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Abstract. Real time mobile applications with guaranteed quality of service (QoS)
are expected to be popular due to drastic increase of mobile Internet users. Many
Resource ReSerVation Protocol (RSVP) based handover schemes in MIPv4 were
studied in the literature for those services. However, the buffering overhead is un-
avoidable for the latency to optimize the route in new path establishment. Even
though the data forwarding based schemes minimize the data loss and provide
faster handoff, there are still some overheads when forwarding them and limitation
on MIPv4. In this paper we propose a novel handoff scheme in MIPv6 based on for-
warding which balances route traffic and reduces the overhead. The comprehensive
performance evaluation shows that the disruption time and the signaling overhead

are significantly reduced up to about 62% and 73%, respectively, in comparison
with well-known previous schemes discussed in [1, 2]. Furthermore, it is able to
transmit data with the reduced latency and guarantee the fast and secure seamless
services.
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1 INTRODUCTION

The growth of wired and wireless networking technologies promises a new era of
mobile computing. The seamless access to the global information network provides
Internet users advanced services whenever and wherever they want. At the same
time, the mobile Internet services to support real-time traffic flows with guaranteed
quality of service (QoS) are being fuelled by various wireless and portable computing
devices such as laptops and personal digital assistants. Therefore, many mobility
support protocols including Mobile IP(MIP) are proposed to allow such demands
and being under development [3].

Mobile IP [4, 5, 6] has been designed by IETF to serve the increasing needs of
mobile users who wish to connect to the Internet and to maintain communications
as they move from place to place. In Mobile IPv4 (MIPv4), each MN is always
identified by its home address regardless of its current point of attachment to the
Internet. While away from its home IP subnet, the MN is also associated with a care
of address (CoA), which indicates its current location. Therefore, Mobile IP enables
to the mobile node when it is away from its home network. Due to drastic increase
of mobile users, it is preferable to move to MIPv6 [7, 8].

RSVP [9, 10] for QoS which enables a destination node to reserve resources along
a fixed path to a source node is quite remarkable. RSVP based hand over schemes
in MIPv4 to provide faster services with QoS have been studied [11, 12]. However,
the buffering overhead is unavoidable during the latency to optimize the route in
path establishment on the movement of the mobile node(MN). If the MN moves
frequently in a certain area like cell border, zigzag makes the significant overhead.
Besides, there are some disruption times needed in the new path establishment which
is not preferable for the seamless services. There are many researches to reduce the
MIP handoff latency in the literature [1, 2, 11, 13].

We briefly discuss low latency handoff scheme with Neighbor Casting [1], the
two path handoff scheme [2], and optimized handoff scheme [11] as related works.
We observe the data loss caused by the disruption time and the bandwidth overhead
due to RSVP channel. Even though the data forwarding based low latency handoff
scheme minimizes the data loss and provides the faster handoff between old foreign
agent(old FA) and new one(new FA), there are some overheads when forwarding
data. It has a limitation on the employment of MIPv4. The motivation of our
works is to mitigate the limitation.

In this paper we propose a novel handoff scheme in MIPv6 for the faster and
more reliable services. This scheme minimizes the possible latency occurred in the
route optimization based on forwarding, load-balances in routers involved, and thus
reduces the overhead. This scheme performs the data forwarding and the route
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optimization in parallel. The performance evaluation shows that the disruption time
and the signaling overhead are significantly reduced up to about 62% and 73%,
respectively, in comparison with well-known previous schemes discussed in [1, 2].
Furthermore, it is able to transmit data with minimum latency and guarantees the
fast and secure seamless services.

This paper is organized as follows. In the following section we first discuss
previous works. In Section 3, we describe our proposed scheme. Then, in Section 4,
we evaluate the performances of the new scheme and related works. We finally
conclude this paper along with the future direction in the last section.

2 RELATED WORKS

2.1 The Low Latency Scheme

Old FAMN New FA HA

handoff notify

ARP Request

Advertisement

fwd. notify

fwd. ack.

ARP Reply

DATA fwd

Registration req.

Registration Reply

L2 handoff 
Latency

lowLatency

Fig. 1. The low latency scheme message flow

Figure 1 shows that the MN receives the data before the agent advertisement
message. To minimize the latency of handoff, the low latency scheme which uses the
data forwarding between the new and the old FA is presented in [1]. The low latency
scheme is built upon MIPv4 and data forwarding procedure. First, Neighbor FA
discovery mechanism means how FAs discover their neighbor FAs dynamically and
forward data in mobile networking environment. Each FA knows its neighbor FAs
by MNs since the MNs move around and eventually from neighbor FAs. That is,
the MN keeps the address of the old FA and transmits this information to the new
FA whenever it hands over from a FA to another one. Each FA maintains a table
for its neighbor agents. The MN sends the registration message which includes the
information for the old FA to the new one. Then the new FA recognizes the old
FA as its neighbor agent and sends a neighbor FA Notification Message to the old
FA. Therefore, the old FA is informed of the new FA and updates its neighbor FA
table. The handoff mechanism is based on the L2 handoff including Neighbor FA
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discovery. When the MN moves from the old FA to the new one, the old FA is
notified from the new FA by Neighbor FA discovery mechanism. If CN sends the
data, the old FA can start forwarding the data to the new FA. Therefore, the MN
receives the data shortly after L2 handoff without establishing a new path between
the old FA and the new one when it hands over.

