
A direct proof of the confluence of combinatory strong

reduction

René David

To cite this version:

René David. A direct proof of the confluence of combinatory strong reduction. Theoretical
Computer Science, Elsevier, 2009, 410 (42), pp.4204-4215. <hal-00384573>

HAL Id: hal-00384573

https://hal.archives-ouvertes.fr/hal-00384573

Submitted on 15 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00384573

A direct proof of the confluence

of combinatory strong reduction

René David

Université de Savoie, Campus Scientifique

73376 Le Bourget du Lac, France.

Email : david @univ-savoie.fr

May 15, 2009

Abstract

I give a proof of the confluence of combinatory strong reduction that does

not use the one of λ-calculus. I also give simple and direct proofs of a stan-

dardization theorem for this reduction and the strong normalization of simply

typed terms.

1 Introduction

Combinatory Logic (see [2], [3]) is a first order language that simulates the λ-calculus
without using bounded variables. But, at present, the known proofs of confluence
are all based on the confluence of the λ-calculus which has to be proved before and
thus Combinatory Logic is not a self-contained theory. The question of getting a
direct proof of this confluence was raised long ago in [2] and appears in the TLCA
list of open problems. I give here such a proof.

The paper is organized as follows. Section 2 gives the main definitions of Com-
binatory Logic, states the theorem and the idea of the proof. Section 3 gives the
proof of the confluence of an auxiliary system. Section 4 gives the equivalence of
the two systems and deduce the confluence of the original one. Section 5 gives a
standardization theorem and section 6 gives a direct proof of strong normalization
for simply typed terms. Finally, I conclude in section 7 with some remarks.

2 The idea of the proof of confluence

2.1 Combinatory Logic

Definition 1 The set C of combinators is defined by the following grammar (where
x denotes a variable)

C := x | K | S | I | (C C)

In the literature, the objects determined by this grammar are usually called
CL-terms and the word combinator is given for closed CL-terms. However since, in
section 3, the word term will be used for something slightly different, I prefer to
keep the word combinator here.

Definition 2 For u ∈ C, the term [x]u is defined, by induction on u, by the
following rules

1

1. [x]u = Ku if x 6∈ u

2. [x]x = I

3. [x](u x) = u if x 6∈ u

4. [x](u v) = (S [x]u [x]v) if none of the previous rules apply.

Definition 3 The reduction on combinators is the closure by contexts of the fol-
lowing rules.

1. (K u v) ≻ u (S u v w) ≻ (u w (v w)) (I u) ≻ u

2. [x]u ≻ [x]v if u ≻ v

I recall here usual notions about reductions.

Definition 4 Let → be a notion of reduction.

• As usual, →∗ denotes the reflexive and transitive closure of →.

• The reduction → is locally confluent if, for any term u, the following holds.
If u → u1 and u → u2, then u1 →∗ u3 and u2 →∗ u3 for some u3.

• The reduction → commutes with the reduction →1 if, for any term u, the
following holds. If u →∗ u1 and u →∗

1 u2 then u1 →∗

1 u3, u2 →∗ u3 for some
u3

• The reduction → is confluent if it commutes with itself.

• A term u is strongly normalizing (denoted as u ∈ SN) if there is no infinite
reduction of u.

Remark 5 Rule (2) of definition 3 is fundamental to have the equivalence of com-
binatory logic (denote as LC) and λ-calculus (denoted as Λ) in the following sense.
Let H be the translation between Λ and LC defined by

H(x) = x H((u1 u2)) = (H(u1) H(u2)) H(λx.u) = [x]H(u)

Without rule (2), the compatibility property between Λ and LC (i.e. if t reduces to
t′, then H(t) reduces to H(t′)) would not be true. This is because the reduction in
LC will not allow a reduction below a λ. For example, let t = λx.(λy.x x). Then
H(t) = [x](K x x) = (S K I) is normal whereas t is not.

Note that without rule (2) of definition 3 (this reduction is then called weak
reduction), the confluence would be trivially proved by the method of parallel re-
ductions.

Remark 6 The confluence of the reduction ≻ depends on the good interaction
between rule (2) of definition 3 and clause (3) of definition 2 (which corresponds,
intuitively, to the η-equality of the λ-calculus). In fact, the confluence of ≻ would
not be true if clause (3) of definition 2 had been omitted. The reason is the following.
Let u and v be two combinators. Assume variable x occurs in u but not in v and u
reduces to u′ for some u′ that does not contain x (for example u = K y x). Then,
by applying rule (2) of definition 3, we have
(1) [x](u v) = (S [x]u (K v)) ≻ (S [x]u′ (K v)) = (S (K u′) (K v))

and
(2) [x](u v) ≻ [x](u′ v) = (K (u′ v))

2

• Without clause (3) of definition 2 the term (S (K u′) (K v)) is not of the
form [x]w, so that the two terms (K (u′ v)) and (S (K u′) (K v)) are not
reducible to a common term.

• With clause (3) of definition 2 the term (S (K u′) (K v)) is of the form [x]w.

(S (K u′) (K v)) = [x](S (K u′) (K v) x)

from which

[x](S (K u′) (K v) x) ≻ [x](K u′ x (K v x)) ≻∗ [x](u′ v) = (K (u′ v))

Thus the two terms (K (u′ v)) and (S (K u′) (K v)) are reducible to a common
term.

The main result of this paper is the following theorem.

Theorem 7 The reduction ≻ on combinators is confluent.

2.2 The idea of the proof

I want to prove the confluence by using the same method as in [1] i.e. by proving first
a theorem on finiteness of developments. Then, by this theorem, Newman’s Lemma
and the local confluence of the developments we get the confluence of developments.
Then it remains to show that the reduction itself is the transitive closure of the
developments.

But the given system is quite hard to study because it is difficult to mark
the redexes and thus to give a precise definition for a theorem on finiteness of
developments. This is also because the form of a term does not determine easily
its redexes. The main technical reason is the following. We should think that any
reduct of [x]u would have the form [x]u′ for some reduct u′ of u. But this property,
which is trivial in the λ-calculus, is not true here. Here is an example. Let u, v be
combinators, x be a variable that occurs both in u and v and let t = [x](u v) =
(S [x]u [x]v). Then, it is easy to check that t = ([y][x](u (y x)) [x]v). Now if
u = (S u1 u2) then t reduces to t′ = ([y][x](u1 (y x) (u2 (y x))) [x]v) and it is easy
to check that t′ cannot be written as [x]w for some reduct w of (u v). Note that,
in the λ-calculus, the corresponding equality i.e. λx.(u v) = (λyx.(u (y x)) λx.v)
needs β-reductions and not only η-reductions whereas in Combinatory Logic it only
comes from the η-rule.

