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Abstract: Human action recognition (HAR) has emerged as a core research domain for video
understanding and analysis, thus attracting many researchers. Although significant results have
been achieved in simple scenarios, HAR is still a challenging task due to issues associated with
view independence, occlusion and inter-class variation observed in realistic scenarios. In previous
research efforts, the classical bag of visual words approach along with its variations has been widely
used. In this paper, we propose a Dynamic Spatio-Temporal Bag of Expressions (D-STBoE) model for
human action recognition without compromising the strengths of the classical bag of visual words
approach. Expressions are formed based on the density of a spatio-temporal cube of a visual word.
To handle inter-class variation, we use class-specific visual word representation for visual expression
generation. In contrast to the Bag of Expressions (BoE) model, the formation of visual expressions
is based on the density of spatio-temporal cubes built around each visual word, as constructing
neighborhoods with a fixed number of neighbors could include non-relevant information making a
visual expression less discriminative in scenarios with occlusion and changing viewpoints. Thus, the
proposed approach makes the model more robust to occlusion and changing viewpoint challenges
present in realistic scenarios. Furthermore, we train a multi-class Support Vector Machine (SVM)
for classifying bag of expressions into action classes. Comprehensive experiments on four publicly
available datasets: KTH, UCF Sports, UCF11 and UCF50 show that the proposed model outperforms
existing state-of-the-art human action recognition methods in term of accuracy to 99.21%, 98.60%,
96.94 and 94.10%, respectively.

Keywords: human action recognition; Bag of Words (BoW); Bag of Expressions (BoE); spatio-temporal;
dynamic neighborhood

1. Introduction

During the last decade, human action recognition (HAR) has become a well-developing research
area and has received substantial attention. It has been applied in a wide range of applications such
as sports video analysis, content-based video retrieval, video surveillance, scene recognition, video
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annotation and human-computer interaction [1]. In particular, there is strong interest in the use of
video and depth sensors to monitor the activity of elderly or disabled people in domestic environments
to support their independence in a safe environment. The use of dedicated intelligent sensors in such
cases could also contribute to maintaining privacy by avoiding the need to stream potentially intrusive
video feeds to external human carers. The main aim of action recognition is to classify the action
present in a test video irrespective of actors’ locations. Action recognition in realistic scenarios is clearly
much more challenging than in constrained environments because background objects can interfere
and be mistaken as features of interest.

State-of-the-art approaches have shown notable increases in performance in realistic and complex
scenarios. However, there are still some unsolved issues such as background clutter, viewpoint variation,
illumination change and class variability [2]. Recently, significant progress has been demonstrated with
spatio-temporal feature representation along with variations of the most popular and widely used bag
of visual words approaches (BoVW) [3], which have the ability to handle viewpoint independence,
occlusion and scale invariance [4,5]. Therefore, there has been a growing interest in exploring the
potential of possible variants of the classical BoVW approach, which characterizes actions using a
histogram of feature occurrence after clustering [6].

However, since BOVW approaches only consider the frequency of each visual word and ignore the
spatio-temporal relation among visual words, such representation is not able to exploit the contextual
relationship between visual words. To overcome this drawback, we propose an extension of our
previously proposed Bag of Expressions (BoE) model [7], which incorporates contextual relationships
of visual words while preserving inherent qualities of the classical BoVW approach. The main
idea of visual expression formation is to store the spatio-temporal contextual information that is
usually lost during formation of visual words by encoding neighboring spatio-temporal interest
points” information.

Both Kovashka et al. [8] and Gilbert et al. [9] have shown that performance can be improved by
the inclusion of neighborhood amongst visual words. Although Reference [8] managed to preserve
scale invariance, their solution led to a decline in the capability of handling different viewpoints and
occlusions. Alternatively, the inclusion of neighborhoods by Gilbert et al. [9] affected the ability to
handle scale and they had to integrate a hierarchy to preserve some scale invariance.

Constructing neighborhoods with a specific number of neighbors, as in Reference [7], can reduce
performance in scenarios with occlusion and changing background. For example, under partial
occlusion, neighborhoods would contain irrelevant neighbors which would add noise, making them
less discriminative. We propose to overcome this by dynamically estimating the number of suitable
neighbors, as described in Section 3.4.1, according to the local density of neighboring Spatio-Temporal
Interest Points (STIPs) in a Spatio-Temporal Cube (ST-Cube). Figure 1 illustrates the difference
between a neighborhood-based approach that uses a fixed number of neighbors with one that uses a
spatio-temporal cube’s density. In case of an viewpoint variation, the likelihood of obtaining the same
visual expression representation is higher with an ST-Cube based neighborhood.

