4 research outputs found

    Visual cortex frontend: integrating lines, edges, keypoints and disparaty

    Get PDF
    We present a 3D representation that is based on the pro- cessing in the visual cortex by simple, complex and end-stopped cells. We improved multiscale methods for line/edge and keypoint detection, including a method for obtaining vertex structure (i.e. T, L, K etc). We also describe a new disparity model. The latter allows to attribute depth to detected lines, edges and keypoints, i.e., the integration results in a 3D \wire-frame" representation suitable for object recognition

    Restauración de contornos

    Get PDF
    En este trabajo se presenta una metodología para restaurar el contorno de un objeto desde la firma de su imagen la cual es borrosa o posee ruido gaussiano no aditivo. La firma de un objeto contenido en una imagen es la representación polar de su contorno. La restauración del contorno se obtiene aplicando distintos filtros sobre su firma y no sobre su imagen. Se evalúa la capacidad de cada filtro en la obtención de un contorno mejorado, con el cual, es posible hacer un reconocimiento del objeto, o bien, hacer mediciones de su perímetro y área.III Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Restauración de contornos

    Get PDF
    En este trabajo se presenta una metodología para restaurar el contorno de un objeto desde la firma de su imagen la cual es borrosa o posee ruido gaussiano no aditivo. La firma de un objeto contenido en una imagen es la representación polar de su contorno. La restauración del contorno se obtiene aplicando distintos filtros sobre su firma y no sobre su imagen. Se evalúa la capacidad de cada filtro en la obtención de un contorno mejorado, con el cual, es posible hacer un reconocimiento del objeto, o bien, hacer mediciones de su perímetro y área.III Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Shape Representation in Primate Visual Area 4 and Inferotemporal Cortex

    Get PDF
    The representation of contour shape is an essential component of object recognition, but the cortical mechanisms underlying it are incompletely understood, leaving it a fundamental open question in neuroscience. Such an understanding would be useful theoretically as well as in developing computer vision and Brain-Computer Interface applications. We ask two fundamental questions: “How is contour shape represented in cortex and how can neural models and computer vision algorithms more closely approximate this?” We begin by analyzing the statistics of contour curvature variation and develop a measure of salience based upon the arc length over which it remains within a constrained range. We create a population of V4-like cells – responsive to a particular local contour conformation located at a specific position on an object’s boundary – and demonstrate high recognition accuracies classifying handwritten digits in the MNIST database and objects in the MPEG-7 Shape Silhouette database. We compare the performance of the cells to the “shape-context” representation (Belongie et al., 2002) and achieve roughly comparable recognition accuracies using a small test set. We analyze the relative contributions of various feature sensitivities to recognition accuracy and robustness to noise. Local curvature appears to be the most informative for shape recognition. We create a population of IT-like cells, which integrate specific information about the 2-D boundary shapes of multiple contour fragments, and evaluate its performance on a set of real images as a function of the V4 cell inputs. We determine the sub-population of cells that are most effective at identifying a particular category. We classify based upon cell population response and obtain very good results. We use the Morris-Lecar neuronal model to more realistically illustrate the previously explored shape representation pathway in V4 – IT. We demonstrate recognition using spatiotemporal patterns within a winnerless competition network with FitzHugh-Nagumo model neurons. Finally, we use the Izhikevich neuronal model to produce an enhanced response in IT, correlated with recognition, via gamma synchronization in V4. Our results support the hypothesis that the response properties of V4 and IT cells, as well as our computer models of them, function as robust shape descriptors in the object recognition process
    corecore