24,806 research outputs found

    Modeling and Optimization of M-cresol Isopropylation for Obtaining N-thymol: Combining a Hybrid Artificial Neural Network with a Genetic Algorithm

    Get PDF
    The application of a hybrid framework based on the combination, artificial neural network-genetic algorithm (ANN-GA), for n-thymol synthesis modeling and optimization has been developed. The effects of molar ratio propylene/cresol (X1), catalyst mass (X2) and temperature (X3) on n-thymol selectivity Y1 and m-cresol conversion Y2 were studied. A 3-8-2 ANN model was found to be very suitable for reaction modeling. The multiobjective optimization, led to optimal operating conditions (0.55 ≤X1≤0.77; 1.773 g ≤ X2 ≤1.86 g; 289.74 °C ≤ X3 ≤291.33 °C) representing good solutions for obtaining high n-thymol selectivity and high m-cresol conversion. This optimal zone corresponded to n-thymol selectivity and m-cresol conversion ranging respectively in the interval [79.3; 79.5]% and [13.4 %; 23.7]%. These results were better than those obtained with a sequential method based on experimental design for which, optimum conditions led to n-thymol selectivity and m-cresol conversion values respectively equal to 67%and 11%. The hybrid method ANN-GA showed its ability to solve complex problems with a good fitting

    An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics

    An application of the individual channel analysis and design approach to control of a two-input two-output coupled-tanks system

    Get PDF
    Frequency-domain methods have provided an established approach to the analysis and design of single-loop feedback control systems in many application areas for many years. Individual Channel Analysis and Design (ICAD) is a more recent development that allows neo-classical frequency-domain analysis and design methods to be applied to multi-input multi-output control problems. This paper provides a case study illustrating the use of the ICAD methodology for an application involving liquid-level control for a system based on two coupled tanks. The complete nonlinear dynamic model of the plant is presented for a case involving two input flows of liquid and two output variables, which are the depths of liquid in the two tanks. Linear continuous proportional plus integral controllers are designed on the basis of linearised plant models to meet a given set of performance specifications for this two-input two-output multivariable control system and a computer simulation of the nonlinear model and the controllers is then used to demonstrate that the overall closed-loop performance meets the given requirements. The resulting system has been implemented in hardware and the paper includes experimental results which demonstrate good agreement with simulation predictions. The performance is satisfactory in terms of steady-state behaviour, transient responses, interaction between the controlled variables, disturbance rejection and robustness to changes within the plant. Further simulation results, some of which involve investigations that could not be carried out in a readily repeatable fashion by experimental testing, give support to the conclusion that this neo-classical ICAD framework can provide additional insight within the analysis and design processes for multi-input multi-output feedback control systems

    On the evolutionary optimisation of many conflicting objectives

    Get PDF
    This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by Non-dominated Sorting Genetic Algorithm (NSGA) components, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of mutation and recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Performance sweet-spots for both variation operators are observed to contract as the number of objectives is increased. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance for higher numbers of objectives, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion

    A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    Full text link
    Context. Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims. We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (Asexual Genetic Algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods. The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded, and b) the new generations are constructed by asexual reproduction. Results. Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.Comment: 10 pages, 8 figures, Astronomy and Astrophysics (in press
    corecore