424 research outputs found

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    Niching an estimation-of-distribution algorithm by hierarchical Gaussian mixture learning

    Get PDF
    Estimation-of-Distribution Algorithms (EDAs) have been applied with quite some success when solving real-valued optimization problems, especially in the case of Black Box Optimization (BBO). Generally, the performance of an EDA depends on the match between its driving probability distribution and the landscape of the problem being solved. Because most well-known EDAs, including CMA-ES, NES, and AMaLGaM, use a uni-modal search distribution, they have a high risk of getting trapped in local optima when a problem is multi-modal with a (moderate) number of relatively comparable modes. This risk could potentially be mitigated using niching methods that define multiple regions of interest where separate search distributions govern sub-populations. However, a key question is how to determine a suitable number of niches, especially in BBO. In this paper, we present a novel, adaptive niching approach that determines the niches through hierarchical clustering based on the correlation between the probability densities and fitness values of solutions. We test the performance of a combination of this niching approach with AMaLGaM on both new and well-known niching benchmark problems and ind that the new approach properly identifies multiple landscape modes, leading to much beter performance on multi-modal problems than with a non-niched, uni-modal EDA

    Region-based memetic algorithm with archive for multimodal optimisation.

    Get PDF
    In this paper we propose a specially designed memetic algorithm for multimodal optimisation problems. The proposal uses a niching strategy, called region-based niching strategy, that divides the search space in predefined and indexable hypercubes with decreasing size, called regions. This niching technique allows our proposal to keep high diversity in the population, and to keep the most promising regions in an external archive. The most promising solutions are improved with a local search method and also stored in the archive. The archive is used as an index to effiently prevent further exploration of these areas with the evolutionary algorithm. The resulting algorithm, called Region-based Memetic Algorithm with Archive, is tested on the benchmark proposed in the special session and competition on niching methods for multimodal function optimisation of the Congress on Evolutionary Computation in 2013. The results obtained show that the region-based niching strategy is more efficient than the classical niching strategy called clearing and that the use of the archive as restrictive index significantly improves the exploration efficiency of the algorithm. The proposal achieves better exploration and accuracy than other existing techniques

    Region-based Memetic Algorithm with Archive for multimodal optimisation

    Get PDF
    In this paper we propose a specially designed memetic algorithm for multimodal optimisation problems. The proposal uses a niching strategy, called region-based niching strategy, that divides the search space in predefined and indexable hypercubes with decreasing size, called regions. This niching technique allows our proposal to keep high diversity in the population, and to keep the most promising regions in an external archive. The most promising solutions are improved with a local search method and also stored in the archive. The archive is used as an index to effiently prevent further exploration of these areas with the evolutionary algorithm. The resulting algorithm, called Region-based Memetic Algorithm with Archive, is tested on the benchmark proposed in the special session and competition on niching methods for multimodal function optimisation of the Congress on Evolutionary Computation in 2013. The results obtained show that the region-based niching strategy is more efficient than the classical niching strategy called clearing and that the use of the archive as restrictive index significantly improves the exploration efficiency of the algorithm. The proposal achieves better exploration and accuracy than other existing techniques

    Real-valued evolutionary multi-modal multi-objective optimization by hill-valley clustering

    Get PDF
    In model-based evolutionary algorithms (EAs), the underlying search distribution is adapted to the problem at hand, for example based on dependencies between decision variables. Hill-valley clustering is an adaptive niching method in which a set of solutions is clustered such that each cluster corresponds to a single mode in the fitness landscape. This can be used to adapt the search distribution of an EA to the number of modes, exploring each mode separately. Especially in a black-box setting, where the number of modes is a priori unknown, an adaptive approach is essential for good performance. In this work, we introduce multi-objective hill-valley clustering and combine it with MAMaLGaM, a multi-objective EA, into the multi-objective hill-valley EA (MO-HillVallEA). We empirically show that MO-HillVallEA outperforms MAMaLGaM and other well-known multi-objective optimization algorithms on a set of benchmark functions. Furthermore, and perhaps most important, we show that MO-HillVallEA is capable of obtaining and maintaining multiple approximation sets simultaneously over time

    A Parameterless-Niching-Assisted Bi-objective Approach to Multimodal Optimization

    Get PDF
    Abstract-Evolutionary algorithms are becoming increasingly popular for multimodal and multi-objective optimization. Their population based nature allows them to be modified in a way so as to locate and preserve multiple optimal solutions (referred to as Pareto-optimal solutions in multi-objective optimization). These modifications are called niching methods, particularly in the context of multimodal optimization. In evolutionary multiobjective optimization, the concept of dominance and diversity preservation inherently causes niching. This paper proposes an approach to multimodal optimization which combines this power of dominance with traditional variable-space niching. The approach is implemented within the NSGA-II framework and its performance is studied on 20 benchmark problems. The simplicity of the approach and the absence of any special niching parameters are the hallmarks of this study

    Co-Evolutionary Multi-Agent System with Speciation and Resource Sharing Mechanisms

    Get PDF
    Niching techniques for evolutionary algorithms are used in order to locate basins of attraction of the local minima of multi-modal fitness functions. Co-evolutionary techniques are aimed at overcoming limited adaptive capabilities of evolutionary algorithms resulting from the loss of useful population the idea of niching co-evolutionary multi-agent system (NCoEMAS)is introduced. In such a system the species formation phenomena occurs within one of the pre-existing species as a result of co-evolutionary interactions. The results of experiments with Rastrigin and Schwefel multi-modal test functions aimed at the comparison of NCoEMAS to other niching techniques are presented. Also, the resource sharing mechanism's parameters on the quality of speciation processes inNCoEMAS are investigated
    corecore