8 research outputs found

    Tracking, Detection and Registration in Microscopy Material Images

    Get PDF
    Fast and accurate characterization of fiber micro-structures plays a central role for material scientists to analyze physical properties of continuous fiber reinforced composite materials. In materials science, this is usually achieved by continuously crosssectioning a 3D material sample for a sequence of 2D microscopic images, followed by a fiber detection/tracking algorithm through the obtained image sequence. To speed up this process and be able to handle larger-size material samples, we propose sparse sampling with larger inter-slice distance in cross sectioning and develop a new algorithm that can robustly track large-scale fibers from such a sparsely sampled image sequence. In particular, the problem is formulated as multi-target tracking and Kalman filters are applied to track each fiber along the image sequence. One main challenge in this tracking process is to correctly associate each fiber to its observation given that 1) fiber observations are of large scale, crowded and show very similar appearances in a 2D slice, and 2) there may be a large gap between the predicted location of a fiber and its observation in the sparse sampling. To address this challenge, a novel group-wise association algorithm is developed by leveraging the fact that fibers are implanted in bundles and the fibers in the same bundle are highly correlated through the image sequence. Tracking-by-detection algorithms rely heavily on detection accuracy, especially the recall performance. The state-of-the-art fiber detection algorithms perform well under ideal conditions, but are not accurate where there are local degradations of image quality, due to contaminants on the material surface and/or defocus blur. Convolutional Neural Networks (CNN) could be used for this problem, but would require a large number of manual annotated fibers, which are not available. We propose an unsupervised learning method to accurately detect fibers on the large scale, which is robust against local degradations of image quality. The proposed method does not require manual annotations, but uses fiber shape/size priors and spatio-temporal consistency in tracking to simulate the supervision in the training of the CNN. Due to the significant microscope movement during the data acquisition, the sampled microscopy images might be not well aligned, which increases the difficulties for further large-scale fiber tracking. In this dissertation, we design an object tracking system which could accurately track large-scale fibers and simultaneously perform satisfactory image registration. Large-scale fiber tracking task is accomplished by Kalman filters based tracking methods. With the assistance of fiber tracking, the image registration is performed in a coarse-to-fine way. To evaluate the proposed methods, a dataset was collected by Air Force Research Laboratories (AFRL). The material scientists in AFRL used a serial sectioning instrument to cross-section the 3D material samples. During sample preparation, the samples are ground, cleaned, and then imaged. Experimental results on this collected dataset have demonstrated that the proposed methods yield significant improvements in large-scale fiber tracking and detection, together with satisfactory image registration

    Dynamic Spatio-Temporal Bag of Expressions (D-STBoE) model for human action recognition

    Get PDF
    This article belongs to the Section Intelligent SensorsHuman action recognition (HAR) has emerged as a core research domain for video understanding and analysis, thus attracting many researchers. Although significant results have been achieved in simple scenarios, HAR is still a challenging task due to issues associated with view independence, occlusion and inter-class variation observed in realistic scenarios. In previous research efforts, the classical bag of visual words approach along with its variations has been widely used. In this paper, we propose a Dynamic Spatio-Temporal Bag of Expressions (D-STBoE) model for human action recognition without compromising the strengths of the classical bag of visual words approach. Expressions are formed based on the density of a spatio-temporal cube of a visual word. To handle inter-class variation, we use class-specific visual word representation for visual expression generation. In contrast to the Bag of Expressions (BoE) model, the formation of visual expressions is based on the density of spatio-temporal cubes built around each visual word, as constructing neighborhoods with a fixed number of neighbors could include non-relevant information making a visual expression less discriminative in scenarios with occlusion and changing viewpoints. Thus, the proposed approach makes the model more robust to occlusion and changing viewpoint challenges present in realistic scenarios. Furthermore, we train a multi-class Support Vector Machine (SVM) for classifying bag of expressions into action classes. Comprehensive experiments on four publicly available datasets: KTH, UCF Sports, UCF11 and UCF50 show that the proposed model outperforms existing state-of-the-art human action recognition methods in term of accuracy to 99.21%, 98.60%, 96.94 and 94.10%, respectively.Sergio A. Velastin is grateful for funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement N° 600371, el Ministerio de Economía, Industria y Competitividad (COFUND2013-51509) el Ministerio de Educación, Cultura y Deporte (CEI-15-17) and Banco Santander. Muhammad Haroon Yousaf received funding from the Higher Education Commission, Pakistan for Swarm Robotics Lab under the National Centre for Robotics and Automation (NCRA). The authors also acknowledge support from the Directorate of ASR&TD, University of Engineering and Technology Taxila, Pakistan

    Large Scale Pattern Detection in Videos and Images from the Wild

    Get PDF
    PhDPattern detection is a well-studied area of computer vision, but still current methods are unstable in images of poor quality. This thesis describes improvements over contemporary methods in the fast detection of unseen patterns in a large corpus of videos that vary tremendously in colour and texture definition, captured “in the wild” by mobile devices and surveillance cameras. We focus on three key areas of this broad subject; First, we identify consistency weaknesses in existing techniques of processing an image and it’s horizontally reflected (mirror) image. This is important in police investigations where subjects change their appearance to try to avoid recognition, and we propose that invariance to horizontal reflection should be more widely considered in image description and recognition tasks too. We observe online Deep Learning system behaviours in this respect, and provide a comprehensive assessment of 10 popular low level feature detectors. Second, we develop simple and fast algorithms that combine to provide memory- and processing-efficient feature matching. These involve static scene elimination in the presence of noise and on-screen time indicators, a blur-sensitive feature detection that finds a greater number of corresponding features in images of varying sharpness, and a combinatorial texture and colour feature matching algorithm that matches features when either attribute may be poorly defined. A comprehensive evaluation is given, showing some improvements over existing feature correspondence methods. Finally, we study random decision forests for pattern detection. A new method of indexing patterns in video sequences is devised and evaluated. We automatically label positive and negative image training data, reducing a task of unsupervised learning to one of supervised learning, and devise a node split function that is invariant to mirror reflection and rotation through 90 degree angles. A high dimensional vote accumulator encodes the hypothesis support, yielding implicit back-projection for pattern detection.European Union’s Seventh Framework Programme, specific topic “framework and tools for (semi-) automated exploitation of massive amounts of digital data for forensic purposes”, under grant agreement number 607480 (LASIE IP project)

    高速ビジョンを用いた振動源定位に関する研究

    Get PDF
    広島大学(Hiroshima University)博士(工学)Doctor of Engineeringdoctora

    Object instance search in videos

    No full text
    corecore