Thus I will first prove the confluence of an auxiliary system. This system will
be shown to be equivalent to the other one in the sense that the symmetric and
transitive closure of both systems are the same. Then I will deduce the confluence
of the first system from the one of the second.

The auxiliary system treats separately the reductions that, intuitively, corre-
sponds in the λ-calculus to β and η. To prove the confluence of this system, I
prove the confluence of β. This is done, as mentioned above, by proving a the-
orem on finiteness of developments. Note that the fact that the reduction is the
transitive closure of developments (which is trivial in the λ-calculus) is not so easy
here. I deduce the confluence of the whole system (intuitively β and η) by another
commutation lemma.

Lemma 8 (Newman’s Lemma) Let → be a notion of reduction that is locally
confluent and strongly normalizing. Then → is confluent.

3

3 An auxiliary system

To define this new system, I first remove the η-equality in the definition of the
abstraction.

Definition 9 1. λx.u = (K u) if x 6∈ u

2. λx.x = I

3. λx.(u v) = (S λx.u λx.v) if none of the previous rules apply.

and I add new reduction rules. In Definition 10 below rule (2) is necessary to have
confluence. Rule (3) corresponds to the η-reduction and is necessary to have the
equivalence with the other system.

Definition 10 1. (K u v) → u (S u v w) → (u w (v w)) (I u) → u

2. (S (K u) (K v)) → (K (u v))

3. (S (K u) I) → u

4. λx.u → λx.v if u → v

It is important to note that the two reductions ≻ and → are not the same i.e.
there are combinators such that u →∗ v for some v but u does not reduce to v by
≻ and, similarly, there are combinators such that u ≻∗ v for some v but u does
not reduce to v by →. Here are examples. Let u = [y][x](S x x (y x)). Then
u ≻ [y][x](x (y x) (x (y x))) and it is easy to check that u is normal for →. Let
u1 = λx.(S y x x) → λx.(y x (x x)) = v and it is not too difficult to check that u
does not reduce to v by ≻.

Although the two reductions ≻ and → are not the same, we now show that they
give the same equations on combinators. I denote by ≡ the equivalence relation
induced by ≻ i.e. u ≡ v iff there is a sequence u0, ..., un of combinators such that
u0 = u, un = v and, for each i, either ui ≻ ui+1 or ui+1 ≻ ui. The equivalence
induced by → will be denoted by ≈.

Lemma 11 1. For each u, v, (S (K u) I) ≻∗ u and (S (K u) (K v)) ≻∗

(K (u v))

2. For each u, λx.u →∗ [x]u and λx.u ≻∗ [x]u.

Proof

1. Let x be a fresh variable. Then, (S (K u) I) = [x](S (K u) I x) ≻
[x](K u x (I x)) ≻∗ [x](u x) = u and (S (K u) (K v)) = [x](S (K u) (K v) x) ≻
[x](K u x (K v x)) ≻∗ [x](u v) = (K (u v))).

2. This follows immediately from the first point.
�

Theorem 12 Let u, v be combinators. Then u ≡ v iff u ≈ v.

Proof It is enough to show that if u ≻ v then u ≈ v and if u → v then u ≡ v.
Each point is proved by induction on the level of the reduction. The result is trivial
for the level 0. Assume then that the level is at least 1. For the first direction,
I have to show that, if u ≻ v then [x]u ≈ [x]v. By the IH we know that u ≈ v
and it is thus enough to show that, if u → v, then [x]u ≈ [x]v. By the previous
lemma, we have λx.u → [x]u and, since λx.u → λx.v → [x]v, we are done. For the
other direction, we have to prove that, if u ≻ v, then λx.u ≡ λx.v. This is because
λx.u ≻ [x]u ≻ [x]v and λx.v ≻ [x]v. �

4

Theorem 13 The reduction → on combinators is confluent.

As mentioned before, to prove this theorem I first prove the confluence of the
system where the η-reduction (i.e. rule (3) of definition 10) has been removed. The
theorem on finiteness of developments of this system can be formalized as theorem
33 below. I need some new definitions.

3.1 Some definitions

Definition 14 Let V be an infinite set of variables.

• Let A = V ∪ {Si / i = 0, 1, 2, 3} ∪ {Ki / i = 0, 1} ∪ {Ii / i = 0, 1}. The
elements of A will be called atoms.

• The set of terms is defined by the following grammar

T := A | (T T)

• The size of a term (denoted as size(t)) is defined by the following rules: for
α ∈ A, size(α) = 1 and size((u v)) = size(u) + size(v) + 1.

The meaning of the indices on S, K, I is the following. First, I want to mark
the redexes that are allowed to be reduced. I do this by simply indexing the letters
S, K, I. The index 0 means that the symbol is not marked (i.e. we are not allowed
to reduce the corresponding redex), the index 1 means that the redex is allowed.

I also want to indicate whether or not a combinator S, K, I is the first symbol
of a term of the form λx.u for which I want to reduce in u. Actually, for K, I there
is nothing to do because a variable has no redex and, since λx.u = (K u) when x
does not occur in u, the redexes in u are, in fact, already visible at the top level.
But for S this will be useful and I need thus 4 indices.

• S0 is an S that is neither marked nor introduced by a λ,

• S1 is an S that is marked but not introduced by a λ,

• S2 is an S that is not marked but introduced by a λ

• S3 is an S that is marked and introduced by a λ.

Definition 15 Let u be a term and x be a variable. I define, for i = 0, 1 the set
of terms (denoted as λix.t) by the following rules.

1. if t = x, λix.t = {Ii}

2. if t 6= x is an atom, λix.t = {(Ki t)}

3. if t = (u v) and x 6∈ t, λix.t = {(Ki t)}∪{(Si+2 u′ v′) | u′ ∈ λix.u, v′ ∈ λix.v}

4. if t = (u v) and x ∈ t, λix.t = {(Si+2 u′ v′) | u′ ∈ λix.u, v′ ∈ λix.v}.

