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ABSTRACT
Inmodel-based evolutionary algorithms (EAs), the underlying search
distribution is adapted to the problem at hand, for example based
on dependencies between decision variables. Hill-valley clustering
is an adaptive niching method in which a set of solutions is clus-
tered such that each cluster corresponds to a single mode in the
fitness landscape. This can be used to adapt the search distribution
of an EA to the number of modes, exploring each mode separately.
Especially in a black-box setting, where the number of modes is
a priori unknown, an adaptive approach is essential for good per-
formance. In this work, we introduce multi-objective hill-valley
clustering and combine it with MAMaLGaM, a multi-objective EA,
into the multi-objective hill-valley EA (MO-HillVallEA). We em-
pirically show that MO-HillVallEA outperforms MAMaLGaM and
other well-known multi-objective optimization algorithms on a
set of benchmark functions. Furthermore, and perhaps most im-
portant, we show that MO-HillVallEA is capable of obtaining and
maintaining multiple approximation sets simultaneously over time.

CCS CONCEPTS
• Mathematics of computing → Evolutionary algorithms; Con-
tinuous optimization;

KEYWORDS
Multi-objective optimization, Multi-modal optimization, Niching

ACM Reference Format:
S.C. Maree, T. Alderliesten, and P.A.N. Bosman. 2019. Real-valued Evolu-
tionary Multi-modal Multi-objective Optimization by Hill-valley Clustering.
In Genetic and Evolutionary Computation Conference (GECCO ’19), July
13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3321707.3321759

1 INTRODUCTION
A multi-objective optimization problem comprises two or more ob-
jective functions that need to be optimized simultaneously. When
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these objectives are conflicting, instead of a single optimal solu-
tion, multiple Pareto-optimal solutions exist. Without further in-
formation, none of these solutions is better than any other. The
aim of multi-objective optimization is to obtain as many diverse
Pareto-optimal solutions as possible to be presented to the user for
decision making. Multi-objective evolutionary algorithms (MOEAs)
are aimed to find a set of Pareto-optimal solutions with different
trade-offs in the objectives [1, 4, 20]. Distinct solutions that have
(almost) equivalent objective values often get lost during optimiza-
tion, as there is no mechanism to maintain all of these solutions
[1, 4]. Maintaining these could however provide insight that can be
used during decision making, and could improve performance.

The aim of multi-modal multi-objective optimization is to obtain
a good approximation of the set of all Pareto-optimal solutions
[8, 17, 19]. In other words, while multi-objective optimization is
aimed to approximate the Pareto front in objective space, multi-
modal multi-objective optimization is aimed to approximate the
Pareto set in decision space.

Recently, a number of MOEAs for multi-modal optimization
(MMOEAs) have been introduced, by applying niching techniques
to existing MOEAs. These MMOEAs are then aimed to approximate
the Pareto set with a diverse set of high-quality solutions in decision
space. DN-NSGA-II is a niched NSGA-II using crowding, which
shows better decision-space diversity compared to standard NSGA-
II [9]. MO_Ring_PSO_SCD is a niched particle swarm optimizer
using an index-based ring topology [19]. MOEA/D-AD is a niched
MOEA/D, which was shown to outperform MO_Ring_PSO _SCD
in terms of decision-space diversity [17].

The contribution of this work is twofold. We introduce a novel
niching technique, hill-valley clustering, for multi-objective opti-
mization in Section 2. Hill-valley clustering, previously introduced
for single-objective optimization [11, 12], is an adaptive cluster-
ing method in which a set of solutions is clustered into niches by
spending additional function evaluations to determine whether
two solutions belong to the same niche. Second, in Section 3, we
combine hill-valley clustering with the MOEA MAMaLGaM [15]
into an MMOEA, which we refer to as MO-HillVallEA. In Section 4,
MO-HillVallEA is benchmarked against MAMaLGaM and other
(M)MOEAs on different (multi-modal) multi-objective optimiza-
tion problems. We discuss this work in Section 5, and conclude in
Section 6.

2 MULTI-OBJECTIVE NICHING
We define multi-modal multi-objective optimization by a to-be-
minimized function f : X → Rm , where f = [f0, . . . , fm−1] is anm-
dimensional objective function and where X is the n-dimensional
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decision space X ⊆ Rn . A solution x ∈ X is said to dominate
another solution y ∈ X, when x is better than y in at least one
objective, and not worse in the others. The set of all non-dominated
solutions is called the Pareto set. The image of the Pareto set under
f is called the Pareto front. The aim of multi-objective optimization
is to find an approximation set A of solutions that approximates
the Pareto front, while the aim of multi-modal multi-objective opti-
mization is to approximate the Pareto set.

