107 research outputs found

    A comparison study on different NDT techniques used for testing bond quality in cold roll bonded AlSn alloy/steel bimetal strips

    Get PDF
    This paper presents non-destructive testing (NDT) results for the detection of bond defects in aluminium-tin (Al-Sn) alloy/steel bimetal strips. Among all types of bimetal strip that are used in the automotive industry for plain journal engine bearings, Al-Sn alloys cold roll bonded (CRB) onto steel backing is the most common type. The difficulty to evaluate the metallurgical bond between the two dissimilar metals is a major industrial concern, which comprises the risk that bearings fail in the field. Considering the harsh performance requirements, one hundred percent online non-destructive testing would be desirable to significantly reduce the business risk. Nowadays bimetal strip manufacturers still rely on destructive testing through different peel-off tests. This work offers the results from four independent NDT studies, using active thermography, shearography, ultrasound and guided wave EMATs and samples with different artificially implanted defects, to explore the feasibility to qualitatively indicate the occurrence of bond defects. A destructive peel off test was used to correlate the NDT results with known bond quality. The studies were done under laboratory conditions, and in case of ultrasound also online under production conditions. During the ultrasound online test, the requirements that a NDT technique has to fulfil for online inspection of Al-Sn alloy/steel bimetal strip were established. For active thermography, shearography and guided wave EMAT techniques, it was theoretically analysed, if the laboratory test results could be transferred to testing under production conditions. As a result, guided waves using EMATs, among the four tested methods, are best suited for online inspection of Al-Sn alloy/steel bimetal strip inspection. This research was carried out in collaboration with MAHLE Engine Systems UK Ltd., an Al-Sn alloy/steel bimetal strip manufacturer for the automotive industry

    Development of a guided wave EMAT online inspection system for Al/Al-Sn/Al/steel and CuSn/steel bimetal strip bond quality control used in the automotive industry

    Get PDF
    Cold roll bonded (CRB) Al/Al-Sn/Al/steel and sintered CuSnNi/steel bimetal strips are used in the automotive industry for the manufacture of engine bearings, bushes and thrust washers. Any defects such as delamination or porosity that occur in bimetal strips during manufacturing can cause problems at downstream production steps and if they remain undetected, could result in components failing in the field, which is a significant business risk.;One way to reduce this business risk is to install a final inspection system on a continuous production line as the strip passes a fixed inspection point. In process control this could alert the operators to reject defective material and correct process parameters when the defect occurs. As this system requires 100% volumetric inspection, installing it has its challenges due to the harsh manufacturing environment in which the strip moves at up to 20 m/min in the processing lines at room temperature.;A literature review and feasibility study on different non-destructive testing (NDT) techniques to inspect bond quality of CRBed Al/Al-Sn/Al/steel bimetal strips was conducted to assess technologies that could be developed for serial inspection. Guided waves generated using Electromagnetic Acoustic Transducers (EMATs) was identified as best suited for this application. Since this technology was not available off-the-shelf, significant research and experimental work was carried out to develop an automated prototype system.;The system was successfully installed at a strip processing line and demonstrated the online bond inspection capability for Al/Al-Sn/Al/steel and CuSnNi/steel bimetal strips, which is the main achievement of this EngD project. For CuSnNi/steel strips, causes of defects and preventative control measures were studied and examined. Industrialisation of the inspection system will significantly reduce the company business risk and improve bond quality of bimetal strips.Cold roll bonded (CRB) Al/Al-Sn/Al/steel and sintered CuSnNi/steel bimetal strips are used in the automotive industry for the manufacture of engine bearings, bushes and thrust washers. Any defects such as delamination or porosity that occur in bimetal strips during manufacturing can cause problems at downstream production steps and if they remain undetected, could result in components failing in the field, which is a significant business risk.;One way to reduce this business risk is to install a final inspection system on a continuous production line as the strip passes a fixed inspection point. In process control this could alert the operators to reject defective material and correct process parameters when the defect occurs. As this system requires 100% volumetric inspection, installing it has its challenges due to the harsh manufacturing environment in which the strip moves at up to 20 m/min in the processing lines at room temperature.;A literature review and feasibility study on different non-destructive testing (NDT) techniques to inspect bond quality of CRBed Al/Al-Sn/Al/steel bimetal strips was conducted to assess technologies that could be developed for serial inspection. Guided waves generated using Electromagnetic Acoustic Transducers (EMATs) was identified as best suited for this application. Since this technology was not available off-the-shelf, significant research and experimental work was carried out to develop an automated prototype system.;The system was successfully installed at a strip processing line and demonstrated the online bond inspection capability for Al/Al-Sn/Al/steel and CuSnNi/steel bimetal strips, which is the main achievement of this EngD project. For CuSnNi/steel strips, causes of defects and preventative control measures were studied and examined. Industrialisation of the inspection system will significantly reduce the company business risk and improve bond quality of bimetal strips