The reason of this unusual definition and, in particular, the fact that λix.t
represents a set of terms instead of a single term, is the following. It will be useful
to ensure that the set of terms of the form λx.u is closed by reduction. But this is
not true if the abstraction is defined by the rules of definition 9.

Here is an example. Let u and v be two combinators. Assume variable x occurs
in u but not in v and u reduces to u′ for some u′ that does not contain x. As
shown in points (1) and (2) of Remark 6, λx.(u v) reduces to (S (K u′) (K v)) and

5

(K (u′ v)). Allowing, in such a case, both (K (u′ v)) and (S (K u′) (K v)) to be
in λx.(u′ v) will repair this problem.

The given definition is then an indexed version of this idea. The index 1 (resp.
0) will mean that the S, K, I introduced by the definition are marked (resp. are
not marked) and thus allow a redex to be reduced. Note that the i + 2 indexing S
means (depending whether i = 1 or i = 0) that S comes from a λ and is (or is not)
marked.

Definition 16 The reduction (denoted as t⊲t′) on terms is the closure by contexts
of the following rules

1. (a) For i = 1, 3 (Si u v w) ⊲ (u w (v w))

(b) (K1 u v) ⊲ u and (I1 u) ⊲ u

(c) For i = 0, 1 (Si+2 (Ki u) (Ki v)) ⊲ (Ki (u v))

(d) For i = 0, 1, if u ⊲ v, t ∈ λix.u and t′ ∈ λix.v, then t ⊲ t′

2. The level of a reduction (denoted as lvl(t ⊲ t′)) is defined as follows.

• If t ⊲ t′ by using rule (a),(b) or (c), the level is 0.

• t ⊲ t′ by using rule (d), the level is lvl(u ⊲ v) + 1.

Remarks and examples
These rules correspond to the indexed version of the rules (1, 2, 4) of definition 10

combined with the fact that λx.u now is a set of terms.
For example, if x does not occur in (u v) and u ⊲u′, since (Ki (u v)) ∈ λix.(u v)

and (Si+2 (Ki u′) (Ki v)) ∈ λix.(u′ v) we have (Ki (u v)) ⊲ (Si+2 (Ki u′) (Ki v)).
Note that (K (u v)) does not reduce to (S (K u′) (K v)) by the rules of Definition 10.

3.2 Fair terms

We will show the confluence of ⊲ not of the entire set of terms but on some subset
(the set of fair terms) that we now define. This is because we need a set that is
closed by reduction (see Lemma 31).

Notation 17 • Let E be a set of terms and −→u be a sequence of terms (resp.
f be function into terms). I will write −→u ∈ E (resp. f ∈ E) to express the
fact that each term of the sequence −→u (resp. in the image of f) is in E.

• Let −→u be a finite (possibly empty) sequence of terms and v be a term. I denote
by (v −→u) the term (v u1 ... un) where −→u = u1, ..., un.

Definition 18 • An address is a finite list of elements of the set {l, r}.

• The empty list will be denoted by ε and [a :: l] (resp. [l :: a]) will denote the
list obtained from a by adding l at the end (resp. at the beginning) of a and
similarly for r.

• If a, a′ are addresses, I will denote by a < a′ the fact that a is an initial
segment of a′.

• Let u be a term. I will denote by ua the sub-term of u at the address a. More
precisely, ua is defined by the following rules: uε = u, (u v)[l::a] = ua and
(u v)[r::a] = va.

Definition 19 • Let u be a term and f be a function from a set E of addresses
in u into terms. I say that f is adequate for u (I will also say (u, f) is
adequate) if there are no addresses a, a′ in E such that a < a′.

6

• Let (u, f) be adequate and x be a variable. Then φx(u, f) is a term obtained
by replacing in u, for each a ∈ dom(f), the term at address a by (wa f(a))
for some wa ∈ λ1x.ua.

• Let u be a term, x1, ..., xn (resp. f1, ..., fn) be a sequence (possibly empty) of
variables (resp. of functions). The term φx1

(φx2
(...(φxn

(u, fn), fn−1)...)f1)

will be denoted by φ(u,−→x ,
−→
f) or simply φ(u) if we do not need to mention

explicitly −→x ,
−→
f or if they are clear from the context.

Comments and examples
A typical term of the form φx(u, f) is obtained as follows. Let t = (λ1x.u v).

First reduce the head redex of t (this intuitively means: do the β-reduction and
introduce a kind of explicit substitution [x := v]) and then propagate (not neces-
sarily completely) this substitution inside u (this intuitively means do some S, K, I
reductions at the top level), possibly doing some (different) reductions in the (dif-
ferent) occurrences of v. The term obtained in this way is a typical term of the
form φx(u, f). Here is an example.

Let u = (y x x), v, v′ be combinators and let f be such that f([l]) = v and
f([r]) = v′. Then φx(u, f) = (S3 (K1 y) I1 v (I1 v′)). Remark that, if v ⊲ v′, we
have (λ1x.u v) ⊲ φx(u, f).

Note that, even if we only need φx(u, f) in case the terms in the image of f are
reducts of a single term, we do not ask this property in the definition.

Finally note that, in the same way that x does not occur in λix.u, it does not
occur in φx(u, f). This implies that, as usual, when we substitute a variable y by
some term v in a term of the form λix.u or φx(u, f) we may assume (by possibly
renaming x with a fresh name) that x does not occur in v, avoiding then its capture.

Definition 20 The set F of fair terms is defined by the following grammar.

1. x, S0, K0, I0 are fair

2. If u, v are fair then so is (u v).

3. If u is fair and t ∈ λ0x.u then so is t.

4. If v1, v2, v3 are fair, then so are (S1 v1 v2 v3), (K1 v1 v2) and (I1 v1)

5. If x is a variable, u, f ∈ F and (u, f) is adequate, then φx(u, f) is fair.

Fair terms are thus combinators where we have marked the redexes that are
allowed to be reduced. The terms of the form φx(u, f) are introduced for the
following reason. If t = (w v) for some w ∈ λ1x.u, I may want to reduce both a
redex in u and t as a redex. Thus the set of fair terms must be closed by the following
rule: (6) If u, v are fair then so is t = (w v) for w ∈ λ1x.u. But, if I had defined
fair terms by rules 1, 2, 3, 4 and 6, then F will not be closed by reduction because,
if w ∈ λ1x.u, the reduct of t = (w v) will not necessarily be fair. The reason is
the following. Let u = (u1 u2) be such that u is fair but u1 is not (for example
u1 = (K1 y), u2 = y). Then v = (λ1x.u z) is fair. But v ⊲v′ = (λ1x.u1 z) (λ1x.u2 z)
and v′ may not be fair since u1 is not.