In optimization, a niche is a subset of the decision space where
only one mode resides. In this work, we consider multi-objective
niching as the partitioning of the decision space into the minimum
number of niches required so that all objectives are uni-modal
within a niche. Each niche then contains one local Pareto set. The
Pareto set is a subset of the union of all local Pareto sets. When a
local Pareto set maps to (part of) the global Pareto front, we refer
to it as a global Pareto set. For a formal definition of local Pareto
sets, or locally efficient sets, we refer the reader to [7].

Let us demonstrate this using the minimum distance (MinDist)
problem [1, 6], which is based on multiple objective functions of
the form, fi (x|c0, c1) = min{∥x − c0∥ , ∥x − c1∥}, for center points
c0, c1 ∈ X. For the MinDist problem with two objectives, we use
the objectives f = [f0 (c0, c1), f1 (c2, c3)] and center points c0 =
[−2,−1, 0, . . . , 0], c1 = [2, 1, 0, . . . , 0], c2 = [−2, 1, 0, . . . , 0], and
c3 = [2,−1, 0, . . . , 0] and the Euclidean distance. MinDist with
m = 2 objectives is visualized in Figure 1. The overlapping niches
in the two objectives result in four multi-objective niches. Two local
Pareto sets map to the global Pareto front, while the other two map
to local Pareto fronts. A local Pareto set can be understood as a
line in the decision space, connecting optima of different objectives.
However, parts of these the lines resulting in the local Pareto sets
are dominated by the global Pareto sets. Note that, even though both
objectives have only global optima, the multi-objective problem
has both local and global Pareto sets.

2.1 Single-objective hill-valley clustering
Hill-valley clustering is a niching approach that was introduced
for single-objective multi-modal optimization [11, 12]. It can be
used to cluster a set of solutions such that each cluster resides in
a single niche. To determine whether two solutions belong to the
same niche, the hill-valley test is used [12, 18]. The idea behind
this test is that, when there is a hill between two solutions, they
belong to different valleys (niches). For this, a number of solutions
are evaluated along the line segment connecting the two solutions
in decision space. If any of these test solutions has worse fitness
than the two solutions, the two solutions belong to different niches.

To cluster an entire population of solutions, an approach inpsired
by nearest-better clustering [13] is used. First, the population is
sorted on fitness, starting with the best solution in the population,
which forms the first cluster. Then, iteratively, each next-best solu-
tion is tested to determine whether it belongs to the niche of the
nearest solution that has better fitness. When a solution-pair is
rejected, the next-nearest solution with better fitness is considered.
It could be that the nearest solution belongs to a different niche,
but a next-nearest solution that is located slightly further, but in a
different direction, belongs to the same niche. If a solution does not

Figure 1: Niches for the MinDist problem with two objec-
tives. The top subfigures show the single-objective niches
for both objectives in different colors. The lower left sub-
figure show the four niches for the multi-objective problem
f = [f0, f1], together with the four local Pareto sets. The
lower right subfigure shows the objective space, where the
red and purple niches are shown. The blue niche overlaps
exactly with red niche, and white with purple.

belong to the same niche as its Nn = n + 1 nearest-better neigh-
bors, a new cluster is formed from that solution. This is repeated
until the entire population is clustered. A detailed description of
single-objective hill-valley clustering can be found in [12].

2.2 Multi-objective hill-valley clustering
We extend hill-valley clustering to the multi-objective case using
insight gained from Figure 1. Single-objective hill-valley clustering
is performed once for each objective. The result is m (different)
clusterings of the population. These are then reduced to a single
cluster set by taking intersections, similar as the differently colored
regions illustrated in Figure 1. That is, solutions that belong to the
same niches for all objectives are grouped together. See pseudo
code in Algorithm 1.

To improve efficiency, test solutions evaluated by the hill-valley
test are stored to prevent evaluating them twice for the clustering of
different objectives. Furthermore, test solutions for solution-pairs
that ended up in the same cluster are added to that cluster as well.
Test solutions for solution-pairs that ended up in different clusters
are discarded, as it is not clear to which cluster they should be
added without further testing.

