1,721 research outputs found

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    Forwarding Based Data Parallel Handoff for Real-Time QoS in Mobile IPv6 Networks

    Get PDF
    Real time mobile applications with guaranteed quality of service (QoS) are expected to be popular due to drastic increase of mobile Internet users. Many Resource ReSerVation Protocol (RSVP) based handover schemes in MIPv4 were studied in the literature for those services. However, the buffering overhead is unavoidable for the latency to optimize the route in new path establishment. Even though the data forwarding based schemes minimize the data loss and provide faster handoff, there are still some overheads when forwarding them and limitation on MIPv4. In this paper we propose a novel handoff scheme in MIPv6 based on forwarding which balances route traffic and reduces the overhead. The comprehensive performance evaluation shows that the disruption time and the signaling overhead are significantly reduced up to about 62 % and 73 % respectively, in comparison with well-known previous schemes discussed in cite{Low, Real}. Furthermore, it is able to transmit data with the reduced latency and guarantee the fast and secure seamless services

    A data-oriented network architecture

    Get PDF
    In the 25 years since becoming commercially available, the Internet has grown into a global communication infrastructure connecting a significant part of mankind and has become an important part of modern society. Its impressive growth has been fostered by innovative applications, many of which were completely unforeseen by the Internet's inventors. While fully acknowledging ingenuity and creativity of application designers, it is equally impressive how little the core architecture of the Internet has evolved during this time. However, the ever evolving applications and growing importance of the Internet have resulted in increasing discordance between the Internet's current use and its original design. In this thesis, we focus on four sources of discomfort caused by this divergence. First, the Internet was developed around host-to-host applications, such as telnet and ftp, but the vast majority of its current usage is service access and data retrieval. Second, while the freedom to connect from any host to any other host was a major factor behind the success of the Internet, it provides little protection for connected hosts today. As a result, distributed denial of service attacks against Internet services have become a common nuisance, and are difficult to resolve within the current architecture. Third, Internet connectivity is becoming nearly ubiquitous and reaches increasingly often mobile devices. Moreover, connectivity is expected to extend its reach to even most extreme places. Hence, applications' view to network has changed radically; it's commonplace that they are offered intermittent connectivity at best and required to be smart enough to use heterogeneous network technologies. Finally, modern networks deploy so-called middleboxes both to improve performance and provide protection. However, when doing so, the middleboxes have to impose themselves between the communication end-points, which is against the design principles of the original Internet and a source of complications both for the management of networks and design of application protocols. In this thesis, we design a clean-slate network architecture that is a better fit with the current use of the Internet. We present a name resolution system based on name-based routing. It matches with the service access and data retrieval oriented usage of the Internet, and takes the network imposed middleboxes properly into account. We then propose modest addressing-related changes to the network layer as a remedy for the denial of service attacks. Finally, we take steps towards a data-oriented communications API that provides better decoupling for applications from the network stack than the original Sockets API does. The improved decoupling both simplifies applications and allows them to be unaffected by evolving network technologies: in this architecture, coping with intermittent connectivity and heterogenous network technologies is a burden of the network stack

    La mobilité dans la future génération de protocoles de signalisation du monde IP

    No full text
    Fournir à des terminaux mobiles IPv6 la QoS demandée est un domaine de recherche très important. Dans les réseaux à intégration de services, la plupart des travaux cherchent à étendre le protocole RSVP à un environnement mobile. Cet article décrit une nouvelle procédure de réservation de ressources à l'avance dans un environnement sans fil. Il est basé sur l'application de signalisation QoS NSLP, issue des travaux du WG NSIS de l'IETF. Cette réservation est basée sur un objet MSpec qui détermine les futures localisations du terminal. Afin d'augmenter les performances du handover , nous proposons d'utiliser un protocole de transfert de context (CTP)
    • …
    corecore