Kovashka et al. [8] were unable to address viewpoint changes because of restrictions they placed
in the formation of neighborhoods. To overcome this, we propose to form a visual expression as an
independent pair of visual words and neighboring STIPs. Using the density of a spatio-temporal cube
of size n, each neighboring STIP in the ST-cube is paired with a visual word to obtain n different visual
expressions. This provides a local representation of visual expressions and enables some tolerance to
viewpoint variation and occlusion.

To support view independence, we represent each action as a visual expression and, as in
Reference [7], only the frequencies of these visual expressions are stored. They are formed in such a way
that they represent the distribution of visual expressions in the spatio-temporal domain. In contrast
to Reference [7], visual expressions are constructed to incorporate the spatio-temporal contextual
information of the visual words by combining the visual words and the neighboring STIPs present in
each spatio-temporal cube. Similarly, these visual expression representations discard all information
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related to other visual words and only consider the relationship between a visual word and its
neighboring STIPs in the ST-Cube. It focuses on the individual contribution of visual expression and is
expected to enhance discriminative power on occlusion. As will be shown here, the proposed model
outperforms state-of-the-art results for KTH, UCF Sports, UCF11 and UCF50 datasets.

Visual word R . .
® A >, Fixed #. of neighbors based Spatio-temporal Cube’s

%@ STIPs (___-===- neighborhood density based neighborhood

Figure 1. Illustration of STIPs (left), neighborhoods based on a fixed number of neighbors (middle)
and a spatio-temporal cube’s density (right)). For a fixed number of neighbors, each visual word
neighborhood is formed based on the same number of STIPs falling in that neighborhood. When using
spatio-temporal cube’s density, the neighborhood is formed based on the number of STIPs falling in
the spatio-temporal cube (ST-Cube).

The rest of the paper is organized as follows. We discuss related work in Section 2. Section 3
describes in detail the proposed dynamic spatio-temporal Bag of Expressions (D-STBoE) model for
human action recognition. Evaluation of parameters, experimentation results and discussion are
provided in Section 4, followed by conclusions and suggestions for future work in Section 5.

2. Related Work

Bag of visual words (BoVW) along with its variations has become a popular approach for many
visual interpretation tasks, including human action recognition. In BoVW, video representation is
obtained using three steps: feature representation, dictionary learning and feature encoding. In such
representation, performance is highly dependent on the discriminative power of each step. As work
on action recognition using a BoVW approach is too broad to be covered here, we focus on the related
approaches for feature representation and neighborhood features.

Feature representation for video, including holistic and local representation approaches, have
been reviewed in detail in survey papers such as Reference [1]. Holistic representations use a global
representation of human body, structure, shape and movement [10-12], while local representations are
based on the extraction of local features [13]. Local representation is favored nowadays because holistic
ones are too rigid to capture viewpoint variation, illumination changes and occlusions, which is typical
of realistic scenarios [14,15]. Local feature representation emerges as an outcome of the spatio-temporal
interest point detector proposed by Laptev et al. [16]. Other traditional feature detectors like Harris
corner detector [17], Gabor filtering [18] and the scale invariant feature transform (SIFT) detector [19]
are also popular interest point detectors. Based on the popular Harris corner detector, 3D Harris
spatio-temporal interest point detector was proposed by Laptev et al. [16] to capture significant
variations in both space and time, which has made it particularly applicable to action recognition.
An example of such interest points is shown in Figure 2.
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Figure 2. Detected Spatio-temporal interest points (shown in the space domain only, for clarity).
Examples from KTH [16,20-23], UCF-Sports [24-26], UCE-11 [27,28] and UCF-50 [29,30] datasets.

Local descriptors are then computed for these detected interest points. Local interest point
descriptors can rely on 3D cuboid or trajectories. 3D HoG (Histogram of Gradients) [31], inspired by
HoG [32], is used to integrate motion information in the spatio-temporal domain. Histogram of optical
flow (HoF) [33] encodes optical flow of pixel value motion in spatio-temporal local regions. Another
popular 3D interest point descriptor is 3D SIFT [34].

After computing features, these are further transformed into visual words in a BoVW approach.
Compared to text that is usually semi-structured, visual appearance is less structured and exhibits
large variations when the same underlying visual pattern is present in varying illumination, different
viewpoints and occluded environments. A possible solution to resolve the ambiguity of visual pattern
representation is to consider its spatial-temporal context [7].