Hill-valley clustering uses at least N function evaluations to
cluster a population of size N , as at least one neighbor needs to
be checked for each solution. An upper bound is more difficult to
formulate because the number solutions used in the hill-valley test
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Algorithm 1: Hill-valley Clustering
function : [boolean] = HillValleyTest(x, y,Nt , f )
input :Solutions x, y, Number of test points Nt , Objective

function f (to be minimized)
output :x, y belong to the same niche? (boolean)

for k = 0, . . . ,Nt − 1 do
xk = x + k

Nt+1 (x − y);
if max{ f (x), f (y)} < f (xk ) then

return false;
end

end
return true;

function :C = HillValleyClustering(P, f)
input :Population of solutions P,

Objective function f : Rn → Rm
output :Set of clusters C = {C0, . . . ,Cs−1}

∆ = n
√
VP/|P |; // VP = volume of bounding box of P ⊂ Rn

for l = 0, . . . ,m − 1 do
// Single-objective hill-valley clustering for objective l

Sort x ∈ P on fitness value of l-th objective, fittest first;
C = {x0}; Kl = {C}; // Init cluster from best solution

for i = 1, . . . , |P | − 1 do
// Compute Euclidean distances to all better xp
δp =




xi − xp



 , for p = 0, . . . , i − 1;

for j = 0, . . . ,min{i − 1,n} do
k = index of j-th nearest better solution according
to {δp }i−1p=0;

if HillValleyTest(xk , xi , 1 +
⌊
δk/∆

⌋
, fl ) then

C(xk ) = C(xk ) ∪ {xi }; // Add to cluster of xk
break;

end
end
if xi was not added to any cluster then
C := {xi }; Kl = Kl ∪ C ; // Init new cluster

end
end

end
C =
⋂
{Kl }

m−1
l=0 ; // all intersections of all clusters in Kl

depends on the distance between nearest better solutions, which
is problem- and sample-dependent. As at most n + 1 neighbors
are considered per solution, the number of function evaluations is
roughly O ((n + 1)N ) in practice.

3 MO-HILLVALLEA
We use hill-valley clustering to construct a multi-modal multi-
objective evolutionary algorithm that we refer to as the multi-
objective hill-valley evolutionary algorithm (MO-HillVallEA). The
idea behind the algorithm is that every generation, the population is
clustered using hill-valley clustering. Then, each cluster is explored
with a generation of a core optimization algorithm. For this we

use different versions of MAMaLGaM in this work. MAMaLGaM is
an estimation-of-distribution algorithm, i.e., a type of model-based
evolutionary algorithm that learns a probability distribution to
subsequently sample new solutions from [15].

The population P is initialized by uniform sampling, after which
hill-valley clustering is used to obtain clusters C = {C0,C1, . . .}. For
each cluster Ci , a generation of the core optimization algorithm is
performed to generate offspring Oi . Core optimization algorithms
of the model-building type, such as MAMaLGaM, generally esti-
mate model-parameters over the course of multiple generations.
Therefore, a set of model parameters ρi is maintained for each clus-
ter Ci . To smoothly transfer model parameters over generations,
clusters are linked to the nearest cluster from the previous genera-
tion. This distance is measured by the Euclidean distance between
the cluster means in decision space. Note that this supports having
a variable number of clusters every generation.

Besides the main population, an elitist archive E is maintained
that contains the best solutions over time. To allow for multi-modal
optimization, all non-dominated solutions within a niche need to
be maintained, even if they are dominated by a solution from a
different niche. Therefore, a local elitist archive, or subarchive, Ei
is generated from each cluster Ci by maintaining only the non-
dominated solutions within that cluster. The (global) elitist archive
E is then the set of all subarchives, i.e., E = {E0, E1, . . .}. Note
that in this way, dominated solutions can end up in the elitist
archive, but only if the dominating solution is from a different
subarchive, and thus presumably from a different niche. In order
to incorporate subarchives from the previous generation into the
clusters of the next generation, one must know to which cluster
each subarchive corresponds. Therefore, all elites are added to
the population before hill-valley clustering is applied. In that way,
clusters contain all new offspring and all elites. After the clustering
process and the construction of the elitist archive, the elites are
removed from the clusters, but maintained in the elitist archives.
Note that MAMaLGaM, within core_opt_generation(C, E, ρ), does
again add a few elites back in the clusters to improve convergence.

To reduce the number of function evaluations spent during hill-
valley clustering, whenever two elites are considered in the hill-
valley test that originate from the same subarchive, they are said to
be part of the same niche, without further testing. However, when
two elites originate from different subarchives, the hill-valley test
is performed. Due to the discrete nature of the hill-valley test, solu-
tions close to the boundaries of a niche can be clustered incorrectly,
resulting in small, low-fitness clusters. By testing elites from differ-
ent niches every generation, these clusters are more often merged
with the correct neighboring clusters.

