78 research outputs found

    State Space Reduction For Parity Automata

    Get PDF
    Exact minimization of ?-automata is a difficult problem and heuristic algorithms are a subject of current research. We propose several new approaches to reduce the state space of deterministic parity automata. These are based on extracting information from structures within the automaton, such as strongly connected components, coloring of the states, and equivalence classes of given relations, to determine states that can safely be merged. We also establish a framework to generalize the notion of quotient automata and uniformly describe such algorithms. The description of these procedures consists of a theoretical analysis as well as data collected from experiments

    Proof Systems for the Modal μ\mu-Calculus Obtained by Determinizing Automata

    Full text link
    Automata operating on infinite objects feature prominently in the theory of the modal μ\mu-calculus. One such application concerns the tableau games introduced by Niwi\'{n}ski & Walukiewicz, of which the winning condition for infinite plays can be naturally checked by a nondeterministic parity stream automaton. Inspired by work of Jungteerapanich and Stirling we show how determinization constructions of this automaton may be used to directly obtain proof systems for the μ\mu-calculus. More concretely, we introduce a binary tree construction for determinizing nondeterministic parity stream automata. Using this construction we define the annotated cyclic proof system BT\mathsf{BT}, where formulas are annotated by tuples of binary strings. Soundness and Completeness of this system follow almost immediately from the correctness of the determinization method

    Coalgebraic Trace Semantics for Buechi and Parity Automata

    Get PDF
    Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechi\u27s

    On Semantically-Deterministic Automata

    Get PDF

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous Büchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness

    Efficient Normalization of Linear Temporal Logic

    Full text link
    In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classical theorem stating that every formula of Past LTL (the extension of LTL with past operators) is equivalent to a formula of the form ⋀i=1nGF φi∨FG ψi\bigwedge_{i=1}^n \mathbf{G}\mathbf{F}\, \varphi_i \vee \mathbf{F}\mathbf{G}\, \psi_i , where φi\varphi_i and ψi\psi_i contain only past operators. Some years later, Chang, Manna, and Pnueli built on this result to derive a similar normal form for LTL. Both normalization procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. We improve on both points. We present direct and purely syntactic normalization procedures for LTL, yielding a normal form very similar to the one by Chang, Manna, and Pnueli, that exhibit only a single exponential blow-up. As an application, we derive a simple algorithm to translate LTL into deterministic Rabin automata. The algorithm normalizes the formula, translates it into a special very weak alternating automaton, and applies a simple determinization procedure, valid only for these special automata.Comment: Submitted to J. ACM. arXiv admin note: text overlap with arXiv:2304.08872, arXiv:2005.0047

    Determinising Parity Automata

    Full text link
    Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a small constant. Moreover, the lower bound refers to the more liberal Streett acceptance. We thus show that determinisation to Streett would not lead to better bounds than determinisation to parity. As a side-result, this optimality extends to the determinisation of B\"uchi automata

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word
    • …
    corecore