    Inspection and structural health monitoring techniques for concentrated solar power plants

    Get PDF
    Parabolic trough concentrators are the most widely deployed type of solar thermal power plant. The majority of parabolic trough plants operate up to 400 °C. However, recent technological advances involving molten salts instead of oil as working fluid the maximum operating temperature can exceed 550 °C. CSP plants face several technical problems related to the structural integrity and inspection of critical components such as the solar receivers and insulated piping of the coolant system. The inspection of the absorber tube is very difficult as it is covered by a cermet coating and placed inside a glass envelope under vacuum. Volumetric solar receivers are used in solar tower designs enabling increased operational temperature and plant efficiency. However, volumetric solar receiver designs inherently pose a challenging inspection problem for maintenance engineers due to their very complex geometry and characteristics of the materials employed in their manufacturing. In addition, the rest of the coolant system is insulated to minimise heat losses and therefore it cannot be inspected unless the insulation has been removed beforehand. This paper discusses the non-destructive evaluation techniques that can be employed to inspect solar receivers and insulated pipes as well as relevant research and development work in this field

    Alternative techniques for detection of inaccessible pipe corrosion

    Get PDF
    Testing for corrosion in the petrochemical industry has always been a significant challenge which takes up a large portion of the operating expenditure. Whereas major advancements have been made for the detection of general corrosion, inspection at inaccessible locations, such as at pipe supports, remains a demanding prospect; this signifies the need for an alternative technique, capable of dealing with various surface conditions encountered when testing at such locations including weld patches, T-joints, surface roughness and coatings. Long range guided waves are commonly used to detect relatively severe defects in plain sections of pipe but are less suited to inspection at supports because the support itself gives significant reflection. The reflection coefficient at the support reduces with frequency so it would be beneficial to test at higher frequencies, which can also improve the sensitivity of the test to smaller, pitting-type defects. Following the attractive properties of the Higher Order Mode Cluster (HOMC) proposed by Balasubramaniam et al. (IIT Madras), this research starts by investigating the nature of the mode cluster and shows that the features of this method are essentially those of the A1 mode in the high frequency-thickness regime. The study then goes on to investigate the possibility of exciting a single mode Lamb wave with low dispersion at a frequency-thickness of around 20 MHz-mm. Excitation of the A1 mode was considered because of its relationship with HOMC and due to its non-dispersive nature and low surface motion at such frequency-thickness products; this makes it attractive for inspection at supports since it will be unaffected by the support itself and also by surface roughness and attenuative coatings. The thesis then explores the relative ability of different transducer types for single mode excitation in the medium and high frequency-thickness regimes; here the practical feasibility of exciting the A1 mode at around 20 MHz-mm, in spite of its low surface motion, is investigated. Next, a systematic performance analysis of the A1 mode compared to the existing inspection techniques is carried out and, finally the sensitivity of this technique to realistic 3-D pitting-type holes is established. The thesis shows that the A1 mode is an attractive tool for the detection of localized, sharp, severe defects that will be missed by standard, lower frequency guided wave testing.Open Acces

    Monitoring of Critical Metallic Assets in Oil and Gas Industry Using Ultrasonic Guided Waves

    Get PDF
    This chapter presents advancements in structural health monitoring (SHM) using ultrasonic guided waves (UGW) technology for metallic structures to support their integrity and maintenance management. The focus is on pipelines and storage tanks, which are critical assets in the Oil and Gas industry, whose operational conditions can greatly accelerate damage mechanisms. Conventional routine inspections are both costly and time consuming and affect the plant reliability and availability. These operational and economic disadvantages have led to development of SHM systems which can be permanently installed on these critical structures to provide information about developing damage and optimise maintenance planning and ensure structural integrity. These technology advancements enable inspection without interruption to operations, and generate diagnosis and prognosis data for condition-based maintenance, hence increasing safety and operational efficiency. The fundamentals, architecture and development of such SHM systems for pipes and above ground storage tanks are described here
    • …
    corecore