Yuan et al. [35] introduced the concept of visual phrase to overcome the underlying over-representation
and under-representation challenges in visual word representation. Visual phrases are used to represent
the spatial co-occurrence of visual words. Meng et al. [36] have used spatio-temporal cues for object
search in video and find the top k trajectories that are the possible candidates containing the object.

For video representation, Zhao et al. [37] used deep spatial net (VGCNet [38]) and temporal net
(Two-Stream ConNets [39]). They extracted the proposed frame-diff layer and convolutional layers and
pooled them with trajectory temporal pooling and line temporal pooling strategies. These descriptors
were further pooled with VLAD (Vector of Locally Aggregated Descriptors) for video representation.
Xu et al. [40] combined a trainable VLAD encoding process and the RCNs (randomly connected
neurons) architecture and developed a novel SeqVLAD (Sequential VLAD). Murtaza et al. [41] also
proposed a novel encoding algorithm, DA-VLAD, for video representation by exploiting the code-word
representation of each action.

Rahmani et al. [42] proposed a novel deep fully-connected neural network for the recognition
of human actions from novel viewpoints which they called non-linear knowledge transfer model
(R-NKTM). By using dense trajectories for feature representation, their proposed model performed
better than traditional methods. In addition, they stated that performance could be further improved
by combining multiple feature representation approaches like dense trajectories, HOG, HOF and
motion boundary histogram.



Sensors 2019, 19, 2790 5of 21

Wang et al. [43] trained a deep neural network using spatio-temporal features. They used a
Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) units for the extraction
of spatial and temporal motion information respectively. Local and semantics characteristics were
used to distinguish an object from its background and in addition its spatial information was extracted
using a CNN. Different spatial and temporal positions in video were learned using a temporal-wise
attention model.

Khan et al. [44] improved the performance of human action recognition methods using a hybrid
feature extraction model. For action classification, they used a multilayer neural network on selected
fused features and achieved good performance on the KTH dataset.

Many researchers have extended the traditional 2D convolutional neural network to integrate
temporal information. 3D CNN was proposed by Hara et al. [45] to include temporal information
using a 3D kernel to extract information from both the spatial and the temporal domains. Limiting
spatial space looks reasonable whereas, for the extraction of motion information, limiting time domain
to a few frames seems deficient. Ng et al. [46] proposed that instead of learning temporal information
from few frames, temporal pooling can be applied to integrate the temporal domain information in
network layers.

Simonyan et al. [39] extended the convolutional neural network by proposing a two-stream
architecture. Similar to the way human vision cortex learns appearance and motion information using
ventral (object recognition) and dorsal (motion recognition) streams, they used two pathways to learn
spatial and temporal information for appearance and motion respectively. The spatial stream was
learned on a model pretrained on ImageNet while the temporal stream was trained on an action
recognition dataset to address the unavailability of pretrained models on flow information.

Following the success of the two-stream architecture, Feichtenhofer et al. [47] extended the
two-stream CNN and proposed a spatio-temporal residual network. Motivated by the success of
ResNet in ILSVRC 2015, they pretrained ResNet on ImageNet for action recognition. They embedded
the residual connection between appearance and motion streams to allow the hierarchical learning of
spatiotemporal features for both streams.

Hara et al. [45] also utilized the ResNet model for human action classification. They made use of
3D convolutional kernels to integrate temporal information in a residual network. They trained and
evaluated their proposed 3D ResNet model on relatively large action recognition datasets (Kinetics
and Activity Net). Temporal ResNet [48] also integrated temporal information in a spatial residual
network by modifying the basic residual function using an additional temporal conv block.

3. Dynamic Spatio-Temporal Bag of Expressions (D-STBoE) Model

In this section, we present a dynamic spatio-temporal Bag of Expressions (D-STBoE) model for
human action recognition. The proposed model recognizes human actions performed in complex
scenarios by following the pipeline shown in Figure 3. This figure is divided into two sections, that
is, training and testing processes. For training, first each video is described using a local feature
representation, that is, spatio-temporal interest point’s descriptions. We note that not only is the
method independent from the type of features used but it can also be used with features extracted
from pre-trained deep networks. For simplicity and to allow comparison with competing methods,
here we have used well-established features. Second, for each action class, the widely used k-means
clustering algorithm is employed to produce visual words from which a spatio-temporal cube’s density
based Bag of Expressions is generated. Third, a histogram of visual expressions is constructed for each
class by encoding the training videos’ feature representation using the concatenated visual expression
dictionary. Finally, those histograms are used to train a supervised classifier. The testing process is
similar: the video of interest is classified by first encoding its feature representation using the visual
expression dictionary formed during the training process and then by submitting it to the action
classifier. These steps are explained in more detail in the following sub-sections.