2.2 The Two Path Scheme

MN R.new R.old HA CN

CoA Advertisement

New path 
establishment

RESV success ack.

DATA packet 

Forwarding Data

RSVP TEAR

Path establishment

RESV

New path 
success

Fig. 2. The two path scheme message flow

In MIPv4, incoming packets from CN are received by the MN through the HA.
As a result, it takes too much time to support real-time traffic flows with guaranteed
QoS. However, the two path scheme is available to support large-scale mobility with
faster handoff. This mechanism requires new procedures and signaling messages as
shown in Figure 2. When the MN moves into a new subnetwork, the MN’s new CoA
is sent to both the HA and the CN. Then, the CN which receives the MN’s new CoA
sends a PATH message to the MN to establish a new mobile path. Since the mobile
path which is a direct RSVP path does not depend on forwarded packets from the
HA, it is more efficient; however, incoming packets may be lost or may arrive out of
sequence.

Therefore, this scheme alternately uses the home path, i.e., from the CN through
the HA to the MN. Since the MN maintains a connection with the HA, it is able to
establish Home path whenever needed. When this approach uses the home path, it
ensures correct and ordered forwarding of incoming packets, and reduces the packet
loss.

2.3 Optimized Smooth Handoff Scheme

In [4], several methods to alleviate triangle routing and to reduce data loss are pro-
posed. First, to reduce data loss during a handoff, it presents a buffering scheme at
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the FAs and smooth handoff scheme. The FA buffers any data packets forwarded to
a MN. When a handoff occurs, the MN includes a handover request in its registra-
tion, and the new FA in turn requests the old FA handoff the buffered packets to the
new location. To reduce duplicates, the MN buffers the identification and source
address fields in the IP headers of packets. It receives and includes them in the
buffer handoff request so that the old FA does not need to transmit those packets
which have already been received by the MN. Also, Smooth handoff uses binding
update to reduce packet loss during a handoff. Including FA buffering mechanism,
it decapsulates the tunnelled packets and delivers them directly to the MN.

Second, hierarchical FA management reduces the administrative overhead of fre-
quent local handoffs, using an extension of the Mobile IP registration process so that
security can be maintained. The FAs in a domain are organized into a hierarchical
tree to handle local movements of the MNs within the domain. Meanwhile, when a
packet for the MN arrives at its home network, the HA tunnels it to the root of the
FA hierarchy. When an FA receives such a tunnelled packet, it re-tunnels the packet
to its next lower-level FA. Finally the lowest-level FA delivers it directly to the MN.
When a handoff occurs, the MN compares the new vector of CoA with the old one.
It chooses the lowest-level FA that appears in both vectors, and sends a Regional
Registration Request to that FA. Any higher-level agent need not be informed of
this movement since the other end of it forwarding tunnel still points to the current
location of the MN.

3 THE PROPOSED SCHEME

3.1 The Operational Mechanism

In the new forwarding based data parallel handoff technique, the CN has the option
of using two different paths to reach the MN. The first path is called the R.new
path, which is a direct path to any new location of the MN. Since the R.new path
does not depend on the packet from HA, it is the more efficient and preferred path
to use. However, while the MN is moving to a new location, incoming packet may
be lost. Therefore we have to maintain the R.old path, i.e. from the CN to the
R.old to the MN, to ensure uniform and fast forwarding of incoming packets, and
to reduce the packet latency and the disruption.

The new technique requires a new procedure and signaling messages to coordi-
nate the use of the paths. These are illustrated in Figures 3, 4 and 5. We describe
each operation along with the figure as shown below:

1. Figure 3 (1-1, 1-2): The MN located at R.old is communicating through an
existing session with the CN. When the MN moves into a new subnetwork of
R.new, the MN’s new CoA, the handoff notification, is sent to both the R.new
and the R.old.

2. Figure 3 (2-1, 2-2, 2-3): When the R.old receives the MN’s new CoA, it be-
gins to forward the data packet to the R.new. R.old’s new path request message
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is sent to the CN. When R.new receives the MN’s new CoA, R.new sends the
CoA to the HA to register MN’s new location (binding update).

3. Figure 4 (3): When the CN receives the R.old’s new path request, the CN sends
a new path establishment message to the R.new to establish a new optimized
path.