Definition 21 Let u be fair. I denote by nb(u) the number of rules that have been
used to prove that u is fair.

3.3 Some properties of fair terms

Lemma 22 The set of fair terms is closed by substitutions.

Proof By an immediate induction on nb(u). Use the fact that, if t ∈ λix.u, then
σ(t) ∈ λix.σ(u). �

7

Lemma 23 Let t = (α −→u) be fair where α is an atom.

1. If α is S2, then lg(−→u) ≥ 2. If α is S1 or S3, then lg(−→u) ≥ 3.

2. If α is K1, then lg(−→u) ≥ 2. If α is I1, then lg(−→u) ≥ 1.

Proof By induction on nb(t). I only look at the cases with S. The other ones
are similar.

• If the last rule that has been used to prove t ∈ F is (2) of definition 20, the
result follows immediately from the IH. If it is rule (4) the result is trivial.

• If it is rule (3). If α = S2, the result is also trivial. The other cases are
impossible.

• If it is rule (5) and (α −→u) = φy(v, f). Let a be the leftmost address in dom(f).
For α = S1 (resp. α = S2) we may not have a = [l, l, ..., l] since this will imply
that t begins with S3. Thus v = (S1

−→w) (resp. v = (S2
−→w)) and the result

follows from the IH. For α = S3, if the leftmost address is not of the form
[l, l, ..., l] the result is as before. Otherwise, this implies that t = (wa f(a) −→s)
for some wa ∈ λ1y.va and some −→s and the result is trivial.

�

Lemma 24 Let u, u′ be terms, t ∈ λiy.u and t′ ∈ λjx.u′. Assume t is a sub-term
of t′. Then, either t is a sub-term of u′ or i = j, x = y and u is a sub-term of u′.

Proof By induction on u′. �

Lemma 25 • Let t = (α −→u) ∈ F where α ∈ V ∪ {Si, Ki, Ii /i = 0, 1}. Then,
−→u ∈ F .

• If t = (S2
−→u) ∈ F , then t = φ((r −→w)) for some r ∈ λ0y.v and some v,−→w ∈ F .

Proof By induction on nb(t), essentially as in lemma 23. �

3.4 Some properties of reduction

Lemma 26 Let u1, u2 be fair and assume t = (u1 u2) ⊲ t′. Then t′ = (u′

1 u2) or
t′ = (u1 u′

2) where ui ⊲ u′

i.

Proof It is enough to show that there is no possible interaction between u1 and
u2. Such an interaction could occur in the following cases.
- lvl(t ⊲ t′) = 0. This is impossible because, by Lemma 23, all the arguments of the
indexed S, K or I of such a redex must be in u1.
- lvl(t ⊲ t′) > 0 and, for example, t ∈ λ0x.v and t′ ∈ λ0x.v′ for some v ⊲ v′. This
could occur if u1 = (S2 w1) for some w1 ∈ λ0x.t1, u2 ∈ λ0x.t2 and v = (t1 t2). But
this is again impossible by Lemma 23. �

Lemma 27 Let u1, u2, u3 be terms.

• Assume t = (I1 u1) ⊲ t′. Then either t′ = u1 or t′ = (I1 u′

1) for u1 ⊲ u′

1.

• Assume t = (K1 u1 u2) ⊲ t′. Then either t′ = u1 or t′ = (K1 u′

1 u2) or
t′ = (K1 u1 u′

2) for ui ⊲ u′

i.

• Assume t = (S1 u1 u2 u3) ⊲ t′. Then either t′ = (u1 u3 (u2 u3)) or t′ =
(S1 u′

1 u′

2 u′

3) where ui ⊲ u′

i for a unique i and u′

j = uj for j 6= i.

8

Proof It is enough to show that the mentioned reductions are the only possibil-
ities. I only look at the last case since the other ones are similar.

If lvl(t ⊲ t′) = 0, the result is trivial. Otherwise, this means that there is a sub-
term of t ∈ λix.v which reduces to a term in λix.v′ for v ⊲ v′. But, this sub-term
has to be a sub-term of some uj because, otherwise (by Definition 15) we will have
S2 or S3 instead of S1, and the result follows immediately. �

Lemma 28 Assume t ∈ λ0x.u and t ⊲ t′. Then either t′ ∈ λ0x.u and size(t′) <
size(t) or t′ ∈ λ0x.u′ for some u′ such that u ⊲ u′.

Proof If lvl(t ⊲ t′) = 0, the reduction cannot use (the closure by context of) rule
(a) in Definition 16. This is because, since t ∈ λ0x.u, the index of S in the reduced
redex cannot be 1 or 3 and thus the result is clear. Otherwise, this follows easily
from Lemma 24. �

Lemma 29 Assume φ(u,−→y ,
−→
f) ∈ λ0x.v. Then u ∈ λ0x.w for some w such that

φ(w,−→y ,
−→
f) = v.

Proof By an immediate induction on the length of the sequence −→y it is enough
to prove the result for φy(u, f). This is proved by induction on v. I only consider
the case v = (v1 v2) and φy(u, f) = (S2 r1 r2) where rj ∈ λ0x.vj (the other
cases are similar). The leftmost address in dom(f) cannot be [l, l, ..., l] because,
otherwise, φy(u, f) will begin with S3. Thus u is an application and φy(u, f) =
(S2 φy(u1, f1) φy(u2, f2)) where u = (u1 u2). Thus φy(ui, fi) ∈ λ0x.vi and we
conclude by the IH. �

Lemma 30 Let u, f ∈ F be such that (u, f) is adequate. Then a redex in t =
φx(u, f) is either in u or in some f(a) or is (wa f(a)) for some a and some wa ∈
λ1x.ua. Thus, if t ⊲ t′, one of the following cases holds.

• t′ = φx(u′, f ′) for some u′, f ′ such that u ⊲ u′

• t′ = φx(u, f ′) where f ⊲ f ′

• t′ is obtained from t by reducing the redex (wa f(a)) for some a ∈ dom(f) and
some wa ∈ λ1x.ua. Then, t′ = φx(u′, f ′) and

– If ua = x, then u′ is u where the occurrence of x at the address a has
been replaced by f(a) and dom(f ′) = dom(f) − {a}.

