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Thomas Given-Wilson ⋆

INRIA, Paris, France

thomas.given-wilson@inria.fr

Abstract. Computation can be considered by taking into account two dimen-

sions: extensional versus intensional, and sequential versus concurrent. Tradition-

ally sequential extensional computation can be captured by the λ-calculus. How-

ever, recent work shows that there are more expressive intensional calculi such

as S F-calculus. Traditionally process calculi capture computation by encoding

the λ-calculus, such as in the π-calculus. Following this increased expressiveness

via intensionality, other recent work has shown that concurrent pattern calculus

is more expressive than π-calculus. This paper formalises the relative expressive-

ness of all four of these calculi by placing them on a square whose edges are

irreversible encodings. This square is representative of a more general result: that

expressiveness increases with both intensionality and concurrency.

1 Introduction

Computation can be characterised in two dimensions: extensional versus intensional;

and sequential versus concurrent. Extensional sequential computation models are those

whose functions cannot distinguish the internal structure of their arguments, here char-

acterised by the λ-calculus [3]. However, Jay & Given-Wilson show that λ-calculus

does not support all sequential computation [19]. In particular, there are intensional

Turing-computable functions, characterised by pattern-matching, that can be repre-

sented within S F-calculus but not within λ-calculus [19]. Of course λ-calculus can

encode Turing computation, but this is a weaker claim. Ever since Milner et al. showed

that the π-calculus generalises λ-calculus [23, 25], concurrency theorists expect pro-

cess calculi to subsume sequential computation as represented by λ-calculus [23, 25,

24]. Following from this, here extensional concurrent computation is characterised by

process calculi that do not communicate terms with internal structure, and, at least,

support λ-calculus. Intensional concurrent computation is represented by process cal-

culi whose communication includes terms with internal structure, and reductions that

depend upon the internal structure of terms. Here intensional concurrent computation

is demonstrated by concurrent pattern calculus (CPC) that not only generalises inten-

sional pattern-matching from sequential computation to pattern-unification in a process

calculus, but also increases the symmetry of interaction [13, 14].

These four calculi form the corners of a computation square

λv-calculus S F-calculus

π-calculus concurrent pattern calculus

✲

✲

❄ ❄
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where the left side is merely extensional and the right side also intensional; the top

edge is sequential and the bottom edge concurrent. All the arrows preserve reduction.

The horizontal (solid) arrows are homomorphisms in the sense that they also preserve

application or parallel composition. The vertical (dashed) arrows are parallel encodings

in that they map application to a parallel composition (with some machinery). Thus each

arrow represents increased expressive power with CPC completing the square.

This paper presents the formalisation of these expressiveness results for the four cal-

culi above. This involves adapting some popular definitions of encodings [15–17] and

then building upon various prior results [8, 23, 25, 13, 19, 11]. These can be combined

to yield the new expressiveness results here captured by the computation square.

The organisation of the paper is as follows. Section 2 reviews prior definitions of

encodings and defines the ones used in this paper. Section 3 reviews λ-calculus and

combinatory logic while introducing common definitions. Section 4 summarises in-

tensionality in the sequential setting and formalises the arrow across the top of the

square. Section 5 begins concurrency through π-calculus and its parallel encoding of

λv-calculus. Section 6 recalls concurrent pattern calculus and completes the results of

the computation square. Section 7 draws conclusions, considers related work, and dis-

cusses future work.

2 Encodings

This section recalls valid encodings [17] for formally relating process calculi and adapts

the definition to define homomorphisms and parallel encodings. The validity of valid

encodings in developing expressiveness studies emerges from the various works [15–

17], that have also recently inspired similar works [21, 22, 30]. Here the adaptations are

precise definitions of homomorphisms that give stronger positive results (the negative

results are not required to be as strong). The parallel encodings are defined to account

for the mixture of sequential and concurrent languages considered.

An encoding of a language L1 into another language L2 is a pair ([[ · ]], ϕ[[ ]]) where

[[ · ]] translates every L1-term into an L2-term and ϕ[[ ]] maps every name (of the source

language) into a tuple of k names (of the target language), for k > 0. The translation

[[ · ]] turns every term of the source language into a term of the target; in doing this, the

translation may fix some names to play a precise rôle or may translate a single name

into a tuple of names. This can be obtained by exploiting ϕ[[ ]].

Now consider only encodings that satisfy the following properties. Let a k-ary con-

text C( 1; . . . ; k) be a term with k holes { 1; . . . ; k} that appear exactly once each.

Moreover, denote with 7−→i and Z=⇒i the relations 7−→ (reduction relation) and Z=⇒ (the

reflexive transitive closure of 7−→) in languageLi; denote with 7−→ω
i

an infinite sequence

of reductions inLi. Moreover, let ≡i denote the structural equivalence relation for a lan-

guageLi, and ∼i denote a strong reference behavioural equivalence for languageLi and

≃i a weak reference behavioural equivalence. For simplicity the notation T 7−→i≡i T ′

denotes that there exists T ′′ such that T 7−→i T ′′ and T ′′ ≡i T ′, and may also be used

with Z=⇒i or ∼i or ≃i. Also, let P ⇓i mean that there exists P′ such that P Z=⇒i P′ and

P′ ≡i P′′ | √, for some P′′ where
√

is a specific process to indicate success. Finally, to
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simplify reading, let S range over terms of the source language (viz., L1) and T range

over terms of the target language (viz., L2).