Sensors 2019, 19, 2790 6 of 21

— Training Process
| —— Testing Process [ : ) — c
; I N
i 2 Ko e n | Feature |
] — w
I i Spatio-Temporal . ; K:Wun Clus;el'n Density Based !_ Encoding |
Action class 1 clips Interest Point Feature Deseription ing BoE Generation c| -
. a |
il Y ——
t
e — | — — e
= - Spatio-Temporal el or . d n
y : -~ g i Density Base
Input Videos Astion class 2 dlips Interest Point Feature Description  K-Mean Clustering  SPRY 280 & -
1 Histogram of Visual
! I ot ol t Expression
li e i 1
— I vy — =
f I — |0
) " Spatio-Temporal : ) n £ Trrained " .
Action class n clips N P K-Mean Clustering  Density Based
Interest Point Feature Description BoE Generation /—r— | _Classifier _ !
: T
A I EERER
N it S P Encodin
S wa B e L Eneedine |
i i Query Videa cli Spatio-Temporal S Histogram of Visual
Query Video clips -ry P terest Prin Feature Description Toression

Figure 3. Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model for human action recognition.
3.1. Spatio-Temporal Interest Points Detection

The feature detector aims to detect the distinctive locations of interest points which are used as

a compact representation of the raw action video. Since in a video spatio-temporal interest points

are considered to be both compact and salient for feature representation [14], 3D Harris is selected

to detect interest points associated with regions with high-intensity variation in both space and time

dimensions. More specifically, we take advantage of the modified Harris corner function proposed by
Laptev et al. [16]:

D = det u — mtrace®(p) 1)

where m is a tunable sensitivity parameter and yu is a 3 x 3 spatio-temporal moment matrix:

Ly LyL, L.L;
p=G(,0%1%) %4 LL, L, Lth} @)
LiLy LyLy L

with a spatial scale o and temporal scale T. Here L is the first order spatio-temporal derivative
and G is a Gaussian weighting function. As illustrated in Figure 4a where 3D plots show detected
interest points for the detected STIPs (blue dots), those points are well localized in both space and
time domains. For simplicity detected STIPs are shown in the space domain only in Figure 4b. This
helps to obtain a rich representation for each video and enables to differentiate between other action
classes and noise. For each video V, the set of extracted spatio-temporal interest points are given by
p = {pilpie(x,y,t)I_, }, where n is the total number of interest points detected for a video V. Clearly,
the value of n varies for each video depending on the number of interest points detected by the 3D
Harris corner detector.
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(a) (b)

Figure 4. Spatio-temporal interest points for the Swing-Bench action from the UCF Sports dataset [24]
(a) 3D Plot of detected interest points for Swing-Bench action (b) Pictorial representation of detected
interest points for Swing-Bench action, shown only in the space domain for simplicity.

3.2. STIP Description using 3D SIFT

Feature descriptors are used to describe the detected interest points. Since 3-Dimensional Scale
Invariant Feature Transform (3D SIFT) [34], an extension of SIFT [49] in the time domain, is able to
represent points such that their representation is invariant in terms of scale, rotation, appearance
and occlusion [50], we used that descriptor to characterize the points detected in the previous step.
Scovanner et al. [34] obtained the 3D SIFT representation by computing the overall orientation of the
neighborhood. In 3D, orientation and magnitude are calculated as:

Mag(x,y,t) = \/(sz + Ly2 + Ltz) (3)
0(x,y,t) = tan~! (?) 4
Lt

P(x,y,t) = tan~! ®)

/Ly + Ly?
¢(x,y,t) encodes the angle away from the 2D gradient direction and 6(x, y, t) represents the angle in
the 2D gradient. Once this is computed, the next step is to obtain the 3D SIFT descriptor representation
by encoding orientations using sub-histograms. For each video V, the feature representations are
denoted as FP = {f;, pi|pi € (x,y,t)!_,} where f; is the feature description for the spatio-temporal
interest point p;.

3.3. Class Specific Visual Word Dictionary

K-means clustering is a commonly used algorithm to automatically partition a dataset into k
groups [1,51]. Let FP = {F Py, K, P, F3Ps, . . ., Fyy Piy } represent the obtained features where tm is the
total number of videos for an action class, FP is a set of feature representation for the videos of an
action class. We apply k-means clustering to obtain class-specific visual word representations, which
correspond to the k cluster centers. They become the words of the class-specific dictionary, CDic.
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3.4. Bag of Expressions Generation

After the generation of class-specific visual word dictionaries, the next step is to generate a
concatenated visual expression dictionary containing C class-specific visual expression dictionaries,
where C is the total number of unique action classes.