– If x 6∈ ua, then u′ = u and dom(f ′) = dom(f) − {a}.

– If ua = (v1 v2) then u′ = u, dom(f ′) = dom(f) − {a} ∪ {[a :: l], [a :: r]},
f ′([a :: l]) = f ′([a :: r]) = f(a) and, for b 6= a, f ′(b) = f(b).

Proof By induction on nb(u). The only thing to be shown is that the mentioned
cases are the only possible ones. For lvl(t ⊲ t′) = 0, this follows immediately from
the fact that terms of the form (wa f(a)) for some wa ∈ λ1x.ua cannot introduce
an interaction since they are redexes. For lvl(t ⊲ t′) > 0, assume r ∈ λix.w is a
sub-term of φy(u, f) and the reduction takes places in w. Then, by Lemma 29,
either the reduction is actually in f or w = φy(v′, f ′) for some adequate (v′, f ′) and
the result follows from the IH. �

Lemma 31 • The set of fair terms is closed by reduction.

• Let u be fair and σ be a fair substitution. Assume t = σ(u) ⊲ t′, then either
t′ = σ(u′) for some u ⊲ u′ or t′ = σ′(u) for some σ ⊲ σ′.

Proof By induction on nb(u), using Lemmas 26, 27, 28 and 30. �

9

3.5 Confluence of ⊲ on fair terms

Lemma 32 Let u be fair and σ be a fair substitution. If u, σ ∈ SN , then so is
σ(u).

Proof This follows immediately from Lemma 31. �

Theorem 33 Any fair term t is in SN .

Proof By induction on nb(t).

• If t = x, S0, K0, I0, the result is trivial.

• If t = (t1 t2), then, by the IH, t1, t2 ∈ SN and, since t = σ((x y)) where
σ(x) = t1 and σ(y) = t2, the result follows from Lemma 32.

• If t = (S1 t1 t2 t3), t = (K1 t1 t2) or t = (I1 t1) the proof is similar, e.g.
(S1 t1 t2 t3) = σ((S1 x1 x2 x3) where σ(xi) = ti.

• If t ∈ λ0x.v, the result follows from Lemma 28 and the IH.

• Finally, assume t = φx(u, f). Let t′ be the term obtained from u by replacing,
for each a ∈ dom(f), ua by ua[x := f(a)]. It follows from Lemma 32 that
t′ ∈ SN . But, by Lemma 30, and infinite reduction of t would give an infi-
nite reduction of t′ since it is not possible to have infinitely many successive
reductions of t of the form of the last case of Lemma 30. Thus t is in SN .

�

Lemma 34 Let u, v be terms. Then, for w ∈ λ1x.u, (w v) ⊲∗ u[x := v].

Proof By induction on u. �

Lemma 35 The reduction ⊲ is locally confluent on fair terms.

Proof The only critical pairs are the following.

• t = (w u3), w ∈ λ1x.(u1 u2), t ⊲ t1 = (w1 u3 (w2 u3)) for wj ∈ λ1x.uj , and
t ⊲ t2 = (w′ u3) for w′ ∈ λ1x.v and (u1 u2) ⊲ v. Both t1 and t2 reduces to
v[x := u3].

• t = (Si+2 r1 r2) ∈ λix.(u1 u2), x ∈ u1, x 6∈ u2 (for example), for some u1 ⊲ v1

such that x 6∈ v1, t ⊲ t1 = (Ki (v1 u2)) and t ⊲ t2 = (Si+2 (Ki v1) (Ki u2))).
But t2 ⊲ t1.

�

Theorem 36 The reduction ⊲ is confluent on fair terms.

Proof By Lemma 8 and 35. �

10

3.6 Proof of theorem 13

In this section I will still denote by ⊲ the reduction on combinators given by rules
(1, 2, 4) of definition 10.

Definition 37 • Let u be a combinator. A labelling of u is a function that
associates to each occurrence of S (resp. K, I) in u some Si (resp. some
Ki, Ii).

• If L is a labelling of u, I still denote by L(u) the term obtained by replacing
in u the symbols S (resp. K, I) by L(S) (resp. L(K), L(I)).

• Let u be a term. I denote by θ(u) the combinator defined by the following
rules. θ(x) = x, θ(Si) = S, θ(Ki) = K, θ(Ii) = I and θ((u v) = (θ(u) θ(v))

• Let u be a combinator and L, L′ be labelling of u. I say that L′ is an extension
of L if the following holds.

1. For each S in u,

- either L(S) = L′(S)

- or L(S) = S0 and L′(S) = Si for i = 1, 2 or 3

- or L(S) = S2 or L(S) = S1 and L′(S) = S3.

2. For each K in u, L(K) = L′(K) or L(K) = K0 and L′(K) = K1.

3. For each I in u, L(I) = L′(I) or L(I) = I0 and L′(I) = I1.

A labelling of u is thus a way of marking redexes in u. The function θ consists in
un-marking terms to get combinators. Extending a labelling means allowing more
redexes to be reduced.

Lemma 38 Let u be a combinator and L be a labelling of u. If L(u) ⊲ v then
u ⊲ θ(v).

Proof Immediate. �

Lemma 39 Assume t = L(λx.r) ∈ F for some L, r. Then, there is an extension
L′ of L such that L′(λx.r) ∈ λ0x.v for some v ∈ F .

Proof First note that, for combinators, λx.r represents a single term and thus
having written t = L(λx.r) is not a typo !

L′ is obtained by iterating the following algorithm.
- If x does not occur in r, choose L′ = L. Since t = (L(K) L(r)), by Lemma 23,

L(K) must be K0 and thus, by Lemma 25, L(r) ∈ F .
- If r = x, choose L′ = L. The argument is similar.
- If r = (r1 r2). Then λx.r = (S λx.r1 λx.r2). By Lemma 23, L(S) must be

either S0 or S2.
If L(S) = S2, by Lemma 25, t ∈ φ(λ0x.v) for some v ∈ F (the term φ(u) is defined
in Definition 19). Thus L satisfies the desired property since, by Lemma 29, t must
be in λ0x.φ(v).
If L(S) = S0, then, by Lemma 25, L(λx.ri) ∈ F . Choose L′(S) = S2 and iterate
the algorithm with L(λx.rj) for j = 1, 2.

