262 research outputs found

    Use your illusion: the flash-lag effect as a tool for psychophysics

    Get PDF
    The flash-lag effect is an illusion in which a moving object is perceived advanced beyond an aligned flash. The majority of research into the effect has been directed at specifying its source, though a small body of literature simply makes use of flash-lag to answer diverse questions about perception – without necessarily arbitrating between competing accounts of its nature. The current thesis expands on this little-explored potential of the flash-lag effect with the presentation of three papers reporting programmes of research that exploit the phenomenon to address issues unrelated to its cause. In the first paper it is shown that, like in visual flash-lag, a similar motion direction based anisotropy is evident in the motor version of the effect, in which one’s unseen limb is perceived ahead of a flash. Specifically, the effect is greater for motion towards, rather than away from fixation. Furthermore, Paper I also demonstrates for the first time a motor flash-drag effect, in which one’s unseen moving hand ‘drags’ the perceived position of a nearby flash. It is argued that both of these findings are evidence of parallels between vision and action systems. Paper II takes advantage of the explicitly perceptual nature of the flash-lag effect to investigate whether the visuospatial perception of threatening objects is different to that of non-threatening objects. It is ultimately shown that when a moving stimulus is threatening, the flash-lag effect is greater, regardless of its direction of motion. Paper III shows that gamma movement (the apparent contraction of disappearing stimuli) adds to and subtracts from the forward displacement of contracting and expanding stimuli, respectively. Prior to these papers, however, an overview chapter reviews the flash-lag literature, and argues that the effect can be a useful tool for psychophysics, even without a consensus on its origin

    A massive blow for ΛCDM - the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology

    Get PDF
    EA is supported by a stipend from the Stellar Populations and Dynamics Research Group at the University of Bonn. IB is supported by an Alexander von Humboldt Foundation postdoctoral research fellowship.El Gordo (ACT-CL J0102-4915) is an extremely massive galaxy cluster (M200 ≈ 3 × 1015 M·) at redshift z = 0.87 composed of two subclusters with a mass ratio of 3.6 merging at speed Vinfall ≈ 2500 km s-1. Such a fast collision between individually rare massive clusters is unexpected in Lambda cold dark matter (ΛCDM) cosmology at such high z. However, this is required for non-cosmological hydrodynamical simulations of the merger to match its observed properties. Here, we determine the probability of finding a similar object in a ΛCDM context using the Jubilee simulation box with a side length of 6, h-1 Gpc. We search for galaxy cluster pairs that have turned around from the cosmic expansion with properties similar to El Gordo in terms of total mass, mass ratio, redshift, and collision velocity relative to virial velocity. We fit the distribution of pair total mass quite accurately, with the fits used in two methods to infer the probability of observing El Gordo in the surveyed region. The more conservative (and detailed) method involves considering the expected distribution of pairwise mass and redshift for analogue pairs with similar dimensionless parameters to El Gordo in the past light-cone of a z = 0 observer. Detecting one pair with its mass and redshift rules out ΛCDM cosmology at 6.16σ. We also use the results of Kraljic and Sarkar to show that the Bullet Cluster is in 2.78σ tension once the sky coverage of its discovery survey is accounted for. Using a χ2 approach, the combined tension can be estimated as 6.43σ. Both collisions arise naturally in a Milgromian dynamics (MOND) cosmology with light sterile neutrinos.Publisher PDFPeer reviewe

    Estimating the subjective perception of object size and position through brain imaging and psychophysics