If, at the end of the generation, the elitist archive size exceeds a
user-defined target size NE, adaptive objective-space discretization
is performed, to reduce computational cost while maintaining di-
versity in the archive [10, 15]. All subarchives are discretized using
the same grid size, which is adapted until the total archive size is
less than the given target size NE. Note that this maintains diversity
within subarchives, but does not focus on total diversity over all
archives. The main generational loop for MO-HillVallEA is inspired
by MAMaLGaM, and pseudo code is given in Algorithm 2.
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Algorithm 2: MO-HillVallEA
function : [E] = MO-HillVallEA(f ,N ,NE)
input :Objective function f , Population size N , Elitist

archive target size NE
output :Elitist archive E = {E0, E1, . . .}

P = UniformSampling(N ); // Also evaluates solutions

C = HillValleyClustering(P, f ); // See Algorithm 1

E = ConstructLocalElitistArchives(C,NE);
ρ = InitModelParameters(C); // For each Ci , modelparams ρi

while budget remaining do
P =
⋃
i {Ei }; // Copy all elites to the population

for (Ci , Ei , ρi ) ∈ (C,E, ρ) do
(Oi , ρi ) = core_opt_generation (Ci , Ei , ρi );
P = P ∪ Oi ; // Collect offspring Oi

end
Cprev = C; // Backup old clusters

C = HillValleyClustering(P, f ); // See Algorithm 1

E = ConstructLocalElitistArchives(C,NE);
C = RemoveElitesFrom(C)
(C, ρ) = LinkClusters(C,Cprev, ρ);

end

3.1 MAMaLGaM
We briefly describe a generation of MAMaLGaM, and necessary
adaptations required for its use as a core optimization algorithm.

MAMaLGaM is initialized with a cluster Ci ∈ C as its population,
from which offspring are generated. For this, Ci is clustered once
more. To prevent confusion with hill-valley clustering, we refer
to these subclusters within MAMaLGaM as subsets. MAMaLGaM
combines two clustering approaches to obtain a predefined number
of subsets k . First, for each of them objectives, a subset is formed
by the Nc best solutions in that objective. Second, the population
is sorted based on domination rank, and balanced k-leader-means
(BKLM) clustering [15] is used to cluster the τN best-ranked so-
lutions into the remaining k −m subsets, where τ is the selection
fraction. This results in a set of k overlapping subsets. A Gaussian
distribution is then estimated for each subset, from which new
offspring are sampled. For this, mechanisms from different evolu-
tionary algorithms have been used previously, such as, CMA-ES,
iAMaLGaM, and AMaLGaM [15]. Subsets are registered to subsets
from the previous generation and a one-to-one subset registration
is applied. Besides sampling new solutions every generation, a max-
imum of τN elites is put back into the population, selected from
the elitist archive based on objective-space diversity.

To initialize MAMaLGaM, the offspring size needs to be set, for
which we use Ni = ⌊N /|C|⌋, i.e., we sample an equal number of
offspring for each cluster, with the purpose of better maintaining
smaller niches. Furthermore, we fix the total number of subsets
k over all clusters within MO-HillVallEA. For an instance of MA-
MaLGaM initialized with Ci ∈ C as population, we set the number
of subsets ki by ki = ⌊k · |Ci |/

∑
j |Cj |⌋, with ki ≥ 1. Only when

ki > m, m out of ki subsets are formed by performing single-
objective selection. Because ki can now vary per generation, the
one-to-one subset registration that was previously used is no longer

applicable. It is therefore replaced by simply registering each subset
to the nearest subset from the linked cluster of the previous gen-
eration. As subsets are formed based on objective-space distances,
subset distances are computed by the distance of the subset means
in objective space as well. Additionally, single-objective subsets are
linked with each other if they existed in both generations. Note that
this approach is significantly faster than the original one-to-one
subset registration.

3.2 Post-processing the approximation set
In practice, a user can often process only a limited number of solu-
tions during decision making, and the size of the resulting approxi-
mation set A that an algorithm obtains must thus be limited. Di-
rectly restricting the size of the elitist archive E during optimization
has a risk of deteriorating performance, especially when the desired
number of solutions is small. Therefore, a post-processing step is
applied when the desired approximation set size NA is smaller than
the elitist archive target size NE. In that case, the approximation set
is formed by combining all local elitist archives that contain at least
one solution that is non-dominated within the global elitist archive.
If the approximation set still exceeds NA , a greedy scattered subset
selection is performed to reduce the archive size while preserving
decision-space diversity as good as possible. This is the same subset
selection algorithm as was used for BKLM clustering [15]. A similar
post-processing step was used for MOEA/D-AD in [17], with the
difference that MO-HillVallEA can maintain dominated solutions
as long as they are from different subarchives.