�

11

Lemma 40 Let t be a combinator and L be a labelling of t such that L(t) is fair.
Assume that t ⊲ t′. Then, there is an extension L′ of L such that L′(t) is fair and
L′(t) ⊲ v for some v such that θ(v) = t′.

Proof By induction on nb(L(t)). Look at the last rule that has been used to
show that L(t) is fair.

Rule (3) : a redex in w ∈ λ0x.u is either a redex in u (and the result follows
immediately from the IH) or it is of the form (S2 (K0 u1) (K0 u2)) ⊲ (K0 (u1 u2))
and thus already appear in L(t).

Rule (5) : a redex in φx(u, f) is either a redex in u or in some f(a) or a redex
already in L(t) and the result follows immediately from the IH.

Rule (2) : then t = (t1 t2) and L(t1), L(t2) are fair. If the reduced redex is
either in t1 or t2, the result follows immediately from the IH. Otherwise it has been
created by the application of t1 to t2. I will only look at the cases where the reduced
redex starts with some S. The case of K and I are similar and much simpler. For
sake of simplicity I will define L′ by only mentioning the labels that are changed.
We distinguish the different possible redexes.

(a) t1 = (S u v) and t′ = (u t2 (v t2)).
- If L(S) = S0 then, setting L′(S) = S1 gives the desired properties since, by

Lemma 25, L(u), L(v) are in F and thus L′(t) also is in F .
- L(S) may not be S1 or S3 since, by Lemma 23, it would have at least 3

arguments.
- If L(S) = S2 then, by Lemma 25, L(t) = φ(w) for some w ∈ λ0x.v and some

v ∈ F . Then, choosing L′ in such a way that L′(t) = φ(w1) for w1 ∈ λ1x.v will give
the desired properties .

(b) t1 = (S (K u), t2 = (K v) and t′ = (K (u v)). Then L(S) must be S0 because
otherwise, by Lemma 23, S would have at least two arguments. Similarly, we must
have L(K) = K0. Then, by Lemma 25, u, v are fair and thus setting L′(S) = S2

and L′(K) = K0 gives the desired properties.

(c) t1 = (S w1) for w1 ∈ λx.u1, t2 ∈ λx.u2 and t′ ∈ λx.v where v is a reduct of
(u1 u2). Again by Lemma 23, we must have L(S) = S0. By Lemma 25, L(w1) ∈ F .
By Lemma 39, extend L so that L′(ui) ∈ F . Then setting L′′ in such a way that
L′′(t) ∈ λ0x.(u1 u2) gives the desired properties.

Rule (4) : then t = (S u1 u2 u3), L(S) = S1 and the L(ui) are fair. If t′ =
(u1 u3 (u2 u3)) or if the reduced redex is in some ui the result is trivial. Otherwise
this means that, for i = 1, 2 ui ∈ λx.vi and t′ = (w u3) for some w ∈ λx.v such
that v is a reduct of (v1 v2). Then, by Lemma 39, extend L so that L′(vi) ∈ F and
choose L′′ in such a way that L′′(t) = (w′ u3) for w′ ∈ λ1x.(v1 v2). �

Lemma 41 Let t be a combinator. Assume that t ⊲ v and t ⊲∗ u. Then, there is a
labelling L of u and a term w such that L(u) is fair, L(u) ⊲∗ w and v ⊲∗ θ(w).

Proof By induction on the length n of the reduction t ⊲∗ u.

• If n = 1, let L0 be the labelling of t obtained by indexing all the occurrences
of S, K and I by 0. L0(t) is clearly fair. Apply Lemma 40 to t, L0 and the
reduction t⊲v. This gives an extension L1 of L0. Applying Lemma 40 to t, L1

and the reduction t ⊲ u we get an extension L2 of L1. Applying the confluence
of ⊲ on fair terms (Theorem 36) to L2(t) gives the desired result.

• Otherwise, let t ⊲∗ u1 ⊲ u. By the IH, let L1 be a labelling of u1 and w1 be
a term such that L1(u1) is fair, L1(u1) ⊲∗ w1 and v ⊲ θ(w1). By Lemma 40,
let L be a labelling of u1 that is an extension of L such that L(u1) is fair and
L(u1) ⊲ r for r such that θ(r) = u. By theorem 36, let w be such that r ⊲∗ w
and w1 ⊲∗ w. Then L, w have the desired properties.

12

�

Proposition 42 The reduction given by rules (1, 2, 4) of definition 10 is conflu-
ent.

Proof It is enough to show that, if t ⊲ u and t ⊲∗ v then u ⊲∗ w and v ⊲∗ w for
some w. This follows immediately from Lemma 41. �

Definition 43 I denote by ⊃ the reduction defined by the following rules.

1. (S (K u) I) ⊃ u (K u v) ⊃ u (I u) ⊃ u

2. λx.u ⊃ λx.v if u ⊃ v

Lemma 44 The reduction ⊃ is confluent and commutes with ⊲.

Proof The reduction ⊃ is strongly normalizing since it decreases the size. Thus
to prove the confluence, it is thus enough to show the local confluence and this is
straightforward. Since ⊃ is also non duplicating, to prove the commutation with ⊲,
it is enough to show the local commutation and this is again straightforward. Note
that the reductions (K u v) ⊃ u, (I u) ⊃ u that are already present in ⊲ are used
here to ensure the confluence of the only critical pair i.e. (S (K u) I w) ⊃ (u w)
and (S (K u) I w) ⊲ (K u w (I w)).

�

Theorem 13 The reduction given by rules (1, 2, 3, 4) of definition 10 is confluent.

Proof Since → is the union of ⊲ and ⊃, the result follows immediately from
proposition 42 and Lemma 44. �

4 Proof of theorem 7

Definition 45 I denote by ⊢ the reduction defined by the following rules.

1. (S (K u) I) ⊢ u (K u v) ⊢ u (I u) ⊢ u

2. [x]u ⊢ [x]v if u ⊢ v

Lemma 46 The reduction ⊢ is confluent and commutes with ≻.

Proof As in Lemma 44 �

Lemma 47 If u →∗ v then u ≻∗ w, v ⊢∗ w for some w.