    Get PDF
    Perception is subjective and context-dependent. Size and position perception are no exceptions. Studies have shown that apparent object size is represented by the retinotopic location of peak response in V1. Such representation is likely supported by a combination of V1 architecture and top-down driven retinotopic reorganisation. Are apparent object size and position encoded via a common mechanism? Using functional magnetic resonance imaging and a model-based reconstruction technique, the first part of this thesis sets out to test if retinotopic encoding of size percepts can be generalised to apparent position representation and whether neural signatures could be used to predict an individual’s perceptual experience. Here, I present evidence that static apparent position – induced by a dot-variant Muller-Lyer illusion – is represented retinotopically in V1. However, there is mixed evidence for retinotopic representation of motion-induced position shifts (e.g. curveball illusion) in early visual areas. My findings could be reconciled by assuming dual representation of veridical and percept-based information in early visual areas, which is consistent with the larger framework of predictive coding. The second part of the thesis sets out to compare different psychophysical methods for measuring size perception in the Ebbinghaus illusion. Consistent with the idea that psychophysical methods are not equally susceptible to cognitive factors, my experiments reveal a consistent discrepancy in illusion magnitude estimates between a traditional forced choice (2AFC) task and a novel perceptual matching (PM) task – a variant of a comparison-of-comparisons (CoC) task, a design widely seen as the gold standard in psychophysics. Further investigation reveals the difference was not driven by greater 2AFC susceptibility to cognitive factors, but a tendency for PM to skew illusion magnitude estimates towards the underlying stimulus distribution. I show that this dependency can be largely corrected using adaptive stimulus sampling

    Quasar Tomography: Unification of Echo Mapping and Photoionisation Models

    Full text link
    Reverberation mapping uses time-delayed variations in photoionised emission lines to map the geometry and kinematics of emission-line gas in active galactic nuclei. In previous work, the light travel time delay tau=R(1+cos(theta))/c and Doppler shift v give a 2-d map Psi(tau,v) for each emission line. Here we combine the velocity-delay information with photoionisation physics in a maximum entropy fit to the full reverberating spectrum F_lam(lam,t) to recover a 5-d map of the differential covering fraction f(R,theta,n,N,v), with n and N the density and column density of the gas clouds. We test the method for a variety of geometries (shells, rings, disks, clouds, jets) by recovering a 3-d map f(R,theta,n) from reverberations in 7 uv emission lines. The best test recovers a hollow shell geometry, defining R to 0.15 dex, n to 0.3 dex, and ionisation parameter U ~ 1/(n R^2) to 0.1 dex. The results are sensitive to the adopted distance and luminosity, suggesting that these parameters may be measurable as well.Comment: Accepted 4 Sep 2002 for publication in MNRA

