3 research outputs found

    Historical observation impact assessments for EUMETNET using the ALADIN/HU limited area model

    Get PDF
    Two historical Observing System Experiment (OSE) studies using the ALADIN limited area model and its assimilation system are described. The first study, using an OSE scenario that minimizes the impacts of observations through the lateral boundary conditions, demonstrated the importance of each assimilated terrestrial (radiosonde, aircraft, and wind profiler) observations on the analyses and short-range forecasts of the ALADIN/HU model and proved evidence, that the role of conventional observations cannot be even partly taken over by satellite measurements without degradation of the forecast quality. The second study demonstrated that the assimilation of radiosonde observations remains indispensable even with a progressively increasing amount of aircraft measurements

    Observing System Experiments with an Arctic Mesoscale Numerical Weather Prediction Model

    No full text
    In the Arctic, weather forecasting is one element of risk mitigation, helping operators to have knowledge on weather-related risk in advance through forecasting capabilities at time ranges from a few hours to days ahead. The operational numerical weather prediction is an initial value problem where the forecast quality depends both on the quality of the forecast model itself and on the quality of the specified initial state. The initial states are regularly updated using environmental observations through data assimilation. This paper assesses the impact of observations, which are accessible through the global telecommunication and the EUMETCast dissemination systems on analyses and forecasts of an Arctic limited area AROME (Application of Research to Operations at Mesoscale) model (AROME-Arctic). An assessment through the computation of degrees of freedom for signals on the analysis, the utilization of an energy norm-based approach applied to the forecasts, verifications against observations, and a case study showed similar impacts of the studied observations on the AROME-Arctic analysis and forecast systems. The AROME-Arctic assimilation system showed a relatively high sensitivity to the humidity or humidity-sensitive observations. The more radiance data were assimilated, the lower was the estimated relative sensitivity of the assimilation system to different conventional observations. Data assimilation, at least for surface parameters, is needed to produce accurate forecasts from a few hours up to days ahead over the studied Arctic region. Upper-air conventional observations are not enough to improve the forecasting capability over the AROME-Arctic domain compared to those already produced by the ECMWF (European Centre for Medium-range Weather Forecast). Each added radiance data showed a relatively positive impact on the analyses and forecasts of the AROME-Arctic. The humidity-sensitive microwave (AMSU-B/MHS) radiances, assimilated together with the conventional observations and the Infrared Atmospheric Sounding Interferometer (IASI)-assimilated on top of conventional and microwave radiances produced enough accurate one-day-ahead forecasts of polar low
    corecore