Proof By induction on the length of the reduction u →∗ v. Assume u → u1 →∗ v.
If the level of the reduction u → u1 is 0, the result follows immediately from the IH
since then we also have u ≻ u1. Otherwise, the reduction looks like u = C[λx.t] →
u1 = C[λx.t1] →

∗ v where t → t1. By the IH, we have t ≻∗ w1, t1 ⊢∗ w1 for some
w1 and thus u ≻∗ w2, u1 ⊢∗ w2 where w2 = C[w1]. By the IH we also have u1 ≻∗ w,
v ⊢∗ w for some w. By Lemma 46, we have w2 ≻∗ w3 and w ⊢∗ w3 for some w3

which is the term we are looking for. �

Theorem 7 The reduction ≻ is confluent.

Proof Assume t ≻∗ t1 and t ≻∗ t2. Then t1 ≡ t2 and thus, by theorem 12,
t1 ≈ t2. Since → is confluent we thus have t1 →∗ t3, t2 →∗ t3 for some t3. By
Lemma 47, let vi be such that ti ≻∗ vi and t3 ⊢∗ vi. Since ⊢ is confluent, let t3
be such that v1 ⊢ t3 and v2 ⊢ t3. Since ⊢ is clearly a restriction of ≻, we have
ti ≻

∗ t3 �

13

5 A standardization theorem

In this section I prove a standardization theorem for the system of section 3. I study
this system instead of the one of section 2 because, as already mentioned in section
2.2, in the original system, what could be the leftmost redex is not clear at all.

Note that the following definition of a standard reduction does not need the
definition of the residue of a redex. It is a definition by induction on 〈lg(t →
t′), size(t)〉 where lg(t → t′) is the number of steps of the reduction. It uses the
idea that is implicit in [1] and simply says that a standard reduction either reduces
the head redex at the first step or is not allowed to reduce it.

Definition 48 A reduction t →∗ t′ is standard (t →st t′ for short) if it satisfies
the following properties.

1. t = (x −→u), t′ = (x
−→
u′) and, for each i, ui →st u′

i

2. t = (K u), t′ = (K u′) and u →st u′.

3. t = (S u), t′ = (S u′) and u →st u′.

4. t = (S u v) and

• either t′ = (S u′ v′) for u →st u′ and v →st v′

• or the reduction is t → t1 ... → tk →st t′ for some k ≥ 0 such that
ti = (S ui vi), u →st uk, v →st vk and

- either tk = [x]w, t′ = [x]w′, w →st w′ and, for each i < k, ti cannot be
written as [x]r for some r

- or uk = (K u′

k), vk = (K v′k), the reduction tk →st t′ is tk →
(K (u′

k v′k)) →st t′ and, for each i < k, ti cannot be written as (S (K u′

i) (K v′i))

- or uk = (K u′

k), vk = I, the reduction tk →st t′ is tk → u′

k →st t′ and,
for each i < k, ti cannot be written as (S (K u′

i) I)

5. t = (I u1 ... un) for n ≥ 1 and

• either t′ = (I u′

1 ... u′

n) for ui →st u′

i

• or the reduction is t → (u1 ... un) →st t′

6. t = (K u1 ... un) for n ≥ 2 and

• either t′ = (K u′

1 ... u′

n) for ui →st u′

i

• or the reduction is t → (u1 u3 ... un) →st t′

7. t = (S u1 ... un) for n ≥ 3 and

• either t′ = (r u′

3 ... u′

n) where (S u1 u2) →st r and ui →st u′

i for i ≥ 3

• or the reduction is t → (u1 u3 (u2 u3) u4 ... un) →st t′

Lemma 49 • Assume ui →st u′

i for each i. Then (u1 ... un) →st (u′

1 ... u′

n)

• Assume u →st [x]u′. Then (u v) →st u′[x := v]

Proof Easy. �

14

Theorem 50 If t →∗ t′ then t →st t′.

Proof By induction on lg(t →∗ t′). It is enough to show that if t →st t′ → t′′

then t →st t′′. This is done by induction on 〈lg(t →st t′), size(t)〉 and by case
analysis. We look at the rule that has been used to show t →st t′ and then what is
the reduced redex in t′ → t′′. I just consider two cases. The first one is typical and
easy. The second one is similar but a bit more complex.

• t = (K u1 ... un) for n ≥ 2.

– If the reduction is t → (u1 u3 ... un) →st t′ we apply the IH to (u1 u3 ... un)
→st t′ → t′′ to get (u1 u3 ... un) →st t′′ and thus t → (u1 u3 ... un) →st t′′

is standard.

– If the reduction is such that t′ = (K u′

1 ... u′

n) for ui →st u′

i then

- either t′′ = (K u′

1 ... u′′

i ... u′

n) for u′

i → u′′

i and we apply the IH to
ui →st u′

i → u′′

i to get the result

- or t′′ = (u′

1 u′

3 ... u′

n) and then t → (u1 u3 ... un) →∗ (u′

1 u′

3 ... u′

n) is
standard by Lemma 49.

• t = (S u1 ... un) for n ≥ 3 and t′ = (r u′

3 ... u′

n) where (S u1 u2) →st r and
ui →st u′

i for i ≥ 3. Assume also that r = [x]a, x 6∈ r and t′′ = (a u′

4 ... u′

n).
This means that, for i = 1, 2, ui →st [x]vi and that (v1 v2) →st a. But then, by
Lemma 49, (ui u3) →st vi[x := u3]. Thus, the following reduction is standard.
t → (u1 u3 (u2 u3) u4 ... un) →st (v1[x := u3] v2[x := u3] u4 ... un) →st (a[x :=
u3] u4 ... un) →st (a u′

4 ... u′

n) = t′′.
�

6 Strong normalization of the typed calculus

In this section I prove the strong normalization of the auxiliary system of section 3.
Note that the system of section 2 is not strongly normalizing even though this is for
the following bad reason. Let t = (S x x). Then t = [y](S x x y) ≻ [y](x y (x y)) = t.

The types are the simple types i.e. constructed from basic types with the arrow.
The typing rules are the usual ones i.e. I has type A → A, K has type A → B → C,
S has type (A → B → C) → (A → B) → A → C for every types A, B, C and,
finally, if u has type A → B and v has type A then (u v) has type B.

Definition 51 • A combinator t is highly normalizing (t ∈ HN for short) if
it can be obtained by the following rules.