    Kognitive Interpretationen mehrdeutiger visueller Reize

    Get PDF
    Unser Gehirn muss zu jeder Zeit relevante Signale von irrelevanten Informationen trennen. Dazu mĂŒssen diese als spezifische Einheiten erkannt und klassifiziert werden. Mehrdeutigkeit ist ein wesentlicher Aspekt dieses Verarbeitungsprozesses und kann durch verrauschte Eingangssignale und durch den Aufbau unserer sensorischer Systeme entstehen. Beispielsweise können Reize mehrdeutig sein, wenn sie verrauscht oder unvollstĂ€ndig sind oder nur kurzzeitig wahrgenommen werden. Unter solchen Bedingungen werden Wahrnehmung und Klassifikation eines Reizes deutlich erschwert. Bereits vorhandene kognitive ReprĂ€sentationen werden somit möglicherweise nicht aktiviert. Folglich mĂŒssen RĂŒckschlĂŒsse ĂŒber die Reize aufgrund von Kontext und Erfahrung gezogen werden. Ein und derselbe Reiz kann jedoch unterschiedlich reprĂ€sentiert und im sensorischen System kodiert werden. Da nur eine ReprĂ€sentation die Basis zukĂŒnftigen Handelns bilden kann, entsteht eine Art Konkurrenz innerhalb der Wahrnehmung. Derartige WahrnehmungsphĂ€nomene, die mit der Mehrdeutigkeit von Reizen in Verbindung stehen, bilden den Mittelpunkt der vorliegenden Dissertation. Wenn einem physikalisch konstanten Reiz mehrere Interpretationen zugeordnet werden, entsteht ein Wechsel zwischen diesen Einordnungen, den man wahrnimmt und RivalitĂ€t ("rivalry") nennt. In dieser Dissertation werden diverse neue Erkenntnisse zu diesem grundlegenden PhĂ€nomen der sensorischen Verarbeitung beschrieben. So wird gezeigt, dass ÜbergĂ€nge zwischen drei wahrgenommenen Interpretationen – ein vergleichsweise selten untersuchtes PhĂ€nomen, da RivalitĂ€t meist mit zweideutigen Reizen untersucht wird – vorhersehbaren Mustern folgen (Kapitel 2). DarĂŒber hinaus zeigt sich, dass derartige ÜbergĂ€nge spezifische Eigenschaften aufweisen, welche die Geschwindigkeit und die Richtung ihrer rĂ€umlichen Ausbreitung im visuellen Feld bestimmen (Kapitel 3). Diese Eigenschaften der Mehrdeutigkeit werden weiterhin stark von Aufmerksamkeit und anderen, introspektiven Prozessen beeinflusst. Um die der RivalitĂ€t in der Wahrnehmung tatsĂ€chlich zugrundeliegenden Prozesse und die damit verbundenen Änderungen des Bewusstseins von derartigen subjektiven Prozessen abzugrenzen, mĂŒssen letztere kontrolliert oder sogar vollstĂ€ndig umgangen werden. Ein objektives Maß der RivalitĂ€t in der Wahrnehmung wird zur Lösung dieser Aufgabe vorgeschlagen und bietet eine wertvolle Alternative zu introspektivem Berichten ĂŒber den Wahrnehmungszustand (Kapitel 4). ÜbergĂ€nge in der Wahrnehmung entstehen entlang einer bestimmten Merkmalsdimension des Reizes, wie beispielsweise der Orientierung des berĂŒhmten NeckerwĂŒrfels. Zudem kann auch eine Änderung in der Merkmalsdimension der Luminanz eine unterschiedliche Interpretation des Reizes hervorrufen. Es wird gezeigt, dass die Pupille kleiner wird, wenn eine Interpretation mit hoher Luminanz die Wahrnehmung ĂŒbernimmt, und umgekehrt, dass die Pupille grĂ¶ĂŸer wird, wenn eine Interpretation mit niedriger Luminanz die Wahrnehmung ĂŒbernimmt. Folglich kann die Pupille als ein zuverlĂ€ssiges und objektives Maß fĂŒr Änderungen in der Wahrnehmung verwendet werden. Durch die Verwendung solcher objektiven Maße konnten neue Eigenschaften der ÜbergĂ€nge in der Wahrnehmung aufgezeigt werden, welche die Theorie unterstĂŒtzen, dass Introspektion die der Verarbeitung mehrdeutiger Situationen zugrundeliegenden Prozesse merklich beeinflussen kann. Als NĂ€chstes wurden mehrdeutiger Reize im Zusammenhang mit der Wahrnehmung von Objekten eingesetzt (Kapitel 5). Am Beispiel der Kippfigur des "bewegten Diamanten" wird dabei die Bedeutung von mehrdeutigen Reizen veranschaulicht. Beim bewegten Diamanten werden zwei Interpretationen wahrgenommen, die sich entlang der Dimension der ObjektkohĂ€renz abwechseln. Das bedeutet, dass die Wahrnehmung zwischen einem einzelnen zusammenhĂ€ngenden Objekt (Diamant) und mehreren unzusammenhĂ€ngenden Komponenten kippt. Es wird gezeigt, dass die Interpretation des Reizes als ein einziges kohĂ€rentes Objekt, verglichen mit der Interpretation als mehrere Komponenten, zu einer Erhöhung der visuellen Empfindlichkeit innerhalb des Objektes fĂŒhrt. Diese Ergebnisse sind ein Beleg dafĂŒr, wie die Aktivierung einer Interpretation eines Reizes als Einzelobjekt (im Vergleich zur Komponentenwahrnehmung) dazu fĂŒhrt, dass die Aufmerksamkeit top-down zu den relevanten Bereichen des Gesichtsfeldes gelenkt wird. Es wird weiter untersucht, welche Eigenschaften des Reizes zu einer bottom-up Aktivierung der Interpretation solcher Objekte beitragen (Kapitel 6). Die Mehrdeutigkeit von Objekten kann erfolgreich aufgehoben werden, indem man einen starken Kontrast in Luminanz oder Farbe zwischen dem Objekt und dem Hintergrund erzeugt. Auch