Constructing a neighborhood with visual words with a fixed number of neighbors [7] affects
performance in scenarios with occlusions and changing viewpoints since, for example, in the case of
partial occlusion the same neighborhood could contain non-relevant (different class) neighbors, making
the neighborhood less discriminative. We propose to set the number of suitable neighbors dynamically,
as described in Section 3.4.1, according to the density of a spatio-temporal cube in the frame of interest.
However, as such strategy may reduce some viewpoint independence, since it is less probable to obtain
neighborhoods containing the same words, this is addressed by describing the neighborhood as an
independent pair of neighbors. Each element in a pair contains an independent feature representation
with respect to the other paired elements. Each visual word is paired with its neighboring interest
points to form visual expressions. Such representation discards all information related to other words
and only considers the relation between respective visual word and its neighboring STIP in a pair.
Hence, this allows focusing on the individual contribution of a visual expression which should enhance
its discrimination power when dealing with occlusions.

A bag of visual expressions is generated by incorporating a visual word’s neighborhood
information present in the spatio-temporal cube, as described in the following sub-sections. After the
construction of a spatio-temporal cube around a visual word and the calculation of the density of the
respective ST-Cube, Section 3.4.1, Section 3.4.2 describes the formation of visual expressions by pairing
visual words with their respective neighboring STIPs in the ST-Cube. Finally, Section 3.4.3 explains the
formation of a visual expression dictionary by using the C class-specific visual expression dictionary.

3.4.1. Spatio-Temporal Cube

For each cluster center, ‘Ccenter’ (visual word), in a dictionary CDic, a spatio-temporal cube (ST-C)
is formed containing the spatio-temporal interest points around the cluster centers. As shown in
Figure 5a, the spatio-temporal cube is aligned with the 3D plane axes. This ST-Cube is constructed to
define the neighborhood of the respective visual word to dynamically obtain a suitable neighborhood
for each visual word, making it more discriminative. This spatio-temporal cube contains neighboring
spatio-temporal interest points from the set P, where P is the set of interest points detected for an
action class (as mentioned in Section 3.1). As shown in Figure 5b, the number of neighbors in a cube
can vary and is also dependent on the size of the cube, denoted as CubeSize.

o
- .

Lo

y

‘X',,o 2

Densitysr_¢=8

Spatio Temporal Cube (ST-C)

Densitysy_¢=6

(a) (b) (c)

Figure 5. (a) Spatio-temporal Cube aligned with 3D plan axes (b) Neighboring spatio-temporal interest
point around cluster centers (c) visual word density calculation.
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The density of each visual word (also referred as cluster center) is calculated in the spatio-temporal
cube where ST-C density is defined as:

Densitysy_c = ZDenseX(p]-, Ccenter) (6)
i

where DenseX =1 if p; falls in the spatio-temporal cube of size CubeSize3, otherwise DenseX = 0.
In other words, visual word density is the number of spatio-temporal neighborhood interest points
present in the spatio-temporal cube. Figure 5c illustrates the calculation of visual words’ densities.

3.4.2. Visual Expression Formation

Visual expressions are formed to incorporate the contextual spatio-temporal neighboring
information of a visual word, by combining the visual words and their respective neighboring
spatio-temporal interest points present in the spatio-temporal cube. Let p; be the neighboring
spatio-temporal interest point of the visual word Ccenter;. The associated visual expression is
formed as:

VExqu (f/ P) = [CC@I’Zt@i’l (chenterll pCcenterl)r qu (fq/ Pq)] (7)

The number of visual expressions formed against each visual word depends on its
Densityst_c. For example, as shown in Figure 6, if Ccenter; has Densitysy_c = 8, then
the number of visual expressions formed for Ccenter; will be eight and are represented as

{VExpu1(f, p), VExp1a(f, p), VExp1s(f, p), ... VExpis(f, p) }-

4

t P e — - - 1
EB VExp,; =[ ® Ccenter, , ® fo; ]

1 1
1 1
i |
1 1
| @ VExp,, = [ ccenter,, ® fo, |] | |
i i
. | @ VExp,; = [ ) Ceenter, , ® fps ] | !
1 1
1 :
1 1
1 1
1 1
1 1
1 1
1 :

=

*

Densitysr gr =8

® Ccenter,

Figure 6. Visual expression formation for a visual word CCenter; of density 8.