Definition 1 (Valid Encoding (from [17])). An encoding ([[ · ]], ϕ[[ ]]) of L1 into L2 is

valid if it satisfies the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every subset of names

N, there exists a k-ary context CN
op( 1; . . . ; k) of L2 such that, for all S 1, . . . , S k

with fn(S 1, . . . , S k) = N, it holds that [[ op(S 1, . . . , S k) ]] = CN
op([[ S 1 ]]; . . . ; [[ S k ]]).

2. Name invariance: for every S and name substitution σ, it holds that

[[σS ]]

{

= σ′[[ S ]] if σ is injective

∼2 σ
′[[ S ]] otherwise

where σ′ is such that ϕ[[ ]](σ(a)) = σ′(ϕ[[ ]](a)) for every name a.

3. Operational correspondence:

– for all S Z=⇒1 S ′, it holds that [[ S ]] Z=⇒2∼2 [[ S ′ ]];
– for all [[ S ]] Z=⇒2 T, there exists S ′ such that S Z=⇒1S

′ and T Z=⇒2∼2[[ S ′ ]].

4. Divergence reflection: for every S such that [[ S ]] 7−→ ω
2

, it holds that

S 7−→ω
1

.

5. Success sensitiveness: for every S , it holds that S ⇓1 if and only if [[ S ]] ⇓2.

Observe that the definition of valid encoding is very general and, with the exception

of success sensitiveness, can apply to sequential languages such as λ-calculus as well as

process calculi. However, the relations presented in this work bring together a variety

of prior results and account for them in a stronger and more uniform manner. To this

end, the following definitions support the results. The first two define homomorphism

in the sequential and concurrent settings.

Definition 2 (Homomorphism (Sequential)). A (sequential) homomorphism is a

translation [[ · ]] from one language to another that preserves reduction and applica-

tion.

Definition 3 (Homomorphism (Concurrent)). A (concurrent) homomorphism is a

valid encoding whose translation preserves parallel composition.

The next is for encoding sequential languages into concurrent languages and is

strongly influenced by the definition of a valid encoding. Observe that [[ · ]]c indicates

an encoding from source terms to target terms that is parametrised by a name c.

Definition 4 (Parallel Encoding). An encoding ([[ · ]]c, ϕ[[ ]]) of L1 into L2 is a parallel

encoding if it satisfies the first four properties of a valid encoding (compositionality,

name invariance, operational correspondence (with ∼i replaced by ≃i), and divergence

reflection) and the following additional property.

5. Parallelisation: The translation of the application MN is of the form [[MN]]c
def
=

(νn1)(νn2)(R | [[M]]n1 | [[N]]n2) where R depends only upon c and n1 and n2.
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The weakening of the operational correspondence from strong behavioural equiva-

lence ∼ to weak behavioural equivalence ≃ is required to work with the existing results.

This weakening can be alleviated by compromising on other properties, e.g. composi-

tionality and parallelisation, and even strengthened to structural equivalence. However,

since the results here are building on those already in the literature, the definition is

adapted here with other approaches discussed later (in Section 6.2). Despite this weak-

ening, the preservation of reduction and divergence is maintained.

Parallelisation is a restriction on the more general compositionality criteria. Here

this ensures that in addition to compositionality, the translation must allow for inde-

pendent reduction of the components of an application. As the shift from sequential

to concurrent computation can exploit this to support parallel reductions, the definition

of parallel encoding encourages more flexibility in reduction since components can be

reduced independently.

The removal of the success sensitiveness property is for simplicity when using

prior results. It is not difficult to include success sensitiveness, this involves adding

the success primitive to the sequential languages and defining S ⇓, e.g. S ⇓ means that

S 7−→∗ √. However, this requires adding a test process Qc to the definition of paral-

lel encoding with success sensitiveness defined by: “for every S , it holds that S ⇓1 if

and only if [[ S ]]c | Qc ⇓2. However, since adding the success state
√

to λ-calculus and

combinatory logics would require redoing many existing results, it is easier to avoid the

added complexity since no clarity or gain in significance is made by adding it.

Encodings from concurrent languages into sequential ones have not been defined

specifically here since they prove impossible. The proof of these results relies merely

on the requirement of reduction preservation or operational correspondence, and so

shall be done on a case-by-case basis.

3 Sequential Extensional Computation

Both λ-calculus and traditional combinatory logic base reduction rules upon the appli-

cation of a function to one or more arguments. Functions in both models are extensional

in nature, that is a function does not have direct access to the internal structure of its ar-

guments. Thus, functions that are extensionally equal are indistinguishable within either

model even though they may have different normal forms.

The relationship between the λ-calculus and traditional combinatory logic is closer

than sharing application-based reduction and extensionality. There is a homomorphism

from call-by-value λv-calculus into any combinatory logic that supports the combinators

S and K [8, 3]. There is also a homomorphism from traditional combinatory logic to a

λ-calculus with more generous operational semantics [8, 3].

3.1 λ-calculus

The term syntax of the λ-calculus is given by

t ::= x | t t | λx.t .
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The free variables of a term are defined in the usual manner. A substitution σ is defined

as a partial function from variables to terms. The domain of σ is denoted dom(σ);

the free variables of σ, written fv(σ), is given by the union of the sets fv(σx) where

x ∈ dom(σ). The variables of σ, written vars(σ), are dom(σ) ∪ fv(σ). A substitution

σ avoids a variable x (or collection of variables µ) if x < vars(σ) (respectively µ ∩
vars(σ) = {}). Substitution composition is denotedσ2◦σ1 and indicates thatσ2◦σ1(t) =

σ2(σ1t). Note that all substitutions considered in this paper have finite domain. The

application of a substitution σ to a term t is defined as usual, as is α-conversion =α.

There are several variations of the λ-calculus with different operational semantics.