3.3 Multi-start scheme
To overcome the need for parameter tuning of the population size
N , a multi-start scheme is applied, similar to [3], where multi-
ple instances of MO-HillVallEA are run simultaneously, each with
a larger population size. Recursively, after 8 generations of an
instance of MO-HillVallEA with population size N , one genera-
tion of an instance with population size 2N is performed. The
first instance of MO-HillVallEA is initialized with population size
Nbase = 10 · (1+m) · (1+ logn) and kbase = 1+m subsets, wherem
is the number of objectives and n the decision-space dimensionality.
Each subsequent instance has a population size increased by a fac-
tor 2 and number of subsets increased by a factor 1.5. The number
of subsets increases slower than the population size, so that the
subset size increases over time. A single global elitist archive E is
maintained for all instances. Whenever a new instance is initialized,
it is counted how many solutions the smaller instances contributed
to the elitist archive in their most recent generation. An instance
that is responsible for less than 25% of the total contribution is
terminated, except for the latest instance.

4 EXPERIMENTS
We empirically benchmark MO-HillVallEA against comparable
(M)MOEAs. For this, MAMaLGaM was implemented in C++, and
MO-HillVallEA was implemented in the same framework to reduce
behavioral differences due to implementation choices. Source code
ofMO-HillVallEA is available at github.com/scmaree/MOHillVallEA.
Results of other (M)MOEAs were provided by the authors of [17].
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4.1 Test problems
We consider the MinDist problem withm = 2 objectives described
in Section 2 with n = {10, 20} decision variables, initialized in the
box [−4, 4]n . Additionally, we consider the MinDist problem with
m = 3 objectives, given by f = [f0 (c0, c1), f1 (c2, c3), f2 (c4, c5] and
center points c0 = [−4,−4, 0] and c1 = [2, 2, 0] for the first objective,
c2 = [−2,−4, 0] and c3 = [4, 2, 0] for the second objective, and
c4 = [−3,−2, 1], and c5 = [3, 4, 1] for the third objective, resulting
in two triangle-shaped global Pareto sets. Similarly for them = 2
MinDist problem, zeros are appended to the centers if the number
of decision parameters is larger.

Furthermore, we consider six bi-objective multi-modal test prob-
lems with n = 2 decision variables that are frequently considered
in multi-modal literature: Two-On-One [14], SYM-PART{1,2,3} [16],
and SSUF{1,3} [19]. The Two-On-One problem and the SSUF1 prob-
lem both have two symmetrical global Pareto sets that are connected
in decision space and that map onto the same Pareto front in ob-
jective space. The SYM-PART problems have nine global Pareto
sets, where SYM-PART2 has rotated global Pareto sets and SYM-
PART3 has non-linear global Pareto sets. The SSUF3 problem has
two global Pareto sets that are shifted, and many local Pareto sets.

All problems have a bounded decision space, and boundary repair
is performedwhen solutions violate the boundary conditions. Initial
populations are sampled uniformly in the entire domain.

4.2 Performance Measures
We use the inverted generational distance (IGD) [2] to measure
objective-space diversity and the IGDX [21] to measure decision-
space diversity, which are given by,

IGDA∗ (A) =
1
|A∗ |

∑
y∈A∗

min
x∈A



f (x) − f (y)

 ,

IGDXA∗ (A) =
1
|A∗ |

∑
y∈A∗

min
x∈A



x − y

 ,
(1)

where ∥·∥ is the Euclidean norm, and A∗ is the reference Pareto
set, for which 5000 Pareto-optimal solutions are sampled using
the analytical expression of the Pareto set. For the Two-On-One
problem, an approximation of the Pareto set is used [14]. Both
measures should be minimized, and a perfect score of 0 is achieved
when each solution in A∗ is also in A. Note that for multi-modal
fitness landscapes, a low IGD does not imply a low IGDX. E.g.,
for the MinDist function in Figure 1, IGD = 0 can be achieved
for IGDX = 2, when one of the global Pareto sets is perfectly
approximated, while no solution has been obtained in the other
set. Best achievable scores for the IGD and IGDX depend on the
maximum number of solutions NA desired in the approximation
set. To compute achievable limits for these scores, the reference
Pareto set is compared to a subset of it that contains NA solutions.
This subset is generated using greedy scattered subset selection [1].
Subset selection has been performed with objective-space distances
for the IGD and decision-space distances for the IGDX.