3.4.3. Visual Expression Dictionary

Similarly to the approach used in Reference [7], after obtaining visual expression representations
for each visual word, they are concatenated to form a visual expression dictionary CEDic. In contrast
to Reference [7], the size of CEDic depends on the number of visual words, that is, k, obtained for
each action class, the number of classes and spatio-temporal cube’s densities. As shown in Figure 7,
assuming there are five action classes in an action recognition dataset, after applying k-means clustering
(as discussed in Section 3.3), there will be five class specific dictionaries with k visual words for each
CDic. Then, the class-specific visual expression dictionaries, CEDics, are generated for each action
class. Note that the size of each CEDic varies as it is dependent on the size of each visual word’s ST-C
density. Finally, these five CEDic are concatenated to obtain a visual expression dictionary, which is
represented as EDic.
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Figure 7. An example of visual expression dictionary (EDic) generation from class specific
dictionaries (CDics).

3.5. Histogram of Visual Expressions Encoding

The proposed model uses histogram encoding [52] for assigning the local feature representation
to the corresponding visual expression. Given a set of feature representations fp = fip;[? ; of a
video V, let histE; be the assignment of each feature representation f;p; to the corresponding visual
expression VExp, such that histEs = argmin || fsps — VExp,||?, see Figure 8. The histogram encoding
vector HistEeR" is such that [HistE], = |{s : histEs; = r}| where r is the corresponding VExp in EDic.

o 0 0 B 54 o

E @VExpu %VEXPJZ »;_'EVExpB e eee QBVEXPM %BVeXpM e e ‘%BVEXPM E

Figure 8. Histogram of visual expression representation.
3.6. Action Recognition

Since we use a multi-class support vector machine model for action recognition, we need to select
both a kernel function and a multi-class model. We evaluated multi-class SVM models using three
different kernel functions, that is, Gaussian kernel, linear kernel and polynomial kernel, which are
defined, respectively, as:

GK(x,) = exp(~ |[x =) ®)
LK(x,y) =y 9)
PK(x,y) = (1+ xy)2 (10)

Multi-class SVMs models use different types of coding design schemes to learn [53]. A video of
interest is assigned the action class label C that maximizes aggregation of the losses for the L binary
learner and defined as:

L
C =argmin)_ |Mq|§(Me, ;) (11)
c =1
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where M is the coding design scheme matrix with elements M., S; and is the predicted classification
score for the positive class of learner [ and C is the total number of unique action classes. Six different
coding design metrics were considered for learning a binary learner:

1. One vs. one: The multiclass model learns C(C — 1) binary learners. For this coding design matrix,
one class is positive, another is negative and the rest is ignored.

2. One vs. All: For each binary learner of a total C binary learners, one class is positive and the rest
is negative.

3.  Ordinal: Matrix elements are assigned such that for the first binary learner the first class is
positive and others are negative. For the second binary learner, the first two classes are positive
and the rest are negative and so on. It has C — 1 binary learners.

4.  Binary Complete: The multi-class SVMs model learns 2°~! — 1 binary learners such that it
assigns 1 or —1 to each class provided that at least one class is assigned positive and one class is
assigned negative.

5.  Dense Random: Each element of the design matrix is assigned equal probability and has
approximately 10/0g,C binary learners.

6. Sparse Random: It assigns 1 or —1 to the class with 0.25 probability and 0 to class with 0.5
probability. It has approximately 15/0g>C binary learners.

The dynamic spatio-temporal based Bag of Expressions (D-STBoE) method is summarized in
Algorithm 1.

Algorithm 1 D-STBoE algorithm for Human Action Recognition

Require: Training video dataset V Sy, = {V'S1,VS2, VSs, ..., VS.} where C is the number of action
classes,
Training labels Label, iy,
Testing video dataset V Syt
: EDic + []
: forz=1:cdo
for each video in VS, do

obtain feature representation FP
do k-mean clustering to obtain CDic,

for each visual word Ccentery, in CDic, do
for u = 1: Densityceenter, do

compute VExp,
CEDic, = concatenate[CEDic,, VEXPy)
10:  EDic = concatenate[EDic, CEDic,|
11: for each video v in training set V S5, do

12: feature encoding using EDic to get HistEy,y,
13: TrainC = TrainClassifier(Hist Eyyai,, Labelyyqiy)

14: for each video Vi, in training set V Sest do

15: obtain feature representation FP

16: feature encoding using EDic to get HistEjes;
17: Labelyesy = Predict(TrainC,HistEjest)

return Label;,s;

VP N TN

4. Experimentation Results and Discussion

4.1. Datasets

The proposed model was evaluated on four benchmark datasets for human action recognition,
that is, KTH, UCF Sport, UCF11 and UCF50. Although KTH [21] contains actions performed in simple
scenarios and as a consequence it is not considered as challenging by state-of-the-art human action
recognition methods, it is included for comparison with related work. It consists of videos involving a
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single actor performing single actions. It contains 6 different types of actions. They are recorded in a
constrained environment with a static background. The dataset is divided into training and testing
videos based on actor identity [21]. Videos involving 16 different actors are used for training, while the
remaining, involving 9 different actors, are used for testing. Performance is reported using average
accuracy over all classes.

