120 research outputs found

    Blind user detection in doubly-dispersive DS/CDMA channels

    Full text link
    In this work, we consider the problem of detecting the presence of a new user in a direct-sequence/code-division-multiple-access (DS/CDMA) system with a doubly-dispersive fading channel, and we propose a novel blind detection strategy which only requires knowledge of the spreading code of the user to be detected, but no prior information as to the time-varying channel impulse response and the structure of the multiaccess interference. The proposed detector has a bounded constant false alarm rate (CFAR) under the design assumptions, while providing satisfactory detection performance even in the presence of strong cochannel interference and high user mobility.Comment: Accepted for publication on IEEE Transactions on Signal Processin

    Software radio architecture with smart antennas: a tutorial on algorithms and complexity

    Full text link

    Joint array combining and MLSE for single-user receivers in multipath Gaussian multiuser channels

    Get PDF
    The well-known structure of an array combiner along with a maximum likelihood sequence estimator (MLSE) receiver is the basis for the derivation of a space-time processor presenting good properties in terms of co-channel and intersymbol interference rejection. The use of spatial diversity at the receiver front-end together with a scalar MLSE implies a joint design of the spatial combiner and the impulse response for the sequence detector. This is faced using the MMSE criterion under the constraint that the desired user signal power is not cancelled, yielding an impulse response for the sequence detector that is matched to the channel and combiner response. The procedure maximizes the signal-to-noise ratio at the input of the detector and exhibits excellent performance in realistic multipath channels.Peer Reviewe

    Performance enhancement of multiuser MIMO wireless communication systems

    Get PDF
    This paper describes a new approach to the problem of enhancing the performance of a multiuser multiple-input-multiple-output (MIMO) system for communication from one base station to many mobile stations in both frequency-flat and frequency-selective fading channels. This problem arises in space-division multiplexing systems with multiple users where many independent signal streams can be transmitted in the same frequency and time slot through the exploitation of multiple antennas at both the base and mobile stations, Our new approach is based on maximizing a lower bound for the product of signal-to-interference plus noise ratio (SINR) of a multiuser MIMO system. This provides a closed-form (noniterative) solution for the antenna weights for all the users, under the constraint of fixed transmit power. Our solution is shown by simulation to have better performance than previously proposed iterative or noniterative solutions. In addition, our solution requires significantly reduced complexity over a gradient search-based method that directly optimizes the product SINgs while still maintaining similar performance. Our solution assumes channel state information is present at the base station or transmitter

    Using sources of opportunity to compensate for receiver mismatch in HF arrays

    Get PDF
    Β© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The spatial processing performance of adaptive sensor arrays is often limited by the nonidentical frequency responses of the receivers in the array over the passband of interest. Addressed here is the problem of estimating digital compensation for mismatches between receiver passbands in high frequency (HF) antenna arrays using interference sources of opportunity. A mathematical model of ionospherically-propagated multipath HF interference is used to develop an adaptive algorithm which estimates the receiver frequency response corrections for each receiver. The effectiveness of the proposed algorithm is experimentally demonstrated and compared against (1) a commonly used least squares technique, and (2) a highly accurate calibration system using data collected by the receiving antenna array of the Jindalee over-the-horizon radar near Alice Springs in central AustraliaFabrizio, G.A.; Gray, D.A.; Turley, M.D

    Space-time processing for wireless mobile communications

    Get PDF
    Intersymbol interference (ISI) and co-channel interference (CCI) are two major obstacles to high speed data transmission in wireless cellular communications systems. Unlike thermal noise, their effects cannot be removed by increasing the signal power and are time-varying due to the relative motion between the transmitters and receivers. Space-time processing offers a signal processing framework to optimally integrate the spatial and temporal properties of the signal for maximal signal reception and at the same time, mitigate the ISI and CCI impairments. In this thesis, we focus on the development of this emerging technology to combat the undesirable effects of ISI and CCL We first develop a convenient mathematical model to parameterize the space-time multipath channel based on signal path power, directions and times of arrival. Starting from the continuous time-domain, we derive compact expressions of the vector space-time channel model that lead to the notion of block space-time manifold, Under certain identifiability conditions, the noiseless vector-channel outputs will lie on a subspace constructed from a set. of basis belonging to the block space-time manifold. This is an important observation as many high resolution array processing algorithms Can be applied directly to estimate the multi path channel parameters. Next we focus on the development of semi-blind channel identification and equalization algorithms for fast time-varying multi path channels. Specifically. we develop space-time processing algorithms for wireless TDMA networks that use short burst data formats with extremely short training data. sequences. Due to the latter, the estimated channel parameters are extremely unreliable for equalization with conventional adaptive methods. We approach the channel acquisition, tracking and equalization problems jointly, and exploit the richness of the inherent structural relationship between the channel parameters and the data sequence by repeated use of available data through a forward- backward optimization procedure. This enables the fuller exploitation of the available data. Our simulation studies show that significant performance gains are achieved over conventional methods. In the final part of this thesis, we address the problem identifying and equalizing multi path communication channels in the presence of strong CCl. By considering CCI as stochasic processes, we find that temporal diversity can be gained by observing the channel outputs from a tapped delay line. Together with the assertion that the finite alphabet property of the information sequences can offer additional information about the channel parameters and the noise-plus-covariance matrix, we develop a spatial temporal algorithm, iterative reweighting alternating minimization, to estimate the channel parameters and information sequence in a weighted least squares framework. The proposed algorithm is robust as it does not require knowledge of the number of CCI nor their structural information. Simulation studies demonstrate its efficacy over many reported methods

    Transmit diversity and linear and decision-feedback equalizations for frequency-selective fading channels

    Get PDF
    Abstract-Rapid growth and increasing demands for near-ubiquitous high-quality high-data-rate services present the most challenges for wireless system design. As an effective method to provide such services, space-time (ST) coding is gaining more and more attention. This paper extends ST coding, originally designed for known frequency-nonselective fading channels, to unknown frequency-selective channels. A novel scheme is presented to suppress intersymbol interference, coherently demodulate the information symbols with estimated channel state information in an ST transmit diversity wireless time-division multiple-access system that is equipped with multiple antennas at both transmit and receive sides. The proposed algorithm is powerful and computationally efficient. In addition to the discussion of system identifiability, both theoretical analysis and numerical simulation are presented to illustrate the performance of the proposed estimator and receiver in multipath fading channels

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore