3 research outputs found

    Rao-Blackwellized Particle Filters with Out-of-Sequence Measurement Processing

    Get PDF
    This paper addresses the out-of-sequence measurement (OOSM) problem for mixed linear/nonlinear state-space models, which is a class of nonlinear models with a tractable, conditionally linear substructure. We develop two novel algorithms that utilize the linear substructure. The first algorithm effectively employs the Rao-Blackwellized particle filtering framework for updating with the OOSMs, and is based on storing only a subset of the particles and their weights over an arbitrary, predefined interval. The second algorithm adapts a backward simulation approach to update with the delayed (out-of-sequence) measurements, resulting in superior tracking performance. Extensive simulation studies show the efficacy of our approaches in terms of computation time and tracking performance. Both algorithms yield estimation improvements when compared with recent particle filter algorithms for OOSM processing; in the considered examples they achieve up to 10% enhancements in estimation accuracy. In some cases the proposed algorithms even deliver accuracy that is similar to the lower performance bounds. Because the considered setup is common in various estimation scenarios, the developed algorithms enable improvements in different types of filtering applications

    On Accumulated State Densities with Applications to Out-of-Sequence Measurement Processing

    No full text

    Learning Dynamic Systems for Intention Recognition in Human-Robot-Cooperation

    Get PDF
    This thesis is concerned with intention recognition for a humanoid robot and investigates how the challenges of uncertain and incomplete observations, a high degree of detail of the used models, and real-time inference may be addressed by modeling the human rationale as hybrid, dynamic Bayesian networks and performing inference with these models. The key focus lies on the automatic identification of the employed nonlinear stochastic dependencies and the situation-specific inference
    corecore