Additionally, we introduce a novel performance measure that
we refer to as the mode ratio (MR), which is the ratio of attained
modes. We say that a Pareto set, or mode, is attained if the IGDX
for that mode is smaller than a predefined threshold ε , which we
set to ε = 0.05 for problems with two objectives, and ε = 0.1 for

problems with three objectives. To compute the MR, the reference
Pareto set A∗ is partitioned up into different modes by clustering
it with hill-valley clustering. The MR should be maximized, and the
best score is 1.0, when all modes are attained.

We aim in this work to improve decision space diversity, mea-
sured by the IGDX and MR. To indicate how this affects objective
space diversity, the IGD is also included. It should be noted, how-
ever, that it is not the primary aim of the multi-modal approaches
in this work to optimize it.

4.3 Visualization of hill-valley clustering
Hill-valley clustering is visualized for the 2D benchmark problems
in Figure 2 with initial population sizes N = 250 and N = 10 000.
Tree-like clusters are formed because test solutions that are used
by the hill-valley test are added to the clusters. A well-structured
clustering can be observed for the Two-On-One, SYM-PART3, and
three-objective MinDist problems. For the SYM-PART3 problem,
low-fitness clusters with only a few solutions are formed on local
Pareto sets that exist in between the global Pareto sets, which is
caused by the limited number of test points in the hill-valley test.
For SSUF1, the domain boundary results in that Pareto sets are
connected only by a single point, resulting in more clusters than
niches. For the SSUF3 problem, hill-valley clustering is not always
able to connect the long stretched local Pareto sets. This can be
reduced by increasing the number of neighbors considers in the
clustering process.

4.4 Comparing core optimization algorithms
We compare different core optimization algorithms and their perfor-
mance within MO-HillVallEA in combination with the multi-start
scheme. All parameters of MO-HillVallEA and MAMaLGaM are
set according to literature [15]. For the bi-objective problems, the
elitist archive target size is set to NE = 1000 and for the three-
objective problems to NE = 2500. To show the full potential of
MO-HillVallEA, post processing is disabled, by setting the approxi-
mation set equal to the union of all subarchives A =

⋃
i Ei .

We compare four versions of MAMaLGaM as core search algo-
rithm. MAMaLGaM (MAM) and MAMaLGaM-univariate (MAMu)
estimate a Gaussian distribution with respectively a full-rank and
univariate covariance matrix. Similarly, iMAMaLGaM (iMAM) and
iMAMaLGaM-univariate (iMAMu) estimate respectively a full-rank
and univariate covariance matrix, but the mean and covariance
matrix are estimated incrementally over the course of multiple gen-
erations. Limiting the search distribution to a univariate covariance
matrix or estimating it incrementally typically requires a smaller
population size, but results in a worse fit of the fitness landscape.

4.4.1 Results. Results in terms of the three performance mea-
sures for MO-HillVallEA with different core optimization algo-
rithms and MAMaLGaM are shown in Figure 3. In terms of the
IGD, all versions of MO-HillVallEA perform similar, and a simi-
lar rate of convergence can be observed for MO-HillVallEA and
MAMaLGaM. MAMaLGaM ultimately achieves a better IGD score
for all problems, which is mainly due to the limited elitist archive
size. When the archive is full, discretization of the archive takes
place. MO-HillVallEA aims to maintain parameter space diversity
within the archive while reducing its size, while MAMaLGaM aims
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Figure 2: Hill-valley clustering of the decision space for different problems, with population size of N = 250 (first row) and
N = 10 000 (second row). The global Pareto sets are illustrated in black. For the SYM-PART3 and SSUF problems, the number
of clusters obtained in the first row differed from the second row, resulting in a different color mapping.

to maintain objective-space diversity. This results in stagnating
IGD convergence for MO-HillVallEA. Initially, performance of MO-
HillVallEA on MinDist (m = 2,n = 20) is better in terms of the IGD,
which can be attributed to the observation that MO-HillVallEA
splits the search distribution into two, each focusing on converging
locally, while MAMaLGaM tries to approach both modes with a
single search distribution, resulting in a slower convergence. As
soon as one of the modes is discarded due to generational drift,
MAMaLGaM achieves a higher accuracy. In terms of decision-space
performance, measured by the IGDX and MR, MO-HillVallEA out-
performs MAMaLGaM for all problems. This holds especially for
SYM-PART and MinDist problems, where MAMaLGaM ultimately
obtains only a single mode, while MO-HillVallEA obtains all modes.
For MinDist (m = 2,n = 20), due to the dimensionality of the de-
cision space, the two modes appear to be close to each other, and
distinguishing them becomes hard with a small population size.
Therefore, restarts are required to obtain both modes, resulting in
the step-like IGDX curves.