For construction of the computation square by exploiting the results of Milner et al. [23],

it is necessary to choose an operation semantics, such as call-by-value λv-calculus or

lazy λl-calculus. The choice here is to use call-by-value λv-calculus, although the results

can be reproduced for lazy λl-calculus as well. In addition a more generous operation

semantics for λ-calculus will be presented for later discussion and relations.

To formalise the reduction of call-by-value λv-calculus requires a notion of value v.

These are defined in the usual way, by

v ::= x | λx.t

consisting of variables and λ-abstractions.

Computation in the λv-calculus is through the βv-reduction rule

(λx.t)v 7−→v {v/x}t .

When an abstraction λx.t is applied to a value v then substitute v for x in the body t. The

reduction relation (also denoted 7−→v) is the smallest that satisfies the following rules

(λx.t)v 7−→v {v/x}t
s 7−→v s′

s t 7−→v s′ t

t 7−→v t′

s t 7−→v s t′
.

The transitive closure of the reduction relation is denoted 7−→∗v though the star may be

elided if it is obvious from the context.

The more generous operational semantics for the λ-calculus allows any term to be

the argument when defining β-reduction. Thus the more generous β-reduction rule is

(λx.s)t 7−→ {t/x}s

where t is any term of the λ-calculus. The reduction relation 7−→ and the transitive

closure thereof 7−→∗ are obvious adaptations from those for the λv-calculus. Observe

that any reduction 7−→v of λv-calculus is also a reduction 7−→ of λ-calculus.

3.2 Traditional Combinatory Logic

A combinatory calculus is given by a finite collection O of operators (meta-variable O)

that are used to define the O-combinators (meta-variables M,N, X,Y,Z) built from these

by application

M,N ::= O | MN .
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Syntactic equality of combinators will be denoted by ≡. The O-combinatory calculus

or O-calculus is given by the combinators plus their reduction rules.

Traditional combinatory logic can be represented by two combinators S and K [8]

so the S K-calculus has reduction rules

S MNX 7−→ MX(NX)

KXY 7−→ X .

The combinator S MNX duplicates X as the argument to both M and N. The combinator

KXY eliminates Y and returns X. The reduction relation 7−→ is as for λ-calculus.

Although this is sufficient to provide a direct account of functions in the style of

λ-calculus, an alternative is to consider the representation of arbitrary computable func-

tions that act upon combinators.

A symbolic function is defined to be an n-ary partial functionG of some combinatory

logic, i.e. a function of the combinators that preserves their equality, as determined

by the reduction rules. That is, if Xi = Yi for 1 ≤ i ≤ n then G(X1, X2, . . . , Xn) =

G(Y1,Y2, . . . ,Yn) if both sides are defined. A symbolic function is restricted to a set of

combinators, e.g. the normal forms, if its domain is within the given set.

A combinator G in a calculus represents G if

GX1 . . . Xn = G(X1, . . . , Xn)

whenever the right-hand side is defined. For example, the symbolic functions

S(X1, X2, X3) = X1X3(X2X3) and K(X1, X2) = X1 are represented by S and K, re-

spectively, in S K-calculus. Consider the symbolic function I(X) = X. In S KI-calculus

where I has the rule IY 7−→ Y then I is represented by I. In both S KI-calculus and

S K-calculus, I is represented by any combinator of the form S KX since S KXY =

KY(XY) = Y . For convenience define the identity combinator I in S K-calculus to be

S KK.

3.3 Relations

One of the goals of combinatory logic is to give an equational account of variable bind-

ing and substitution, particularly as it appears in λ-calculus. In order to represent λ-

abstraction, it is necessary to have some variables to work with. Given O as before,

define the O-terms by

M,N ::= x | O | MN

where x is as in λ-calculus. Free variables, substitutions, and symbolic computations

are defined just as for O-calculus.

Given a variable x and term M define a symbolic function G on terms by

G(X) = {X/x}M .

Note that if M has no free variables other than x then G is also a symbolic computation

of the combinatory logic. If every such function G on O-combinators is representable

then theO-combinatory logic is combinatorially complete in the sense of Curry [8, p. 5].
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Given S and K then G above can be represented by a term λ∗x.M given by

λ∗x.x = I

λ∗x.y = Ky if y , x

λ∗x.O = KO

λ∗x.MN = S (λ∗x.M)(λ∗x.N) .

The following lemma is a central result of combinatory logic [8] and Theorem 2.3

of [19]. This is sufficient to show there is a homomorphism from λv-calculus to any

combinatory calculus that represents S and K.

Lemma 1. Any combinatory calculus that is able to represent S and K is combinato-

rially complete.

Theorem 1. There is a homomorphism from λ-calculus into S K-calculus.

There is a standard translation from S K-calculus into λ-calculus that preserves re-

duction and supports the following lemma [8, 3].

Lemma 2 (Theorem 2.3.3 of [11]). Translation from S K-calculus to λ-calculus pre-

serves the reduction relation.

Theorem 2. There is a homomorphism from S K-calculus into λ-calculus.

Although the top left corner of the computation square is populated by λv-calculus,

the arrows out allow for either λv-calculus or S K-calculus to be used. Indeed, the ho-

momorphisms in both directions between λ-calculus and S K-calculus allow these two

calculi to be considered equivalent.

4 Sequential Intensional Computation

Intuitively intensional functions are more expressive than merely extensional functions,

however populating the top right corner of the computation square requires more for-

mality than intuition. The cleanest account of this is by considering combinatory logic.

