6,008 research outputs found

    Spectral analysis for nonstationary audio

    Full text link
    A new approach for the analysis of nonstationary signals is proposed, with a focus on audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-breaking operators acting on Gaussian stationary random signals. The focus is on time warping and amplitude modulation, and an approximate maximum-likelihood approach based on suitable approximations in the wavelet transform domain is developed. This paper provides theoretical analysis of the approximations, and introduces JEFAS, a corresponding estimation algorithm. The latter is tested and validated on synthetic as well as real audio signal.Comment: IEEE/ACM Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, In pres

    Filtered derivative with p-value method for multiple change-points detection

    Get PDF
    This paper deals with off-line detection of change points for time series of independent observations, when the number of change points is unknown. We propose a sequential analysis like method with linear time and memory complexity. Our method is based at first step, on Filtered Derivative method which detects the right change points but also false ones. We improve Filtered Derivative method by adding a second step in which we compute the p-values associated to each potential change points. Then we eliminate as false alarms the points which have p-value smaller than a given critical level. Next, our method is compared with the Penalized Least Square Criterion procedure on simulated data sets. Eventually, we apply Filtered Derivative with p-Value method to segmentation of heartbeat time series

    A test for second-order stationarity of time series based on unsystematic sub-samples

    Get PDF
    In this paper, we introduce a new method for testing the stationarity of time series, where the test statistic is obtained from measuring and maximising the difference in the second-order structure over pairs of randomly drawn intervals. The asymptotic normality of the test statistic is established for both Gaussian and a range of non-Gaussian time series, and a bootstrap procedure is proposed for estimating the variance of the main statistics. Further, we show the consistency of our test under local alternatives. Due to the flexibility inherent in the random, unsystematic sub-samples used for test statistic construction, the proposed method is able to identify the intervals of significant departure from the stationarity without any dyadic constraints, which is an advantage over other tests employing systematic designs. We demonstrate its good finite sample performance on both simulated and real data, particularly in detecting localised departure from the stationarity

    Wavelet Method for Locally Stationary Seasonal Long Memory Processes

    Get PDF
    Long memory processes have been extensively studied over the past decades. When dealing with the financial and economic data, seasonality and time-varying long-range dependence can often be observed and thus some kind of non-stationarity can exist inside financial data sets. To take into account this kind of phenomena, we propose a new class of stochastic process : the locally stationary k-factor Gegenbauer process. We describe a procedure of estimating consistently the time-varying parameters by applying the discrete wavelet packet transform (DWPT). The robustness of the algorithm is investigated through simulation study. An application based on the error correction term of fractional cointegration analysis of the Nikkei Stock Average 225 index is proposed.Discrete wavelet packet transform ; Gegenbauer process ; Nikkei Stock Average 225 index ; non-stationarity ; ordinary least square estimation

    LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R

    Get PDF
    Locally stationary process representations have recently been proposed and applied to both time series and image analysis applications. This article describes an implementation of the locally stationary two-dimensional wavelet process approach in R. This package permits construction of estimates of spatially localized spectra and localized autocovariance which can be used to characterize structure within images.
    corecore