4. Figure 4 (4): If the R.new path attempt is successful, the R.new sends new

path acknowledgement message to R.old.

5. Figure 4 (5): When the R.old receives acknowledgement message from R.new,
R.old sends the request for tear down of the old path to CN.

6. Figure 4 (6): When this happens, the CN stops sending data packets to the
R.old and R.old explicitly tears down the forwarding path to R.new after it
sends the final data packet to R.new.

7. Figure 4 (7): When the CN switches to the R.new path from the R.old path,
the new path can be used. The R.new buffers incoming packets for the MN from
the CN until the forwarding path is destroyed.
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Fig. 3. Before route establishment

3.2 Characteristics of the New Scheme

In the design of this scheme, we applied the following approaches.

• Mobile IPv6 compatibility: Mobile IPv6 is the proposed by IETF, and this
scheme is designed to be compatible with it.

• Resource preallocation: the handoff process requests a resource preallocation to
guarantee that MNs obtain the requested resources right away after they enter
the new cell/network.
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Fig. 5. Message flow of the proposed scheme

• Buffering: To avoid data loss and unordered packets, the R.new is instructed to
buffer packets for the incoming MN.

• Forwarding to an adjacent router: When a MN handoffs to adjacent router, its
packets can be forwarded to the R.new by the R.old.

• Less location update only with HA: It is a frequent case that a MN moves to
another networks or cells. This scheme does not make frequent HA updates when
a handoff is performed. It contacts the HA for the update of the information
for the care-of address.
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• Triangular message exchange: It has to exchange messages for the smooth hand-
off. When a router sends a message to next router, it utilizes a next path resource
to complete the message exchange.

This scheme introduces the disruption time while the R.old, R.new, and the CN
exchange messages. Such problems are ignored for wired networks since wired links
are much more reliable and the disruption time is short in duration. In wireless
network, we assume that routers have MN’s location table. They perform fast
forwarding to the MN by sending MN’s location packets to each other. In the next
section, we describe a framework to measure the disruption time and total overhead
use for the new technique.

4 PERFORMANCE EVALUATION

4.1 The Signaling Time

The time to send a message over one hop, M , can be calculated as

M = α + β + γ (1)

where α is the transmission time, β is the propagation time, and γ is the processing
time. The transmission time α, is computed by b/B, where b is the size of the control
message in bits, and B is the bit rate of the link on which the message is sent. B has
two kinds of values which are for wired and wireless links. The propagation time,
β, has two kinds, too. Suppose that the processing time, γ, always has a fixed value
when the message is sent. The signaling time which is the total time needed to
transmit and process the messages between router i and j is computed by

Ti,j = Tsig ×Di,j (2)

where Tsig is the signaling time over one hop and Di,j is the node distance between
router i and j. Tsig is computed as follows. Wired link (TRSV P = M × 1+p

1−p
) and

wireless link(TRSV P = M × 1+q

1−q
) where q is the probability of wireless link failure.

As mentioned, Di,j is the number of hops and computed by

Di,j = NRi,Rj
= NRi,Rjoin

+NRjoin ,Rj
. (3)

NRi,Rj
is the number of hops from Ri to Rj and Rjoin is the router placed at MAP

(merged access point). The number of hops over routers on which the signaling
passes are calculated by summing these two values. The RSVP signaling time is
computed by

Ti,j = TRSV P ×Di,j , (4)

where TRSV P is the time to perform RSVP signaling over one hop. Wired link
(TRSV P = M × 1+p

1−p
) and wireless link (TRSV P = M × 1+q

1−q
), here p is the probability
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of resource assignment failure on RSVP. When the resource failure occurs, the RSVP
signaling is assumed to be repeated until either a session is successfully established,
or the MN moves to a new router location.

4.2 The Disruption Time and Total Signaling Cost

The disruption time is to measure the time that a node cannot get packets. The
shorter this time, the better the performance. The proposed scheme does not get
data when the MN receives forwarded data through New.FA from Old.FA while
data forwarding occurs. This time is computed by the equation (1). Namely, if the
disruption time is short, we can say that data flow is continuous and performance
is good.

Signaling overhead is due to sending and receiving signaling from neighbor FA
and increases in proportion to the signaling sending time. It is proportional to
generated signal in one cell. Then if signaling overhead is larger, the resource use rate
becomes larger. Accordingly, small signaling overhead is more efficient. Consider
the case that each signal source generates UDP packets at constant signal rate c
continuously. Then the amount of generated signal during a handoff of mobile node
is n·τ ·c bytes. n is the number of neighboring FAs which MN sends signal. (Suppose
that each cell is in hexagonal form.)

