185 research outputs found

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Security enhancements for FPGA-based MPSoCs: a boot-to-runtime protection flow for an embedded Linux-based system

    No full text
    International audienceNowadays, embedded systems become more and more complex: the hardware/software codesign approach is a method to create such systems in a single chip which can be based on reconfigurable technologies such as FPGAs (Field-Programmable Gate Arrays). In such systems, data exchanges are a key point as they convey critical and confidential information and data are transmitted between several hardware modules and software layers. In case of an FPGA development life cycle, OS (Operating System) / data updates as runtime communications can be done through an insecure link: attackers can use this medium to make the system misbehave (malicious injection) or retrieve bitstream-related information (eavesdropping). Recent works propose solutions to securely boot a bitstream and the associated OS while runtime transactions are not protected. This work proposes a full boot-to-runtime protection flow of an embedded Linux kernel during boot and confidentiality/integrity protection of the external memory containing the kernel and the main application code/data. This work shows that such a solution with hardware components induces an area occupancy of 10% of a xc6vlx240t Virtex-6 FPGA while having an improved throughput for Linux booting and lowlatency security for runtime protection

    An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for Securing Internet-of-Things Applications

    Full text link
    This paper presents the first hardware implementation of the Datagram Transport Layer Security (DTLS) protocol to enable end-to-end security for the Internet of Things (IoT). A key component of this design is a reconfigurable prime field elliptic curve cryptography (ECC) accelerator, which is 238x and 9x more energy-efficient compared to software and state-of-the-art hardware respectively. Our full hardware implementation of the DTLS 1.3 protocol provides 438x improvement in energy-efficiency over software, along with code size and data memory usage as low as 8 KB and 3 KB respectively. The cryptographic accelerators are coupled with an on-chip low-power RISC-V processor to benchmark applications beyond DTLS with up to two orders of magnitude energy savings. The test chip, fabricated in 65 nm CMOS, demonstrates hardware-accelerated DTLS sessions while consuming 44.08 uJ per handshake, and 0.89 nJ per byte of encrypted data at 16 MHz and 0.8 V.Comment: Published in IEEE Journal of Solid-State Circuits (JSSC

    Energy Efficient Hardware Design for Securing the Internet-of-Things

    Full text link
    The Internet of Things (IoT) is a rapidly growing field that holds potential to transform our everyday lives by placing tiny devices and sensors everywhere. The ubiquity and scale of IoT devices require them to be extremely energy efficient. Given the physical exposure to malicious agents, security is a critical challenge within the constrained resources. This dissertation presents energy-efficient hardware designs for IoT security. First, this dissertation presents a lightweight Advanced Encryption Standard (AES) accelerator design. By analyzing the algorithm, a novel method to manipulate two internal steps to eliminate storage registers and replace flip-flops with latches to save area is discovered. The proposed AES accelerator achieves state-of-art area and energy efficiency. Second, the inflexibility and high Non-Recurring Engineering (NRE) costs of Application-Specific-Integrated-Circuits (ASICs) motivate a more flexible solution. This dissertation presents a reconfigurable cryptographic processor, called Recryptor, which achieves performance and energy improvements for a wide range of security algorithms across public key/secret key cryptography and hash functions. The proposed design employs circuit techniques in-memory and near-memory computing and is more resilient to power analysis attack. In addition, a simulator for in-memory computation is proposed. It is of high cost to design and evaluate new-architecture like in-memory computing in Register-transfer level (RTL). A C-based simulator is designed to enable fast design space exploration and large workload simulations. Elliptic curve arithmetic and Galois counter mode are evaluated in this work. Lastly, an error resilient register circuit, called iRazor, is designed to tolerate unpredictable variations in manufacturing process operating temperature and voltage of VLSI systems. When integrated into an ARM processor, this adaptive approach outperforms competing industrial techniques such as frequency binning and canary circuits in performance and energy.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147546/1/zhyiqun_1.pd

    Extremely low overhead off-chip memory encryption

    Get PDF
    Over the last decade, advancements in performance and efficiency of portable computing devices have allowed them to provide much of the functionality previously restricted to larger computers. Instant communication, GPS navigation, remote banking, and even online shopping are only a few of the activities that can be performed from almost anywhere. However, these conveniences may come at the cost of physical security since portable devices are often operated in a public environment where there is a possibility of being physically exposed or obtained by untrustworthy users. While it is a common practice to secure the data that is transferred from one point to another, the contents of system memory often go unprotected. When physical access to a device is attained, this so called ``data-at-rest can be exploited to reveal private information. Emails, GPS location data, financial transactions, etc. could be harmful if revealed to the wrong party. This thesis investigates the design trade-offs of obscuring data stored within low latency memory on an embedded device. This was achieved by implementing a parameterizable system based on the keystream cache concept. While this solution could be implemented for almost any embedded system, the design was evaluated using reconfigurable hardware in order to reduce development costs. A prototype was built and tested on an Altera FPGA development board where parameters of the architecture were varied to find a solution that reduced performance overhead, while minimizing hardware usage. The resulting application benchmarks show as little as 1% performance overhead while using minimal hardware resources

    Bus-based MPSoC security through communication protection: A latency-efficient alternative

    No full text
    International audienceSecurity in MPSoC is gaining an increasing attention since several years. Digital convergence is one of the numerous reasons explaining such a focus on embedded systems as much sensitive and secret data are now stored, manipulated and exchanged in these systems. Most solutions are currently built at the software level; we believe hardware enhancements also play a major role in system protection. One strategic point is the communication layer as all data goes through it. Monitoring and controlling communications enable to fend off attacks before system corruption. In this work, we propose an efficient solution with several hardware enhancements to secure data exchanges in a bus-based MPSoC. Our approach relies on low complexity distributed firewalls connected to all critical IPs of the system. Designers can deploy different security policies (access right, data format, authentication, confidentiality) in order to protect the system in a flexible way. To illustrate the benefit of such a solution, implementations are discussed for different MPSoCs implemented on Xilinx Virtex-6 FPGAs. Results demonstrate a reduction up to 33% in terms of latency overhead compared to existing efforts

    GuardNN: Secure DNN Accelerator for Privacy-Preserving Deep Learning

    Full text link
    This paper proposes GuardNN, a secure deep neural network (DNN) accelerator, which provides strong hardware-based protection for user data and model parameters even in an untrusted environment. GuardNN shows that the architecture and protection can be customized for a specific application to provide strong confidentiality and integrity protection with negligible overhead. The design of the GuardNN instruction set reduces the TCB to just the accelerator and enables confidentiality protection without the overhead of integrity protection. GuardNN also introduces a new application-specific memory protection scheme to minimize the overhead of memory encryption and integrity verification. The scheme shows that most of the off-chip meta-data in today's state-of-the-art memory protection can be removed by exploiting the known memory access patterns of a DNN accelerator. GuardNN is implemented as an FPGA prototype, which demonstrates effective protection with less than 2% performance overhead for inference over a variety of modern DNN models
    • 

    corecore