9,838 research outputs found

    Multitemporal Relearning with Convolutional LSTM Models for Land Use Classification

    Get PDF
    In this article, we present a novel hybrid framework, which integrates spatial–temporal semantic segmentation with postclassification relearning, for multitemporal land use and land cover (LULC) classification based on very high resolution (VHR) satellite imagery. To efficiently obtain optimal multitemporal LULC classification maps, the hybrid framework utilizes a spatial–temporal semantic segmentation model to harness temporal dependency for extracting high-level spatial–temporal features. In addition, the principle of postclassification relearning is adopted to efficiently optimize model output. Thereby, the initial outcome of a semantic segmentation model is provided to a subsequent model via an extended input space to guide the learning of discriminative feature representations in an end-to-end fashion. Last, object-based voting is coupled with postclassification relearning for coping with the high intraclass and low interclass variances. The framework was tested with two different postclassification relearning strategies (i.e., pixel-based relearning and object-based relearning) and three convolutional neural network models, i.e., UNet, a simple Convolutional LSTM, and a UNet Convolutional-LSTM. The experiments were conducted on two datasets with LULC labels that contain rich semantic information and variant building morphologic features (e.g., informal settlements). Each dataset contains four time steps from WorldView-2 and Quickbird imagery. The experimental results unambiguously underline that the proposed framework is efficient in terms of classifying complex LULC maps with multitemporal VHR images

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

    Full text link
    The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.Comment: This paper contains 27 pages and accepted for publication in MDPI remote sensing journal. GitHub Repository: https://github.com/Jakaria08/EESRGAN (Implementation

    Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping

    Full text link
    The lack of reliable data in developing countries is a major obstacle to sustainable development, food security, and disaster relief. Poverty data, for example, is typically scarce, sparse in coverage, and labor-intensive to obtain. Remote sensing data such as high-resolution satellite imagery, on the other hand, is becoming increasingly available and inexpensive. Unfortunately, such data is highly unstructured and currently no techniques exist to automatically extract useful insights to inform policy decisions and help direct humanitarian efforts. We propose a novel machine learning approach to extract large-scale socioeconomic indicators from high-resolution satellite imagery. The main challenge is that training data is very scarce, making it difficult to apply modern techniques such as Convolutional Neural Networks (CNN). We therefore propose a transfer learning approach where nighttime light intensities are used as a data-rich proxy. We train a fully convolutional CNN model to predict nighttime lights from daytime imagery, simultaneously learning features that are useful for poverty prediction. The model learns filters identifying different terrains and man-made structures, including roads, buildings, and farmlands, without any supervision beyond nighttime lights. We demonstrate that these learned features are highly informative for poverty mapping, even approaching the predictive performance of survey data collected in the field.Comment: In Proc. 30th AAAI Conference on Artificial Intelligenc
    • …
    corecore