7,852 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Global rational stabilization of a class of nonlinear time-delay systems

    Full text link
    The present paper is mainly aimed at introducing a novel notion of stability of nonlinear time-delay systems called Rational Stability. According to the Lyapunov-type, various sufficient conditions for rational stability are reached. Under delay dependent conditions, we suggest a nonlinear time-delay observer to estimate the system states, a state feedback controller and the observer-based controller rational stability is provided. Moreover, global rational stability using output feedback is given. Finally, the study presents simulation findings to show the feasibility of the suggested strategy

    Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with the distributed state estimation problem for a class of sensor networks described by discrete-time stochastic systems with randomly varying nonlinearities and missing measurements. In the sensor network, there is no centralized processor capable of collecting all the measurements from the sensors, and therefore each individual sensor needs to estimate the system state based not only on its own measurement but also on its neighboring sensors' measurements according to certain topology. The stochastic Brownian motions affect both the dynamical plant and the sensor measurement outputs. The randomly varying nonlinearities and missing measurements are introduced to reflect more realistic dynamical behaviors of the sensor networks that are caused by noisy environment as well as by probabilistic communication failures. Through available output measurements from each individual sensor, we aim to design distributed state estimators to approximate the states of the networked dynamic system. Sufficient conditions are presented to guarantee the convergence of the estimation error systems for all admissible stochastic disturbances, randomly varying nonlinearities, and missing measurements. Then, the explicit expressions of individual estimators are derived to facilitate the distributed computing of state estimation from each sensor. Finally, a numerical example is given to verify the theoretical results.This work was supported in part by the Royal Society of U.K., the National Natural Science Foundation of China under Grant 60804028 and Grant 61028008, the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the Qing Lan Project of Jiangsu Province of China, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    H∞ fuzzy control for systems with repeated scalar nonlinearities and random packet losses

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the H∞ fuzzy control problem for a class of systems with repeated scalar nonlinearities and random packet losses. A modified Takagi-Sugeno (T-S) fuzzy model is proposed in which the consequent parts are composed of a set of discrete-time state equations containing a repeated scalar nonlinearity. Such a model can describe some well-known nonlinear systems such as recurrent neural networks. The measurement transmission between the plant and controller is assumed to be imperfect and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to represent the phenomenon of random packet losses. Attention is focused on the analysis and design of H∞ fuzzy controllers with the same repeated scalar nonlinearities such that the closed-loop T-S fuzzy control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers, and the cone complementarity linearization procedure is employed to cast the controller design problem into a sequential minimization one subject to linear matrix inequalities, which can be readily solved by using standard numerical software. Two examples are given to illustrate the effectiveness of the proposed design method

    H-infinity state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the state estimation problem is investigated for a class of discrete time-delay nonlinear complex networks with randomly occurring phenomena from sensor measurements. The randomly occurring phenomena include randomly occurring sensor saturations (ROSSs) and randomly varying sensor delays (RVSDs) that result typically from networked environments. A novel sensor model is proposed to describe the ROSSs and the RVSDs within a unified framework via two sets of Bernoulli-distributed white sequences with known conditional probabilities. Rather than employing the commonly used Lipschitz-type function, a more general sector-like nonlinear function is used to describe the nonlinearities existing in the network. The purpose of the addressed problem is to design a state estimator to estimate the network states through available output measurements such that, for all probabilistic sensor saturations and sensor delays, the dynamics of the estimation error is guaranteed to be exponentially mean-square stable and the effect from the exogenous disturbances to the estimation accuracy is attenuated at a given level by means of an HinftyH_{infty}-norm. In terms of a novel Lyapunov–Krasovskii functional and the Kronecker product, sufficient conditions are established under which the addressed state estimation problem is recast as solving a convex optimization problem via the semidefinite programming method. A simulation example is provided to show the usefulness of the proposed state estimation conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125 and 60974030, the Natural Science Foundation of Universities in Anhui Province of China under Grant KJ2011B030, and the Alexander von Humboldt Foundation of Germany
    corecore