820,457 research outputs found

    Decomposition of multiple packings with subquadratic union complexity

    Get PDF
    Suppose kk is a positive integer and X\mathcal{X} is a kk-fold packing of the plane by infinitely many arc-connected compact sets, which means that every point of the plane belongs to at most kk sets. Suppose there is a function f(n)=o(n2)f(n)=o(n^2) with the property that any nn members of X\mathcal{X} determine at most f(n)f(n) holes, which means that the complement of their union has at most f(n)f(n) bounded connected components. We use tools from extremal graph theory and the topological Helly theorem to prove that X\mathcal{X} can be decomposed into at most pp (11-fold) packings, where pp is a constant depending only on kk and ff.Comment: Small generalization of the main result, improvements in the proofs, minor correction

    On kk-Gons and kk-Holes in Point Sets

    Get PDF
    We consider a variation of the classical Erd\H{o}s-Szekeres problems on the existence and number of convex kk-gons and kk-holes (empty kk-gons) in a set of nn points in the plane. Allowing the kk-gons to be non-convex, we show bounds and structural results on maximizing and minimizing their numbers. Most noteworthy, for any kk and sufficiently large nn, we give a quadratic lower bound for the number of kk-holes, and show that this number is maximized by sets in convex position

    Walks on the slit plane: other approaches

    Get PDF
    Let S be a finite subset of Z^2. A walk on the slit plane with steps in S is a sequence (0,0)=w_0, w_1, ..., w_n of points of Z^2 such that w_{i+1}-w_i belongs to S for all i, and none of the points w_i, i>0, lie on the half-line H= {(k,0): k =< 0}. In a recent paper, G. Schaeffer and the author computed the length generating function S(t) of walks on the slit plane for several sets S. All the generating functions thus obtained turned out to be algebraic: for instance, on the ordinary square lattice, S(t) =\frac{(1+\sqrt{1+4t})^{1/2}(1+\sqrt{1-4t})^{1/2}}{2(1-4t)^{3/4}}. The combinatorial reasons for this algebraicity remain obscure. In this paper, we present two new approaches for solving slit plane models. One of them simplifies and extends the functional equation approach of the original paper. The other one is inspired by an argument of Lawler; it is more combinatorial, and explains the algebraicity of the product of three series related to the model. It can also be seen as an extension of the classical cycle lemma. Both methods work for any set of steps S. We exhibit a large family of sets S for which the generating function of walks on the slit plane is algebraic, and another family for which it is neither algebraic, nor even D-finite. These examples give a hint at where the border between algebraicity and transcendence lies, and calls for a complete classification of the sets S.Comment: 31 page

    Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin-liquid kappa-(BEDT-TTF)2Cu2(CN)3

    Full text link
    Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved harmonics of the anion plane vibrations in the kappa-(BEDT-TTF)2Cu2(CN)3 spin-liquid insulator. Tuning the incoming light energy at the K edge of two distinct N sites permits to excite different sets of phonon modes. Cyanide CN stretching mode is selected at the edge of the ordered N sites which are more strongly connected to the BEDT-TTF molecules, while positionally disordered N sites show multi-mode excitation. Combining measurements with calculations on an anion plane cluster permits to estimate the sitedependent electron-phonon coupling of the modes related to nitrogen excitation
    • …
    corecore