Even in S K-calculus there are Turing-computable functions defined upon the com-

binators that cannot be represented within S K-calculus. For example, consider the func-

tion that reduces any combinator of the form S KX to X. Such a function cannot be rep-

resented in S K-calculus, or λ-calculus, as all combinators of the form S KX represent

the identity function. However, such a function is Turing-computable and definable

upon the combinators. This is an example of a more general problem of factorising

combinators that are both applications and stable under reduction.

Exploiting this factorisation is S F-calculus [19] that is able to support intensional

functions on combinators including a structural equality of normal forms. Thus S F-

calculus sits at the top right hand corner of the computation square. The arrow across

the top of the square is formalised by showing a homomorphism from S K-calculus into

S F-calculus. The lack of a converse has been proven by showing that the intensionality

of S F-calculus cannot be represented within S K-calculus, or λ-calculus [19].
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4.1 Symbolic Functions

Symbolic functions need not be merely extensional, indeed it is possible to define sym-

bolic functions that consider the structure of their arguments. Observe that each operator

O has an arity given by the minimum number of arguments it requires to instantiate a

rule. Thus, K has arity 2 while S has arity 3. A partially applied operator is a combina-

tor of the form OX1 . . . Xk where k is less than the arity of O. An operator with a positive

arity is an atom (meta-variable A). A partially applied operator that is an application is

a compound. Hence, the partially applied operators of S K-calculus are the atoms S and

K, and the compounds S M, S MN and KM for any M and N.

Now define a factorisation function F on combinators by

F (A,M,N) 7−→ M if A is an atom

F (XY,M,N) 7−→ NXY if XY is a compound.

Lemma 3 (Theorem 3.2 of [19]). Factorisation of S K-combinators is a symbolic com-

putation that is not representable within S K-calculus.

4.2 SF-calculus

When considering intensionality in a combinatory logic it is tempting to specify a fac-

torisation combinator F as a representative for F . However, F is defined using partially

applied operators, which cannot be known until all reduction rules are given, including

those for F. This circularity of definition is broken by beginning with a syntactic char-

acterisation of the combinators that are to be factorable.

The S F-calculus [19] has factorable forms given by S | S M | S MN | F | FM | FMN

and reduction rules

S MNX 7−→ MX(NX)

FOMN 7−→ M if O is S or F

F(XY)MN 7−→ NXY if XY is a factorable form.

The expressive power of S F-calculus subsumes that of S K-calculus since K is here

defined to be FF and I is defined to be S KK as before.

Lemma 4 (Theorem 5.2.3 of [11]). There is a homomorphism from S K-calculus into

S F-calculus.

Theorem 3 (Corollary 5.2.4 of [11]). There is a homomorphism from λv-calculus to

S F-calculus.

Theorem 4. There is no homomorphism from S F-calculus to λv-calculus.

Proof. Observe that FyS (FF(S (FF)(FF))) with y replaced by a combinator of the

form S KX reduces to X. By Lemma 3 it is impossible to represent this reduction in

S K-calculus and thus reduction cannot be preserved.

This completes the top edge of the computation square by showing that S F-calculus

subsumes λv-calculus and that the subsumption is irreversible. Indeed, these results hold

for λ-calculus [11, Theorem 5.2.6] and S K-calculus (by Lemma 3) as well.
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5 Concurrent Extensional Computation

The bottom left corner of the computation square considers extensional concurrent com-

putation, here defined to be extensional process calculi that subsume λ-calculus. The

π-calculus [25] holds a pivotal rôle amongst process calculi due to popularity, being

the first to represent topological changes, and subsuming λv-calculus [23]. Note that

although there are many π-calculi, the one here is that used by Milner so as to more

easily exploit previous results [23] (and here augmented with a success process
√

).

The processes for the π-calculus are given as follows and exploit a class of names

(denoted m, n, x, y, z, . . . similar to variables in the λ-calculus):

P ::= 0 | P |P | !P | (νa)P | a(b).P | a〈b〉.P | √ .

The names of the π-calculus are used for channels of communication and for informa-

tion being communicated. The free names of a process fn(P) are as usual. Substitutions

in the π-calculus are partial functions that map names to names, with domain, range,

free names, names, and avoidance, all straightforward adaptations from substitutions

of the λ-calculus. The application of a substitution to a process is defined in the usual

manner. Issues where substitutions must avoid restricted or input names are handled

by α-conversion =α that is the congruence relation defined in the usual manner. The

general structural equivalence relation ≡ is defined by:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
!P ≡ P | !P (νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

P | (νn)Q ≡ (νn)(P |Q) if n< fn(P)

The π-calculus has one reduction rule given by

a(b).P | a〈c〉.Q 7−→ {c/b}P | Q .

The reduction rule is then closed under parallel composition, restriction and structural

equivalence to yield the reduction relation 7−→ as follows:

P 7−→ P′

P | Q 7−→ P′ | Q
P 7−→ P′

(νn)P 7−→ (νn)P′
P ≡ Q Q 7−→ Q′ Q′ ≡ P′

P 7−→ P′
.

The reflexive, transitive closure of 7−→ is denoted Z=⇒.

Now that the π-calculus and process calculus concepts are recalled, it remains to

demonstrate that Milner’s encoding [23] can meet the criteria for a parallel encoding.

As the βv-reduction rule depends upon the argument being a value the translation

into π-calculus must be able to recognise values. Thus, Milner defines the following

[[y := λx.t]]
def
= !y(w).w(x).w(c).[[t]]c [[y := x]]

def
= !y(w).x〈w〉 .

