8 research outputs found

    Adaptive and cooperative decision-making strategies for autonomous driving in urban environments

    Get PDF
    This thesis is framed within the area of intelligent control systems and automation. The main objective is the development of advanced strategies for decision making in automated vehicles, taking advantage of both the information available in the vehicle and V2X communications. The uncertainty inherent in the different sensors and V2X communications, as well as the variability of driving scenes in urban environments, make it necessary to design and develop a context-dependent adaptive control architecture. To this end, this doctoral thesis addresses the application of risk inference and motion planning systems capable of integrating uncertainty and heterogeneity in sensory information, while structurally incorporating the possibility of learning from complex and unpredictable situations. The cooperation between vehicles and with the infrastructure will be exploited in order to improve the safety of each vehicle, and in specific cases of complex resolution, with the aim of disbanding situations that today are unsolvable for an artificial decision system.Peer reviewe

    Digital twin-based Optimization on the basis of Grey Wolf Method. A Case Study on Motion Control Systems

    Get PDF
    Nowadays, digital twins are fostering the development of plug, simulate and optimize behavior in industrial cyber-physical systems. This paper presents a digital twin-based optimization of a motion system on the basis of a grey wolf optimization (GWO) method. The digital twin of the whole ultraprecision motion system with friction and backlash including a P-PI cascade controller is used as a basement to minimize the maximum position error. The simulation study and the real-time experiments in trajectory control are performed to compare the performance of the proposed GWO algorithm and the industrial method called Fine tune (FT) method. The simulation study shows that the digital twin-based optimization using GWO outperformed FT method with improvement of 66.4% in the reduction of the maximum position error. The real-time experimental results obtained show also the advantage of GWO method with 18% of improvement in the maximum peak error and 16% in accuracy

    Benchmarking LiDAR Sensors for Development and Evaluation of Automotive Perception

    Full text link
    Environment perception and representation are some of the most critical tasks in automated driving. To meet the stringent needs of safety standards such as ISO 26262 there is a need for efficient quantitative evaluation of the perceived information. However, to use typical methods of evaluation, such as comparing using annotated data, is not scalable due to the manual effort involved. There is thus a need to automate the process of data annotation. This paper focuses on the LiDAR sensor and aims to identify the limitations of the sensor and provides a methodology to generate annotated data of a measurable quality. The limitations with the sensor are analysed in a Systematic Literature Review on available academic texts and refined by unstructured interviews with experts. The main contributions are 1) the SLR with related interviews to identify LiDAR sensor limitations and 2) the associated methodology which allows us to generate world representations

    An amalgamation of YOLOv4 and XGBoost for next-gen smart traffic management system

    Get PDF
    The traffic congestion and the rise in the number of vehicles have become a grievous issue, and it is focused worldwide. One of the issues with traffic management is that the traffic light’s timer is not dynamic. As a result, one has to remain longer even if there are no or fewer vehicles, on a roadway, causing unnecessary waiting time, fuel consumption and leads to pollution. Prior work on smart traffic management systems repurposes the use of Internet of things, Time Series Forecasting, and Digital Image Processing. Computer Vision-based smart traffic management is an emerging area of research. Therefore a real-time traffic light optimization algorithm that uses Machine Learning and Deep Learning Techniques to predict the optimal time required by the vehicles to clear the lane is presented. This article concentrates on a two-step approach. The first step is to obtain the count of the independent category of the class of vehicles. For this, the You Only Look Once version 4 (YOLOv4) object detection technique is employed. In the second step, an ensemble technique named eXtreme Gradient Boosting (XGBoost) for predicting the optimal time of the green light window is implemented. Furthermore, the different implemented versions of YOLO and different prediction algorithms are compared with the proposed approach. The experimental analysis signifies that YOLOv4 with the XGBoost algorithm produces the most precise outcomes with a balance of accuracy and inference time. The proposed approach elegantly reduces an average of 32.3% of waiting time with usual traffic on the road

    Identification of distinguishing characteristics of intersections based on statistical analysis and data from video cameras