Differences between core optimization algorithms within MO-
HillVallEA can be observed for the SYM-PART1 and the bi-objective
MinDist problems in IGDX and MR. The Pareto sets for these
problems are linear and non-rotated, so the univariate MAMu and
iMAMu outperform the full-covariance MAM and iMAM, as can
be seen in terms of MR performance and a lower IGDX. For SYM-
PART3, with rotated Pareto sets, the full-covariance MAM and
iMAM outperform the univariate core optimization algorithms by
achieving a higher MR.

4.5 Benchmark comparison with budget
Next, we benchmark MO-HillVallEA in the same experiment setup
and budget as in [17], which allows 30 000 function evaluations
and approximation set size of at most NA = 100 solutions. From
the proposed problems, the Omni-Test [5] was omitted, as it has

35 = 243 global Pareto sets, which is more than the number of
solutions allowed in the current experiment setup. Therefore, higher
IGDX scores would be achieved when each solution is a non-Pareto
optimal solution that is in between Pareto sets. This is not in line
with the purpose of multi-modal optimization. The IGD and IGDX
are used as performance measures. The MR is omitted because the
limited approximation set size NA does not allow all modes to be
obtained simultaneously with a sufficient number of solutions to
achieve the desired accuracy of ε = 0.05. Therefore, higher MR
scores would be obtained by algorithms that obtain only a subset
of the modes, which is again not the purpose of this experiment.
MO-HillVallEA is equipped with MAM, based on its better IGDX
performance on the MinDist problems shown in Figure 3. The
MMOEAs MO_Ring_PSO_SCD [19] and MOEA/D-AD [17], and
the MOEAs MAMaLGaM, NSGA-II [4], and MOEA/D [17] are used
for comparison. We set the elitist archive size to NE = 1000. The
approximation set is post-processed using greedy scattered subset
selection in decision space. The multi-start scheme was not used
for MO-HillVallEA in this experiment as it is used to prevent the
need to set the population size, but generally lowers performance
in a limited budget setting as considered. Similar to the compared
algorithms, MO-HillVallEA was ran with the standard population
size recommended in literature. The population size N and number
of clusters is fixed according to the recommendations in [15] to
k = 20 clusters and population size N = 1

2k ⌊17 + 3n
3
2 ⌋ = 250,

where n is the number of decision variables. For MAMaLGaM, the
same setup as MO-HillVallEA is used, but the final elitist archive is
post-processed with greedy scattered subset selection in objective
space. Obtained scores are tested for significance with theWilcoxon
rank-sum test with Bonferroni correction for the 60 tests performed,
resulting in a significance level of α = 0.01

60 = 0.00017.
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Table 1: Mean IGD and IGDX for MMOEAs and MOEAs over 31 runs (standard deviation in brackets). Bold scores are best per
problem (not significantly worse than any other). In the limit column, best scores achievable with NA = 100 are shown.

MO-HillVallEA MO_Ring
Problem limit -MAM MOEA/D-AD _PSO_SCD MAMaLGaM NSGA-II MOEA/D

IG
D

( o
bj
ec
tiv

e
sp
ac
e) Two-On-One 0.004 0.006 (0.000) 0.064 (0.008) 0.061 (0.006) 0.004 (0.000) 0.049 (0.002) 0.045 (0.001)

SYM-PART1 0.018 0.047 (0.009) 0.030 (0.002) 0.028 (0.001) 0.018 (0.000) 0.021 (0.001) 0.047 (0.001)
SYM-PART2 0.018 0.044 (0.006) 0.031 (0.002) 0.031 (0.002) 0.018 (0.000) 0.023 (0.001) 0.047 (0.008)
SYM-PART3 0.018 0.043 (0.005) 0.031 (0.002) 0.032 (0.003) 0.019 (0.001) 0.023 (0.001) 0.045 (0.005)

SSUF1 0.004 0.008 (0.001) 0.007 (0.001) 0.006 (0.001) 0.004 (0.000) 0.006 (0.000) 0.006 (0.003)
SSUF3 0.004 0.012 (0.001) 0.019 (0.006) 0.011 (0.002) 0.005 (0.001) 0.007 (0.002) 0.063 (0.052)