In our paper signal is transferred by one cell which MN moves; then n is 1. τ is
the total signaling period during which all signaling and forwarding processes finish
for receiving datas by the new path over one handoff process. The time which takes
the parallel process is included in total signaling period. This is because we need
to calculate all signaling time for the entire signaling process. The total amount of
generated signal from a cell for a time unit period is n ·τ ·c ·λ where λ is the handoff
rate. The total amount of signal sent by the sources to the MNs in the cell for the
same time unit period is m · c where m is the total number of active MNs in the
cell. The handoff rate, λ, is computed by

λ =
ρvL

π
(5)

where λ is the handoff rate or cell boundary crossing rate (1/sec), ρ is the active MN
density in 1 m2, v is the MN moving speed (m/sec), and L is the cell perimeter (m).
The signaling overhead ratio is defined as the number of bytes generated from a cell
divided by total number of bytes sent by the source, i.e. ξ = nτcλ

mc
= nλτ

m
= ρvLnτ

πm
.

Denoting r as the cell radius for a hexagonal cell scenario and L = 6r, ρ is computed
by

ρ =
m

cellarea
=

m
3
√
3

2
r2
. (6)
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λ is computed based on previous two equations (λ, ρ), and we get the following:
λ = ρvL

π
= 4mv√

3rπ
. We can substitute this values to ξ, and then get the result below:

ξ =
4vmτ
√
3rπ

(7)

where τ is the total signaling period. This is the sum of the time taken for sig-
naling processes including parallel signaling process based on Figure 5. τ1 = time
handoff notify(step1 − 1) + time path req(step2 − 2) + time path establish
(step3)+time path ack(step4)+time stop transfer(step5)+time stop fwd(step6)
where we disregard handoff latency for handoff process. τ1 is the time which takes
fundamental signaling process. As mentioned above, the MN notifies handoff to
R.new, then R.new begins binding updates. These processes are performed in pa-
rallel through signals during the handoff. So it must be contained in signaling time.
τ2 = time handoff notify(step1− 2) + time binding update(step2− 3). Total sig-
naling time is the sum of the above two time periods.

τ = τ1 + τ2 (8)

This is computed based on equation (1) in Section 4.1. We use 200m-radius hexa-
gonal cell topology and assume that the mobile speed is fixed at 5m/sec.
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Fig. 6. Hierarchical router configuration

4.3 Numerical Results

Table 1 shows the system parameters [14, 15] that were used to compare the proposed
scheme and the previous scheme [1, 2].

The Disruption Time: Figure 7 shows the comparison of the proposed scheme
with the related ones [1, 2] with respect to the disruption time. The results
are computed based on the first two equations(Ti,j). As shown in Figure 7, dis-
ruption time for the two path scheme is greater than other schemes applying
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SystemParameters V alues

Wireless propagation time, β1 2msec
Wired propagation time, β2 0.5msec
Signaling processing time, γ 0.05msec
RSVP processing time, γRSV P 0.5msec
Packet size, S 50Bytes
Probability of link failure, q 0.5
Probability of resource denial, p 0.5
Wireless bit rate, B1 144Kbps
Wired bit rate, B2 155Mbps

Table 1. Parameters

forwarding. This is due to the character of forwarding method which allows to
get data while the new path is established. The proposed scheme has better
performance than the low latency scheme using forwarding. For each MN loca-
tion, the average disruption time for the proposed scheme is 53% and smaller
by 3% than the two path scheme and the the low latency scheme, respectively.
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The Total Signaling Overhead: Figure 8 is the graph which shows the com-
parison of the proposed scheme with [1, 2] with respect to the total signaling
overhead. As shown in Figure 8, the proposed scheme has the best performance
compared with the previous schemes. The signaling overhead of the low latency
scheme based on MIPv4 is computed only for the signaling related to the for-
warding, hence it has a fixed value. However the proposed scheme and the two
path scheme are affected by the time for path establishment from CN to R.New,
so signaling traffic is changed according to the model. Therefore results of two
schemes have similar trends. In Figure 8, average total signaling overhead for
the proposed scheme is 48% and smaller by 59% than the two path scheme and
the low latency scheme, respectively.
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5 CONCLUSION

In this paper, we propose the new scheme with guaranteed QoS whose data trans-
mission is faster and data loss is smaller than the two path scheme based on MIPv6
and the data forwarding scheme based on MIPv4. The proposed scheme based on
MIPv6 has the merits of the two related schemes. Namely it receives data fast using
data forwarding, and makes the new path from CN to R.new while forwarding data.
Besides, R.old is charged with new path request message from CN to R.new instead
of R.new, and one step in path setup is saved compared to the low latency scheme.
The proposed scheme is efficient in terms of the disruption time and total signaling
overhead as discussed in performance evaluation and offers services of more improved
quality in mobile communication environment where the real-time transmission is
very important. We are investigating other aspects of the proposed scheme.
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