The UCF Sports [25] dataset comprises 150 videos taken from actual sports broadcasts. It contains
10 different types of actions. It is a challenging dataset since it is captured in realistic environments
which include wide ranges of views and scenes. Since each action is performed by different actors,
each individual action is performed in many different manners. We used the leave-one-sample-out
validation scheme: one original video is used for testing and the other 149 videos for training.
Performance is evaluated according to average accuracy, that is, accuracy over all classes.

UCF11 [28], previously known as the YouTube dataset, is a very challenging dataset as it contains
videos taken from the web. They are captured in unconstrained environments and include challenges
such as large variation of illumination changes, a mix of steady and shaking cameras, cluttered
backgrounds, low resolution and variation of object scale. It comprises 11 types of actions. Each action
class has 25 groups, each containing at least 4 video clips. Each group’s video clips share features
such as having been captured in a similar environment from the same viewpoint and having been
performed by the same actor. Similar to Reference [25], we used the leave-one-group-out validation
method and performance is reported using average accuracy over all classes.

UCF50 is also a very challenging dataset captured in realistic environments with large variations
in viewpoints, backgrounds, camera motions, object appearances and poses. Similiarly to UCF11,
for each action class in UCF50, video clips are grouped into 25 groups each containing at least 4 video
clips. Each group shares some features, like similar environment, same actor and similar viewpoints.
As proposed in References [25,30], a Leave One Group Out evaluation method is used for evaluation
and performance is reported using average accuracy over all classes.

4.2. Feature Extraction and Parameter Tuning

We have extracted spatio-temporal interest points using the 3D Harris STIP detector with standard
values, that is, ¢ =4, T = 2 and m = 0.001 [15]. These points are described by 3D SIFT with 2056
dimensions. We optimized parameters involved in the proposed model on UCF Sports dataset as it is a
challenging dataset containing a wide range of actions and scenes. We performed a set of experiments
to choose the best k visual words representation for the class-specific dictionary.

We also evaluated the proposed D-STBoE model performance by varying ST-Cube size. Figure 9
shows that the increase in class-specific dictionary (CDic) size (i.e., value of k) results in improved
performance irrespectively of ST-Cube size. It also reveals that an increase in ST-Cube size tends to
decrease performance after ST-Cube size = 5. Indeed, a larger size is likely to increase the number
of non-relevant neighbors contributing to the visual expression formation, hence making it less
discriminant. However, a smaller ST-Cube size may fail to integrate relevant neighbors, hence making
the visual expression incomplete. Performance is even more dependent on the k" parameter as an
insufficient dictionary size leads to poorer accuracy. As our experiments show that up to k = 300 there
is significant performance improvement, that value was selected. Similarly, an ST-Cube Size of 5 was
chosen to produce optimal performance.

To analyze the computational complexity of the proposed method, we have evaluated the impact
of the parameter that has the most significant contribution in terms of computational time. Following
measurements of the average running time for the generation of a class-specific dictionary as described
in Section 3.3, Table 1 shows that an increased number of cluster’s centers (k) for k-means clustering
leads to increased processing time.
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Figure 9. k and ST-Cube size parameter evaluation for proposed D-STBoE model on the UCF
Sports dataset.

Table 1. Computation time with respect to the class specific dictionary size (k).

Size (CDic) Time (s)

K=50 92.20
K =100 198.35
K =200 369.45
K=300 524.12

In the next set of experiments, we evaluated the performance of different multi-class SVM models
used for action recognition by testing three different kernel functions and six coding design matrices
for the binary learner, as outlined in Section 3.6. As expected from Reference [54], results show that the
Gaussian kernel outperforms linear and polynomial kernels, see Table 2. Moreover, the One versus All
coding design matrix shows better performance than the other matrices.

Table 2. Evaluation of Multi-class SVM model for action recognition on the UCF Sports dataset.

