log n) bits of advice were necessary to be optimal. For certain online problems, including the MTS, kk-server, paging, list update, and dynamic binary search tree problem, our results imply that randomization and sublinear advice are equally powerful (if the underlying metric space or node set is finite). This means that several long-standing open questions regarding randomized online algorithms can be equivalently stated as questions regarding online algorithms with sublinear advice. For example, we show that there exists a deterministic O(logk)O(\log k)-competitive kk-server algorithm with advice complexity o(n)o(n) if and only if there exists a randomized O(logk)O(\log k)-competitive kk-server algorithm without advice. Technically, our main direct product theorem is obtained by extending an information theoretical lower bound technique due to Emek, Fraigniaud, Korman, and Ros\'en [ICALP'09]
    corecore