1,092 research outputs found

    An Intensional Concurrent Faithful Encoding of Turing Machines

    Get PDF
    The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect) encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions) that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.Comment: In Proceedings ICE 2014, arXiv:1410.701

    Categorical combinators

    Get PDF
    Our main aim is to present the connection between λ-calculus and Cartesian closed categories both in an untyped and purely syntactic setting. More specifically we establish a syntactic equivalence theorem between what we call categorical combinatory logic and λ-calculus with explicit products and projections, with β and η-rules as well as with surjective pairing. “Combinatory logic” is of course inspired by Curry's combinatory logic, based on the well-known S, K, I. Our combinatory logic is “categorical” because its combinators and rules are obtained by extracting untyped information from Cartesian closed categories (looking at arrows only, thus forgetting about objects). Compiling λ-calculus into these combinators happens to be natural and provokes only n log n code expansion. Moreover categorical combinatory logic is entirely faithful to β-reduction where combinatory logic needs additional rather complex and unnatural axioms to be. The connection easily extends to the corresponding typed calculi, where typed categorical combinatory logic is a free Cartesian closed category where the notion of terminal object is replaced by the explicit manipulation of applying (a function to its argument) and coupling (arguments to build datas in products). Our syntactic equivalences induce equivalences at the model level. The paper is intended as a mathematical foundation for developing implementations of functional programming languages based on a “categorical abstract machine,” as developed in a companion paper (Cousineau, Curien, and Mauny, in “Proceedings, ACM Conf. on Functional Programming Languages and Computer Architecture,” Nancy, 1985)

    A Foundational View on Integration Problems

    Full text link
    The integration of reasoning and computation services across system and language boundaries is a challenging problem of computer science. In this paper, we use integration for the scenario where we have two systems that we integrate by moving problems and solutions between them. While this scenario is often approached from an engineering perspective, we take a foundational view. Based on the generic declarative language MMT, we develop a theoretical framework for system integration using theories and partial theory morphisms. Because MMT permits representations of the meta-logical foundations themselves, this includes integration across logics. We discuss safe and unsafe integration schemes and devise a general form of safe integration

    A direct proof of the confluence of combinatory strong reduction

    Get PDF
    I give a proof of the confluence of combinatory strong reduction that does not use the one of lambda-calculus. I also give simple and direct proofs of a standardization theorem for this reduction and the strong normalization of simply typed terms.Comment: To appear in TC

    Expressiveness via Intensionality and Concurrency

    Get PDF
    International audienceComputation can be considered by taking into account two dimensions: extensional versus intensional, and sequential versus concurrent. Traditionally sequential extensional computation can be captured by the lambda-calculus. However, recent work shows that there are more expressive intensional calculi such as SF-calculus. Traditionally process calculi capture computation by encoding the lambda-calculus, such as in the pi-calculus. Following this increased expressiveness via intensionality, other recent work has shown that concurrent pattern calculus is more expressive than pi-calculus. This paper formalises the relative expressiveness of all four of these calculi by placing them on a square whose edges are irreversible encodings. This square is representative of a more general result: that expressiveness increases with both intensionality and concurrency

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl
    • …
    corecore