Also the following translation of λv-terms

[[v]]c
def
= (νy)c〈y〉.[[y := v]] y not free in v

[[s t]]c
def
= (νq)(νr)(ap(c, q, r) | [[s]]q | [[t]]r)

ap(p, q, r)
def
= q(y).(νv)y〈v〉.r(z).v〈z〉.v〈p〉 .
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Lemma 5. The translation [[ · ]]c preserves and reflects reduction. That is:

1. If s 7−→v t then [[ s ]]c Z=⇒≃ [[ t ]]c;

2. if [[ s ]]c 7−→ Q then there exists Q′ and s′ such that Q Z=⇒ Q′ and Q′ ≃ [[ s′ ]]c and

either s 7−→v s′ or s = s′.

Theorem 5. The translation [[·]]c is a parallel encoding from λv-calculus to π-calculus.

There is some difficulty in attempting to define the analogue of a parallel encoding

or homomorphism from a language with a parallel composition operator into a language

without. However, this difficulty can be avoided by observing that any valid encoding,

parallel encoding, or homomorphism must preserve reduction. Reduction preservation

can then be exploited to show when an encoding is impossible. Here this is by exploit-

ing Theorem 14.4.12 of Barendregt [3], showing that λ-calculus is unable to render

concurrency or support concurrent computations.

Theorem 6. There is no reduction preserving encoding of π-calculus into λ-calculus.

6 Concurrent Intensional Computation

Intensionality in sequential computation yields greater expressive power so it is natural

to consider intensional concurrent computation. Intensionality in CPC is supported by

a generalisation of pattern-matching to symmetric pattern-unification that provides the

basis for defining interaction.

6.1 Concurrent Pattern Calculus

The patterns (meta-variables p, p′, p1, q, q
′, q1, . . .) are built using a class of names fa-

miliar from π-calculus and have the following forms

p ::= λx | x | pxq | p • p

Binding names λx denote an input sought by the pattern. Variable names x may be

output or tested for equality. Protected names pxq can only be tested for equality. A

compound combines two patterns p and q, its components, into a pattern p • q and is

left associative. The atoms are patterns that are not compounds and the atoms x and pxq

are defined to know x. The binding names of a pattern must be pairwise distinct.

A communicable pattern contains no binding or protected names. Given a pattern

p, the binding names bn(p), variable names vn(p), and protected names pn(p), are as

expected, with the free names fn(p) being the union of variable and protected names.

A substitution σ (also denoted σ1, ρ, ρ1, θ, θ1, . . .) is a partial function from names to

communicable patterns. Otherwise substitutions and their properties are familiar from

earlier sections and are applied to patterns in the obvious manner. (Observe that protec-

tion can be extended to a communicable pattern by pp • qq = ppq • pqq in the application

of a substitution to a protected name.)

The symmetric matching or unification {p ‖ q} of two patterns p and q attempts to

unify p and q by generating substitutions upon their binding names. When defined, the
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result is some pair of substitutions whose domains are the binding names of p and of q,

respectively. The rules to generate the substitutions are:

{x ‖ x} = {x ‖ pxq} = {pxq ‖ x} = {pxq ‖ pxq} def
= ({}, {})

{λx ‖ q} def
= ({q/x}, {}) if q is communicable

{p ‖ λx} def
= ({}, {p/x}) if p is communicable

{p1 • p2 ‖ q1 • q2}
def
= (σ1 ∪ σ2 , ρ1 ∪ ρ2) if {pi ‖ qi} = (σi, ρi) for i ∈ {1, 2}

Two atoms unify if they know the same name. A binding name unifies with any com-

municable pattern to produce a binding for its underlying name. Two compounds unify

if their corresponding components do; the resulting substitutions are given by taking

unions of those produced by unifying the components. Otherwise the patterns cannot

be unified and the matching is undefined.

The processes of CPC are the same as for π-calculus except for the input and output

replaced by the case p→ P with pattern p and body P. A case with the null process as

the body p→ 0 may also be written p when no ambiguity may occur.

The free names of processes, denoted fn(P), are defined as usual for all the tradi-

tional primitives and fn(p→ P) = fn(p) ∪ (fn(P)\bn(p)) for the case. As expected

the binding names of the pattern bind their free occurrences in the body. The appli-

cation σP of a substitution σ to a process P is defined in the usual manner to avoid

name capture. For cases this ensures that substitution avoids the binding names in the

pattern: σ(p → P) = (σp) → (σP) if σ avoids bn(p). Renaming of a case is handled

through α-conversion, =α, that is the congruence relation generated by the following

axiom p→ P =α ({λy/λx}p)→ ({y/x}P) when x ∈ bn(p), y < fn(P)∪bn(p). Renaming

of a restriction is as usual. The renaming of a binding name (e.g. by {λy/λx}) is also

as expected with the usual restrictions. The general structural equivalence relation ≡ is

defined just as in π-calculus.

CPC has one interaction axiom given by

(p→ P) | (q→ Q) 7−→ (σP) | (ρQ) if {p ‖ q} = (σ, ρ) .

It states that if the unification of two patterns p and q is defined and generates (σ, ρ), then

apply the substitutions σ and ρ to the bodies P and Q, respectively. If the matching of p

and q is undefined then no interaction occurs. The interaction rule is then closed under

parallel composition, restriction and structural equivalence in the usual manner. The

reflexive and transitive closure of 7−→ is denoted Z=⇒. Finally, the reference behavioural

equivalence relation ∼ for CPC is already well detailed [11, 12, 14].

6.2 Completing the Square

Support for both intensionality and concurrency places CPC at the bottom right corner

of the computation square. This section shows how S F-calculus and π-calculus can

both be subsumed by CPC, and thus completes the computation square.

Down the right side of the square there is a parallel encoding from S F-calculus into

CPC that also maps the combinators S and F to reserved names S and F, respectively.