IG
D
X

(d
ec
is
io
n
sp
ac
e) Two-On-One 0.013 0.026 (0.001) 0.035 (0.003) 0.037 (0.002) 0.043 (0.012) 0.148 (0.118) 0.281 (0.164)

SYM-PART1 0.051 0.073 (0.007) 0.069 (0.003) 0.148 (0.024) 9.427 (1.520) 7.929 (2.343) 9.155 (2.748)
SYM-PART2 0.052 0.070 (0.006) 0.078 (0.003) 0.161 (0.026) 9.410 (1.082) 5.371 (1.964) 9.483 (2.191)
SYM-PART3 0.042 0.053 (0.004) 0.148 (0.209) 0.491 (0.369) 8.335 (3.050) 5.841 (1.892) 7.397 (1.965)

SSUF1 0.055 0.057 (0.001) 0.076 (0.008) 0.086 (0.006) 0.142 (0.040) 0.132 (0.022) 0.244 (0.065)
SSUF3 0.008 0.016 (0.003) 0.030 (0.009) 0.020 (0.006) 0.162 (0.077) 0.071 (0.048) 0.308 (0.109)

4.5.1 Results. Table 1 shows that MAMaLGaM comes very close
to the best achievable IGD for all problems, outperforming all other
algorithms. This suggests that MAMaLGaM is a sensible choice
to use as a starting point for MO-HillVallEA. MO-HillVallEA out-
performs all algorithms in terms of the IGDX on all problems but
SYM-PART1. In all cases, MO-HillVallEA obtained all nine Pareto
sets of the SYM-PART problems, which becomes increasingly harder
for respectively SYM-PART1, 2, and 3. The reference Pareto set of
the Two-On-One problem is an approximation that is accurate up
to 0.0045 [14], and multiple algorithms have IGD and IGDX scores
close to this accuracy, which may obfuscate true performance.

5 DISCUSSION
We showed that hill-valley clustering succesfully distinguishes
multi-objective niches, which are then explored separately in MO-
HillVallEA. By considering Pareto domination per niche, local
Pareto sets can be maintained. However, for problems with a large
number of niches, (e.g. Omni-Test [5], SSUF1, SSUF3), this approach
results in a large number of clusters, and a very large population is
required to explore all niches simultaneously. In that case, control-
ling the maximum number of clusters, or a serial search, as in [12],
might be preferred.

Visualizing hill-valley clustering on problems with two deci-
sion variables provided useful insight in the behavior of hill-valley
clustering. Performance of MO-HillVallEA on the MinDist prob-
lem with up to 20 variables shows that this technique extends to
higher-dimensional problems. However, its performance and scal-
ability has yet to be shown for more complex problems and even
higher-dimensional decision spaces.

The current problem formulation of multi-modal optimization,
where one is interested in only locating global Pareto sets, poses
a fundamental difficulty. In practice, especially when a problem
contains noise, the global Pareto front is never exactly attained,
which makes it difficult or impossible to distinguish between global
and high-quality local Pareto sets.

It would furthermore be interesting to see how hill-valley clus-
tering can be applied to improve performance when the aim is

objective-space diversity in a multi-modal fitness landscape, rather
than decision space diversity.

By aiming MO-HillVallEA for decision-space diversity, objective-
space diversity deteriorated for most problems, compared to MA-
MaLGaM. This deterioration was found to relate mainly to the size
limit of the elitist archive. If a balance between objective- and deci-
sion space diversity is desired, different size-control mechanisms
could be applied to the elitist archive.

MOEA/D-AD [17] is equipped with a population size growing
scheme by which the population size is adapted to the problem
at hand. In this work, a population-sizing scheme was used, but
adapting this scheme or the population size itself on the number of
detected niches could further improve performance. Both MOEA/D-
AD and MO-HillVallEA use a post-processing step to construct a
limited-size approximation set while maintaining a larger elitist
archive during optimization, which seems to be beneficial.

6 CONCLUSION
In this work, we introduced hill-valley clustering for clustering
multi-objective optimization problems into niches. We combined
hill-valley clustering with MAMaLGaM into the multi-modal multi-
objective evolutionary algorithm MO-HillVallEA. We empirically
show that MO-HillVallEA outperforms MAMaLGaM and other
multi-objective optimization algorithms in multi-modal optimiza-
tion on a set of multi-modal benchmark functions. Furthermore,
and perhaps most importantly, we show that MO-HillVallEA is
capable of obtaining, maintaining, and exploiting multiple local
Pareto sets simultaneously over time.
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