1. t = S or t = K or t = I or t = (x t1 ... tn) for t1, ..., tn ∈ HN .

2. t = (K t1) or t = (S t1) for t1 ∈ HN

3. t = (S t1 t2) for (t1 x (t2 x)) ∈ HN where x is a variable.

4. t = (I t1 ... tn) for n ≥ 1 and (t1 t2 ... tn) ∈ HN

5. t = (K t1 ... tn) for n ≥ 2, (t1 t3 ... tn) ∈ HNand t2 ∈ HN

6. t = (S t1 ... tn) for n ≥ 3 and (t1 t3 (t2 t3) t4 ... tn) ∈ HN

• If t ∈ HN we denote by η(t) the number of rules that have been used to show
t ∈ HN .

We have introduced this notion of normalization which is stronger than the usual
one (see the next Lemma) because the proof of Lemma 53 below would not work if
HN was replaced by SN .

15

Lemma 52 If t ∈ HN then t is strongly normalizing.

Proof By induction on η(t). The non trivial cases are when the last rule that
has been applied to prove t ∈ HN is (3) or (6).

• Assume first t = (S t1 t2). Then, by the IH, t′ = (t1 x (t2 x)) ∈ SN and
thus t1, t2 ∈ SN . Thus an infinite reduction of t must look like t →∗ t′′ →∗ ...
where for some vi, ti →

∗ λx.vi and

- either the reduction of t′′ is in (v1 v2). But (v1 v2) ∈ SN since t′ ∈ SN and
t′ →∗ (λx.v1 x (λx.v2 x)) →∗ (v1 v2). Contradiction.

- or λx.vi = (K vi) and the reduction is t′′ = (S (K v1) (K v2) → (K(v1 v2)) →
∗

... This is impossible since t′ ∈ SN and t′ →∗ (v1 v2).

-or λx.v1 = (K v1), λx.v2 = I and the reduction is t′′ = (S (K v1) I → v1 →∗

... This is impossible since t′ ∈ SN and t′ →∗ v1.

• t = (S t1 ... tn). Again, by the IH, t′ = (t1 t3 (t2 t3) t4 ... tn) ∈ SN . Thus the
ti are in SN and also (S t1 t2) ∈ SN . The first point is clear. For the second,
we argue as follows. Reasoning as in the previous case, it is enough to show
that (t1 x (t2 x)) ∈ SN . If it was not the case then (t1 t3 (t2 t3) would also
not been in SN and this contradicts the fact that t′ ∈ SN . Thus an infinite
reduction of t looks like t →∗ (r t′3 ... t′n) → t′′ →∗ ... where r is a reduct of
(S t1 t2) and t′′ is obtained by an interaction between r and its arguments.
But we have shown (in the proof of theorem 50) that then t′ reduces to t”
and this is a contradiction.

�

Lemma 53 Let t be a combinator and σ be a substitution such that all the variables
in the domain of σ have the same type. Assume t ∈ HN and the image of σ is
included in HN . Then σ(t) ∈ HN .

Proof By induction on 〈type(σ), η(t)〉. Look at the last rule that has been used
to prove t ∈ HN . The only non trivial case is when t = (x t1 ... tn) and x ∈ dom(σ).
By the IH, ui = σ(ti) ∈ HN . We now have to distinguish the different possible
values for σ(x). The most difficult case (the other ones are similar or trivial) is
when σ(x) = (S a1 a2). We have to show that t′ = (a1 u1 (a2 u1) u2 ... un) ∈ HN .
But t′ = τ((z u2 ... un)) where z is a fresh variable such that τ(z) = (a1 u1 (a2 u1)).
But type(z) < type(x) and, by the IH, it is thus enough to show that t′′ =
(a1 u1 (a2 u1)) ∈ HN . But t′′ = τ ′((a1 z′ (a2 z′))) where z′ is a fresh vari-
able such that τ ′(z′) = u1. Since type(z′) < type(x) and (a1 z′ (a2 z′)) ∈ HN
(because (S a1 a2) ∈ HN), the result follows from the IH. �

Corollary 54 Every typed combinator t is in HN and thus in SN .

Proof By induction on the size of t using (u v) = (x v)[x := u] and Lemma 53. �

7 Final remarks

Though intuitively quite simple, the given proof of confluence is technically rather
involved and, in particular, it is more elaborate than the one using the confluence
of the λ-calculus. Thus, one may wonder about the real use of such a proof even if
this is the condition to have a self contained theory. I will argue for another reason.

Combinatory Logic somehow looks like a calculus with explicit substitutions.
Though ([x]u v) is not exactly the explicit substitution u[x := v], it has often to be
understood in this way. In particular, the reduction ([x](u1 u2) v) → ([x]u1 v ([x]u2 v))

16

looks like the propagation of the substitution into the two branches of the applica-
tion. But proving confluence for such calculi is usually not trivial simply because
the usual methods (parallel reductions or finite developments) need definitions that
are not clear.

I thus hope that the given proof will help in finding simple proofs for calculi
with explicit substitutions.

Acknowledgments
I wish to thank R. Hindley and the anonymous referee for helpful comments on

previous versions of this paper.

Added in proof
Shortly after sending the first version of this paper, I have been informed by

R.Hindley and P.Minari that the later has also written (more or less at the same
time) a direct proof of the confluence of combinatory strong reduction. This proof
is completely different from the one given here. See the TLCA list of open problem
or [7].

References

[1] R. David, Une preuve simple de résultats classiques en λ-calcul C. R. Acad.
Sci. Paris, t.320, Srie I, 1995, pp 1401 -1406.

[2] H.B. Curry & R. Feys, Combinatory Logic, Volume I. North Holland (3rd
edition 1974).

[3] H.B. Curry, J.R. Hindley & J.P.Seldin, Combinatory Logic, Volume II. North
Holland.

[4] J.R Hindley, Axioms for strong reduction in combinatory logic Journal of sym-
bolic logic 32-2, 1967, pp 237-239

[5] J.R. Hindley & J.P. Seldin, Introduction to Combinators and λ-calculus, Cam-
bridge University Press 1986.

[6] B. Lercher The decidability of Hindley’s axioms for strong reduction, Journal
of symbolic logic 1967, 32-2, pp 224-236

[7] P. Minari A solution to Curry and Hindleys problem on combinatory strong
reduction, to appear in Archive for Mathematical Logic vol. 48(2), 2009

17