The impossibility of finding a parallel encoding of CPC into S F-calculus is proved in
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the same manner as the relation between λv-calculus and π-calculus. Interestingly, in

contrast with the parallel encoding of λ-calculus into π-calculus, the parallel encoding

of S F-calculus into CPC does not fix a reduction strategy for S F-calculus. This is

achieved by exploiting the intensionality of CPC to directly encode the reduction rules

for S F-calculus into an S F-reducing process, or S F-machine. In turn, this process can

then operate on translated combinators and so support reduction and rewriting.

The square is completed by showing a homomorphism from π-calculus into CPC,

and by showing that there cannot be any homomorphism (or indeed a more general

valid encoding) from CPC into π-calculus.

SF-calculus. The S F-calculus combinators can be easily encoded into patterns by

defining the construction (| · |), exploiting reserved names S and F, as follows

(|S |) def
= S (|F|) def

= F (|MN|) def
= (|M|) • (|N |) .

Observe that the first two rules map the operators to the same names. The third rules

maps application to a compound of the components M and N.

By representing S F-calculus combinators in the pattern of a CPC case, the reduction

can then be driven by defining cases that recognise a reducible structure and perform

the appropriate operations. The reduction rules can be captured by matching on the

structure of the left hand side of the rule and reducing to the structure on the right. So

(considering each possible instance for the F reduction rules) they can be encoded by

cases as follows.

S • λm • λn • λx→ m • x • (n • x)

F • S • λm • λn→ m

F • F • λm • λn→ m

. . .

F • (F • λp • λq) • λm • λn→ n • (F • p) • q .

These processes capture the reduction rules, matching the pattern for the left hand side

and transforming it to the structure on the right hand side. Of course these process do not

capture the possibility of reduction of a sub-combinator, so further rules are required.

Rather than detail them all, consider the example of a reduction MNOP 7−→ MN′OP

that can be captured by

λm • (λu • λv • λw • λx) • λo • λp→ u • v • w • x→ λz→ m • z • o • p

This process unifies with a combinator MXOP where X is reducible (observable from

the structure), here binding the components of X to four names u, v, w and x. These

four names are then shared as a pattern, which can then be unified with another process

that can perform the reduction. The result will then (eventually) unify with λz and be

substituted back into m • z • o • p to complete the reduction.

To exploit these processes in constructing a parallel encoding requires the addition

of a name, used like a channel, to control application. Thus, prefix each pattern that
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!λc • (S • λm • λn • λx)→ c • (m • x • (n • x))

| !λc • (F • S • λm • λn)→ c • m

| !λc • (F • F • λm • λn)→ c • m

| !λc • (F • (S • λq) • λm • λn)→ c • (n • S • q)

| !λc • (F • (F • λq) • λm • λn)→ c • (n • F • q)

| !λc • (F • (S • λp • λq) • λm • λn)→ c • (n • (S • p) • q)

| !λc • (F • (F • λp • λq) • λm • λn)→ c • (n • (F • p) • q)

| !λc • (λu • λv • λw • λx • λy)

→ (νd)d • (u • v • w • x)→ d • λz→ c • (z • y)

| !λc • (λm • λn • λo • (λu • λv • λw • λx))

→ (νd)d • (u • v • w • x)→ d • λz→ c • (m • n • o • z)

| !λc • (λm • λn • (λu • λv • λw • λx) • λp)

→ (νd)d • (u • v • w • x)→ d • λz→ c • (m • n • z • p)

| !λc • (λm • (λu • λv • λw • λx) • λo • λp)

→ (νd)d • (u • v • w • x)→ d • λz→ c • (m • z • o • p)

Fig. 1. The S F-reducing process R.

matches the structure of an S F-combinator with a binding name λc and add this to the

result, e.g. λc • (F • S • λm • λn)→ c •m. Now the processes that handle each possible

reduction rule can be placed under a replication and in parallel composition with each

other. This yields the S F-reducing process R as shown in Figure 1 where the last four

rules capture reduction of sub-combinators.

The translation [[·]]c from S F-combinators into CPC processes is here parametrised

by a name c and combines application with a process ap(c,m, n). This is similar to

Milner’s encoding from λv-calculus into π-calculus and allows the parallel encoding to

exploit compositional encoding of sub-terms as processes and thus parallel reduction,

while preventing confusion of application.

The translation [[·]]c of S F-combinators into CPC, exploiting the S F-reducing pro-

cess R and reserved names S and F, is defined as follows:

[[S ]]c
def
= c • S | R

[[F]]c
def
= c • F | R

[[MN]]c
def
= (νm)(νn)(ap(c,m, n) | [[M]]m | [[N]]n)

ap(c,m, n)
def
= m • λx→ n • λy→ c • (x • y) | R .

The following lemmas are at the core of the operational correspondence and di-

vergence reflection components of the proof of valid encoding, similar to Milnder’s

Theorem 7.7 [23]. Further, it provides a general sense of how to capture the reduc-

tion of combinatory logics or similar rewrite systems. (Note that the results exploit that

R | R ∼ R to remove redundant copies of R [11, Theorem 8.7.2].)

Lemma 6. Given an S F-combinator M the translation [[M]]c has a reduction sequence

to a process of the form c • (|M|) | R.

Lemma 7 (Theorem 7.1.2 of [11]). Given an S F-combinator M the translation [[M]]c

preserves reduction.
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Lemma 8. The translation [[ · ]]c preserves and reflects reduction. That is:

1. If M 7−→ N then [[ M ]]c Z=⇒≃ [[ N ]]c;

2. if [[ M ]]c 7−→ Q then there exists Q′ and N such that Q Z=⇒ Q′ and Q′ ≃ [[ N ]]c and

either M 7−→ N or M = N.