die GrĂ¶ĂŸe und die Form haben einen großen Einfluss auf die Detektion und Identifikation von Objekten. Des Weiteren sind die Eigenschaften eines Objektes nicht nur bestimmend fĂŒr die Erfolgsquote bei der Objekterkennung, sondern ebenso bedeutend fĂŒr die Speicherung der ReprĂ€sentation im GedĂ€chtnis, beispielsweise von neu wahrgenommenen Objekten. Das Klassifizieren von Objekten durch die Versuchsperson wird ebenfalls durch Mehrdeutigkeit beeinflusst. So kann ein Objekt der Versuchsperson einerseits als neu erscheinen, obwohl es bereits bekannt war, weil es beispielsweise der Versuchsperson schon einmal gezeigt worden ist. Andererseits kann auch ein eigentlich unbekanntes Objekt der Versuchsperson dennoch vertraut vorkommen. In dieser Arbeit wird gezeigt, dass solche subjektiven Effekte einen Einfluss auf die PupillengrĂ¶ĂŸe haben (Kapitel 7). Außerdem verkleinert sich die Pupille der Versuchspersonen beim Betrachten neuer Bilder stĂ€rker als bei bekannten. Ein Ă€hnlicher Effekt wird gefunden, wenn das Bild vorher erfolgreich im GedĂ€chtnis gespeichert wurde. Daher ist es wahrscheinlich, dass die Pupille die Verfestigung von neuen Objekten im GedĂ€chtnis widerspiegelt. Abschließend wird untersucht, ob sich kognitive Prozesse, wie Entscheidungsfindung – ein wichtiger Prozess, falls mehreren Optionen zur VerfĂŒgung stehen und Mehrdeutigkeit aufgehoben werden soll – auch in der Pupille widerspiegeln (Kapitel 8). Es wird zunĂ€chst bestĂ€tigt, dass die Pupillen sich erweitern, nachdem man eine Entscheidung getroffen hat. Neu wird gezeigt, dass diese Pupillenausdehnungen erfolgreich von anderen Personen erkannt und verwendet werden können, um ein interaktives Spiel gegen die erste Person (den "Gegner") zu gewinnen. Insgesamt wird in dieser Dissertation untersucht, wie mehrdeutige Reize die Wahrnehmung beeinflussen und wie Mehrdeutigkeit verwendet werden kann, um Prozesse des Gehirns zu studieren. Es hat sich gezeigt, dass Mehrdeutigkeit vorhersehbaren Mustern folgt, sie objektiv mit Reflexen gemessen werden kann, und Einblicke in neuronale Prozesse wie Aufmerksamkeit, Objektwahrnehmung und Entscheidungsmechanismen liefern kann. Diese Ergebnisse zeigen, dass Mehrdeutigkeit eine zentrale Eigenschaft sensorischer Systeme ist, und Lebewesen in die Lage versetzt, mit ihrer Umwelt flexibel zu interagieren. Mehrdeutigkeit macht das Verhalten vielfĂ€ltiger, ermöglicht es dem Gehirn, mit der Welt auf verschiedenen Wegen zu interagieren, und ist die Basis der Dynamik von Wahrnehmung, Interpretation und Entscheidung.Brains can sense and distinguish signals from background noise in physical environments, and recognize and classify them as distinct entities. Ambiguity is an inherent part of this process. It is a cognitive property that is generated by the noisy character of the signals, and by the design of the sensory systems that process them. Stimuli can be ambiguous if they are noisy, incomplete, or only briefly sensed. Such conditions may make stimuli indistinguishable from others and thereby difficult to classify as single entities by our sensory systems. In these cases, stimuli fail to activate a representation that may have been previously stored in the system. Deduction, through context and experience, is consequently needed to reach a decision on what is exactly sensed. Deduction can, however, also be subject to ambiguity as stimuli and their properties may receive multiple representations in the sensory system. In such cases, these multiple representations compete for perceptual dominance, that is, for becoming the single entity taken by the system as a reference point for subsequent behavior. These types of ambiguity and several phenomena that relate to them are at the center of this dissertation. Perceptual rivalry, the phenomenal experience of alternating percepts over time, is an example of how the brain may give multiple interpretations to a stimulus that is physically constant. Rivalry is a very typical and general sensory process and this thesis demonstrates some newly discovered properties of its dynamics. It was found that alternations between three perceptual interpretations – a relatively rare condition as rivalry generally occurs between two percepts – follow predictable courses (Chapter 2). Furthermore, such alternations had several properties that determine their speed and direction of spatial spread (suppression waves) in the visual field (Chapter 3). These properties of ambiguity were further strongly affected by attention and other introspective processes. To demarcate the true underlying process of perceptual rivalry and the accompanied changes in awareness, these subjective processes need to be either circumvented or controlled for. An objective measure of perceptual rivalry was proposed that resolved this issue and provided a good