    Get PDF
    The article discusses the issues of improving the collection of traffic information using video cameras and the statistical processing of collected data. The aim of the article was to identify the main patterns of traffic at intersections in traffic congestion and to develop an analysis technique to improve traffic management at intersections. In modern conditions, there is a sharp increase in the number of vehicles, which leads to negative consequences, such as an increase in travel time, additional fuel consumption, increased risk of traffic accidents and others. To solve the problem of improving traffic control at intersections, it is necessary to have a reliable information collection system and apply modern effective methods of processing the collected information. The purpose of this article is to determine the most important traffic characteristics that affect the throughput of intersections. As a criterion for the cross-pass ability of the intersection, the actual number of passing cars during the permission signal of the torch light is taken. Using multivariate regression analysis, a model was developed to predict intersection throughput taking into account the most important traffic characteristics. Analysis of the throughput of intersections using the fuzzy logic method confirmed the correctness of the developed model. In addition, based on the results of processing information collected at 20 intersections and including 597 observations, a methodology was developed for determining the similarity of traffic intersections. This allows us to identify homogeneous types of intersections and to develop typical traffic management techniques in the city, instead of individually managing each node of the city’s transport network individually. The results obtained lead to a significant reduction in costs for the organization of rational traffic flows. Document type: Articl

    CPS Data Streams Analytics based on Machine Learning for Cloud and Fog Computing: A Survey

    Get PDF
    Cloud and Fog computing has emerged as a promising paradigm for the Internet of things (IoT) and cyber-physical systems (CPS). One characteristic of CPS is the reciprocal feedback loops between physical processes and cyber elements (computation, software and networking), which implies that data stream analytics is one of the core components of CPS. The reasons for this are: (i) it extracts the insights and the knowledge from the data streams generated by various sensors and other monitoring components embedded in the physical systems; (ii) it supports informed decision making; (iii) it enables feedback from the physical processes to the cyber counterparts; (iv) it eventually facilitates the integration of cyber and physical systems. There have been many successful applications of data streams analytics, powered by machine learning techniques, to CPS systems. Thus, it is necessary to have a survey on the particularities of the application of machine learning techniques to the CPS domain. In particular, we explore how machine learning methods should be deployed and integrated in cloud and fog architectures for better fulfilment of the requirements, e.g. mission criticality and time criticality, arising in CPS domains. To the best of our knowledge, this paper is the first to systematically study machine learning techniques for CPS data stream analytics from various perspectives, especially from a perspective that leads to the discussion and guidance of how the CPS machine learning methods should be deployed in a cloud and fog architecture

    Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System

    No full text
    Collision avoidance is an important feature in advanced driver-assistance systems, aimed at providing correct, timely and reliable warnings before an imminent collision (with objects, vehicles, pedestrians, etc.). The obstacle recognition library is designed and implemented to address the design and evaluation of obstacle detection in a transportation cyber-physical system. The library is integrated into a co-simulation framework that is supported on the interaction between SCANeR software and Matlab/Simulink. From the best of the authors¿ knowledge, two main contributions are reported in this paper. Firstly, the modelling and simulation of virtual on-chip light detection and ranging sensors in a cyber-physical system, for traffic scenarios, is presented. The cyber-physical system is designed and implemented in SCANeR. Secondly, three specific artificial intelligence-based methods for obstacle recognition libraries are also designed and applied using a sensory information database provided by SCANeR. The computational library has three methods for obstacle detection: a multi-layer perceptron neural network, a self-organization map and a support vector machine. Finally, a comparison among these methods under different weather conditions is presented, with very promising results in terms of accuracy. The best results are achieved using the multi-layer perceptron in sunny and foggy conditions, the support vector machine in rainy conditions and the self-organized map in snowy conditionsThe work reported in this paper is partially supported by the project IoSENSE: Flexible FE/BE Sensor Pilot Line for the Internet of Everything, funded by the Electronic Component Systems for European Leadership Joint (ECSEL) Undertaking under grant agreement No. .Peer Reviewe
    corecore