Theorem 7. The translation [[·]]c is a parallel encoding from S F-calculus to CPC.

The lack of an encoding of CPC (or even π-calculus) into S F-calculus can be

proved in the same manner as Theorem 6 for showing no encoding of π-calculus into

λ-calculus.

Theorem 8. There is no reduction preserving encoding from CPC into S F-calculus.

It may appear that the factorisation operator F adds some expressiveness that could

be used to capture the parallel-or function g. Perhaps use F to switch on the result of

the first function so that (assuming true is some operator T then) g x y is represented

by FxT(K(Ky)) that reduces to T when x = T and to K(Ky)MN Z=⇒ y when x = MN

that somehow is factorable but not terminating. However, this kind of attempt is equiv-

alent to exploiting factorisation to detect termination and turns out to be paradoxical as

demonstrated in the proof of Theorem 5.1 of [19].

This completes the arrow down the right side of the computation square. The rest of

this section discusses some properties of translations and the diagonal from the top left

to the bottom right corner of the square.

Observe that the parallel encoding from S F-calculus into CPC does not require

the choice of a reduction strategy, unlike Milner’s encodings from λ-calculus into π-

calculus. The structure of patterns and peculiarities of pattern-unification allow the re-

duction relation to be directly rendered by CPC. In some sense this is similar to en-

coding the S F-combinators onto the tape of a Turing machine, the pattern (| · |), and

providing another process to be the state that reads the tape and performs operations

upon it, the S F-reducing process R. This approach can also be adapted in a straight-

forward manner to support a parallel encoding of S K-calculus into CPC, that like the

encoding of S F-calculus does not fix a reduction strategy.

Theorem 9. There is a translation [[·]]c that is a parallel encoding from S K-calculus

into CPC.

The translation from S F-calculus to CPC presented here is designed to map ap-

plication to parallel composition (with some restriction and process R) so as to meet

the parallelisation and compositionality criteria for a parallel encoding. However, the

construction (| · |) can be used to provide a cleaner translation if these are not required.

Consider an alternative translation [[·]]c parametrised by a name c as usual and defined

by [[M]]c def
= c • (|M|) | R. Such a translation still supports name invariance, operational

correspondence (up to structural equivalence ≡ instead of weak behavioural equivalence

≃), and divergence reflection.
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π-calculus. Across the bottom of the computation square there is a homomorphism

from π-calculus into CPC. The converse separation result can be proved multiple ways

[13, 11, 14].

The translation [[ · ]] from π-calculus into CPC is homomorphic on all process forms

except for the input and output which are translated as follows:

[[a(b).P]]
def
= a • λb • in→ [[P]]

[[a〈b〉.P]]
def
= a • b • λx→ [[P]] x not free in P.

Here in is any name, a symbolic name is used for clarity but no result relies upon this

choice. The fresh name x is used to prevent the introduction of new reductions due to

CPC’s symmetric matching.

Lemma 9 (Corollary 7.2.3 of [11]). The translation [[ · ]] from π-calculus into CPC is

a valid encoding.

Theorem 10. There is a homomorphism from π-calculus into CPC.

Thus the translation provided above is a homomorphism from π-calculus into CPC.

Now consider the converse separation result.

Lemma 10 (Theorem 7.2.5 of [11]). There is no valid encoding of CPC into π-

calculus.

Theorem 11. There is no homomorphism from CPC into π-calculus.

7 Conclusions and Future Work

This work illustrates that there are increases in expressive power by shifting along two

dimensions: from extensional to intensional, and from sequential to concurrent. This

is best illustrated by the computation square that relates λv-calculus, S F-calculus, π-

calculus, and CPC as follows

λv-calculus S F-calculus

π-calculus concurrent pattern calculus

✲

✲

❄ ❄

where the left side is extensional, the right side intensional, the top side sequential,

and the bottom side concurrent. The horizontal arrows are homomorphisms that map

application/parallel composition to itself, and preserve and reflect reduction. The ver-

tical arrows are parallel encodings that map application to parallel composition (with

some extra machinery), and preserve and reflect reduction. Further, there are no reverse

arrows as each arrow signifies an increase in expressive power.

Such a square identifies relations that are more general than simply the choice of

calculi here. The top left corner could be populated by λv-calculus or λl-calculus with

minimal changes to the proofs. Alternatively, choosing λ-calculus or S K-calculus may
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also hold, although a parallel encoding into π-calculus requires some work. The top

right corner could be populated by any of the structure complete combinatory log-

ics without much effort [19, 11]. It may also be possible to place a pattern calculus

[20, 18], at the top right. The bottom left corner is also open to many other calculi:

monadic/polyadic synchronous/asynchronous π-calculus could replace π-calculus with

no significant changes to the results [11, 14]. Similarly there are, and will be, other pro-

cess calculi that can take the place of CPC at the bottom right. For Spi calculus [1] an

encoding of S F-calculus is delicate due to correctly handling reduction and not intro-

ducing infinite reductions or blocking on Spi calculus primitives and reductions. For

Psi calculus [4] the encoding can be achieved very similarly to CPC, although arguably

the implicit computation component of Psi calculus could simply allow for S F-calculus

with the rest being moot. Although multiple process calculi may populate the bottom

right hand corner, the elegance of CPC’s intensionality is illustrated by the construction

(| · |) for combinatory logics.