alternative for introspective report of ambiguous states (Chapter 4). Changes in percepts occur along a specific feature domain such as depth orientation for the famous Necker cube. Alternatively, luminance may also be a rivalry feature and one percept may appear brighter as the other rivaling percept. It was demonstrated that the pupil gets smaller when a percept with high luminance becomes dominant, and vice versa, gets bigger when a percept with low luminance gets dominant during perceptual rivalry. As such, the pupil can serve as a reliable objective indicator of changes in visual awareness. By using such reflexes during rivalry, several new properties of alternations were discovered and it was again confirmed that introspection can confound the true processes involved in ambiguity. Next, the usefulness of ambiguous stimuli was explored in the context of objects as entities (Chapter 5). Some ambiguous stimuli can induce two percepts that alternate along the feature domain of object coherency, that is, whether a single coherent object or multiple incoherent objects are seen. In other words, an ambiguous stimulus can induce two cognitive interpretations of either seeing an entity or not. It was reported that being aware of a single coherent object results in the increase in visual sensitivity for the areas that constitute the object. These results are evidence of how the activation of a representation of a single and unique object can guide and allocate attentional resources to relevant areas in the visual field in a top-down way. It was further explored which features help to bottom-up access such object representations (Chapter 6). Ambiguity of objects can be successfully resolved by adding strong contrasts between the object and its background in luminance and color. The size and variability of the object's shape was also found to be an important factor for its successful detection and identification. Furthermore, the characteristics of objects do not only determine the rate of success in a recognition task, but are equally important for the storage of their representations in memory if, for instance, the object is novel to the observer. The subjective experience of a novel object is also subject to ambiguity and objects may appear novel to the observer although they are familiar (i.e., previously shown to the observer), or vice versa, they appear familiar to the observer although they are actually novel. It was here shown that such subjective effects are reflected in the pupil (Chapter 7). In addition, if novel images were presented to observers, their pupils constricted stronger as compared to if familiar images were presented. Similarly, if novel stimuli were shown to observers, pupillary constrictions were stronger if these stimuli were successfully stored in memory as compared to those later forgotten. As such, the pupil reflected the cognitive process of novelty encoding. Finally, it was tested whether other cognitive processes, such as decision-making – an important process when multiple options are available and ambiguity has to be resolved with a conscious decision – were also reflected in changes of pupil size (Chapter 8). It was confirmed that the pupil tends to dilate after an observer has made a decision. These dilations can successfully be detected between individuals and further used to gain the upper hand during an interactive game. In sum, this thesis has explored how ambiguous signals affect perception and how ambiguity inside perceptual systems can be used to study processes of the brain. It is found that ambiguity follows predictable courses, can be objectively assessed with reflexes, and can provide insights into other neuronal mechanisms such as attention, object representations, and decision-making. These findings demonstrate that ambiguity is a core property of the sensory systems that enable living beings to interact with their surroundings. Ambiguity adds variation to behavior, allows the brain to flexibly interact with the world, and lies at the bottom of the dynamics of sense, interpretations, and behavioral decisions

    Detecting emotional expressions: Do words help?

    Get PDF

    Gamma-Ray Bursts versus Quasars: Lyman-alpha Signatures of Reionization versus Cosmological Infall

    Full text link
    Lyman-alpha absorption is a prominent cosmological tool for probing both galactic halos and the intergalactic medium at high redshift. We consider a variety of sources that can be used as the Lyman-alpha emitters for this purpose. Among these sources, we argue that quasars are the best probes of the evolution of massive halos, while gamma-ray bursts represent the cleanest sources for studying the reionization of the intergalactic medium.Comment: 13 ApJ pages, 5 figures, ApJ, final minor change
    • 

    corecore