Related Work

The choice of relations here is influenced by existing approaches. Homomorphisms in

the sequential setting are standard [8, 3, 10]. Valid encodings are popular [15–17, 21,

22, 30] albeit not the only approach as other ways to relate process calculi are also used

that vary on the choice to map parallel composition to parallel composition (i.e. the

homomorphism requirement here) [27, 6, 9, 26, 30]. Since the choice here is to build on

prior results, valid encodings are the obvious basis for relating π-calculus and CPC,

but no doubt this could be formalised under different criteria. Finally, the definition

of parallel encodings here is to exploit the existing encodings in the literature and to

be similar to valid encodings/homomorphisms. However, other approaches are possible

as in [23, 28] and doubtless many more as encoding λ-calculus into process calculi is

common [5, 25, 7, 24].

The separation results here build upon results already in the literature. For showing

the inability to encoding concurrent languages into sequential, the work of Abramsky

[2] and Plotkin [29] can also be considered. The impossibility of encoding CPC into

π-calculus can be proved by using matching degree or symmetry [11, proofs for Theo-

rem 7.2.5].

Future Work

Future work may proceed along several directions. The techniques used to encode S F-

calculus into CPC can be generalised for any combinatory logic, indeed it is likely a

general result can be proved for all similar rewrite systems. This approach could also

be used to clarify the relation between Turing machines and process calculi directly,

rather than through λ-calculus. Another path of exploration is to generalise the account

of intensionality in concurrency with full results in a general manner, this would in-

clude formalising the intensionality (or lack of) of Spi calculus, Psi calculus, and other

popular process calculi.
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Appendix

This appendix provides greater detail for proofs omitted in the body of the paper.

Lemma 11. For all terms M and N and variables x there is a reduction (λ∗x.M) N 7−→∗
{N/x}M.

Proof. The proof straightforward is by induction on the structure of the combinator M.

Proof (Lemma 1). Given G(X) = {X/x}M as above define G to be λ∗x.M and apply

Lemma 11.

Proof (Theorem 1). Straightforward by definition of the translation and Lemma 1.

Proof (Theorem 2). Straightforward by definition of the translation and Lemma 2.

Proof (Lemma 5). The first part can be proved by exploiting Milner’s Theorem 7.7

[23]. The second is by considering the reduction [[ s ]]c 7−→ Q which must arise from

the encoding of an application. It is then straightforward to show that either: the reduc-

tions Q Z=⇒ Q′ correspond only to translated applications and thus Q′ ≃ [[ s ]]c; or the

reductions are due to a λv-abstraction and thus Q′ ≃ [[ s′ ]]c and s 7−→v s′.

Proof (Theorem 5). Compositionality, parallelisation, and name invariance hold by con-

struction. Operational correspondence follows from Lemma 5. Divergence reflection

can be proved by observing that the only reductions introduced in the translation that

do not correspond to reductions in the source language are from translated applications,

and these are bounded by the size of the source term.

Proof (Theorem 6). Define the parallel-or function and show that it can be represented

in π-calculus. The parallel-or function is a function g(x, y) that satisfies the following

three rules g(⊥,⊥) 7−→∗ ⊥ and g(T,⊥) 7−→∗ T and g(⊥, T) 7−→∗ T where ⊥
represents non-termination and T represents true. Such a function is trivial to encode

in π-calculus by g(n1, n2) = G = n1(x).m〈x〉.0 | n2(x).m〈x〉.0. Consider G in parallel

with two processes P1 and P2 that output their result on n1 and n2, respectively. If either

P1 or P2 outputs T then G will also output T along m. Clearly π-calculus can represent

the parallel-or function, and since Barendregt’s Theorem 14.4.12 shows that λ-calculus

cannot, there cannot be any reduction preserving encoding of π-calculus into λ-calculus.

Proof (Lemma 6). The proof is by induction on the structure of M.

– If M is S or F then [[M]]c = c • M | R = c • (|M|) | R and the result is immediate.
– If M is of the form M1M2 then [[M]]c is of the form

(νm)(νn)(m • λx→ n • λy→ c • (x • y) | R | [[M1]]m | [[M2]]n) .

By two applications of induction, [[M1]]m Z=⇒ m • (|M1|) | R and also [[M2]]n Z=⇒
n • (|M2|) | R. Now there are reductions as follows:

[[M]]c Z=⇒ (νm)(νn)(m • λx→ n • λy→ c • (x • y) | R
| m • (|M1|) | n • (|M2|))

7−→ (νm)(νn)(n • λy→ c • ((|M1|) • y) | R | n • (|M2|))
7−→ (νm)(νn)(c • ((|M1|) • (|M2|)) | R)

= c • (|M1M2|) | R
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yielding the required result.

Proof (Lemma 8). The first part can be proved by exploiting Lemmas 6 and 7. The sec-

ond is by considering the reduction [[ M ]]c 7−→ Q which must arise from the encoding

of an application. It is then straightforward to show that either: the reductions Q Z=⇒ Q′

correspond only to rebuilding the structure as in Lemma 6; or the reductions correspond

to a reduction M 7−→ N and Q′ ≃ [[ N ]]c.

Proof (Theorem 7). Compositionality, parallelisation, and name invariance hold by con-

struction. Operational correspondence follows from Lemma 7. Divergence reflection

can be proved by observing that the only reductions introduced in the translation that

do not correspond to reductions in the source language are from translated applications,

and these are bounded by the size of the source term.

Proof (Theorem 8). The same technique as for Theorem 6 can be used.

Proof (Theorem 9). Straightforward by adapting the techniques used for the translation

[[·]]c from S F-calculus to CPC that is a parallel encoding.

Proof (Theorem 10). By the definition of translation [[ · ]] and Lemma 9.

Proof (Theorem 11). By Lemma 10.
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