Coding Design Matrix/ Gaussian Linear Polynomial

Kernel Function Kernel Kernel Kernel
One vs. One 96.7 95.5 94.5
One vs. All 98.6 97.1 96.7
Ordinal 95.7 94.7 94.0
Binary Complete 97.7 96.4 95.8
Dense Random 98.5 97.2 96.6
Sparse Random 98.5 97.7 96.7

4.3. Contribution of Each Stage

This section considers the contribution of each stage in the proposed model, as tested on the UCF
Sports dataset. As presented in Section 3.3, we used a supervised dictionary learning approach (using
k-means clustering) to learn the class-specific visual word representation for each class. Here, we
evaluate the impact of learning the 'C’ class specific dictionaries versus one unsupervised dictionary.
Figure 10 shows that a significant improvement is brought by using a supervised dictionary learning
approach in comparison with the unsupervised one. Although an increase in dictionary size leads
in both cases to improved performance, the supervised approach outperforms the unsupervised
one consistently.

The trend line in Figure 11 shows that the density of spatio-temporal varies approximately
quadratically with ST-Cube size. Therefore, we can conclude that an increase in cube size will also
result in an increase in visual expression dictionary size.



Sensors 2019, 19, 2790

100
9 . Supervised Dictionary Learning i
! --@--UnSupervised Dictionary Learning!
98
97 p
>
X % e
= P
T
s 95
g
< 94 e
93
92
'
91 |
90
0 50 100 150 200 250

Dictionary Size (k)

14 of 21

B
—

e <

300 350 400 450

Figure 10. Evaluation of dictionary learning approach on the UCF Sports dataset.

160

Trend Line

o]
o

(2]
o

Sum of Density (ST-Cube)
S

o

N
o

0
5 10

ST-Cube Size

30

40

Figure 11. Relationship between ST-Cube size and sum of ST-Cube Density.

However, this trend does not result in increased accuracy, as illustrated by Figure 12. If we
compare this trend with the effect of visual word dictionary size on performance (refer to Figure 10),
we can conclude that there is no relationship between visual expression dictionary size and visual

word dictionary size in terms of achieved performance.
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4.4. Comparison with the State-of-the-Art

The experiment section concludes with a comparison of the proposed model with state-of-the-art
methods, including recent deep learning based methods. It should be noted that D-STBoE parameters
were optimized for UCF Sports dataset as discussed in Section 3.4.2.

4.4.1. Evaluation on the KTH Dataset

Table 3 shows that, in terms of average accuracy, D-STBoE and our previously proposed BoE
perform better than all state-of-the-art methods with the exception of the Multilayer neural network,
which achieved a slightly better performance of 99.80% against 99.21% for D-STBoE.

Table 3. Accuracy evaluation of our method compared to state-of-the-art methods on the KTH Dataset.

Author  Method Results
Proposed Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model 99.21
[7] Bag of Expression (BoE) 99.51
[44] Multilayer neural network 99.80
[55] Foreground Trajectory extraction method 97.50
[56] Power difference template representation 95.18
[57] Direction-dependent feature pairs and non-negative low-rank sparse model ~ 94.99
[58] Space-time robust representation 94.60

4.4.2. Evaluation on the UCF Sports Dataset

As shown in Table 4, D-STBoE outperforms all state-of-the-art methods, achieving an additional
2.6% accuracy when compared with the second best performer. This success should, however, be
tempered by the fact that D-STBoE was optimised for this dataset. It should also be noted that two
other ‘traditional” methods outperform the deep learning approaches on this dataset.

Table 4. Accuracy evaluation of our method compared to state-of-the-art methods on the UCF

Sports Dataset.
Author Method Results
Proposed Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model 98.60
[7] Bag of Expression (BoE) 97.33
[43] Spatio-temporal features with deep neural network 91.80
[42] Robust non-linear knowledge transfer model (R-NKTM) 90.00
[59] Universal multi-view dictionary 91.00
[55] Foreground Trajectory extraction method 91.40
[60] Holistic and motion cues based approach 95.60
[61] 3D-TCCHOGAC and 3D-HOOFGAC feature descriptors 96.00
[56] Power difference template representation 88.60
[62] Factored matrices of dual tensors 92.70
[63] Multi-Region two stream R-CNN 95.50
[64] Spatio-temporal tube of maximum mutual information 90.70
[65] Local motion and group sparsity-based approach 89.70
[66] Dense trajectories and motion boundary descriptors 88.00
[67] Sparse representation and supervised class specific dictionary learning  86.60
[68] Invariant spatio-temporal features with independent subspace analysis ~ 86.50
[69] Person detector along with BOF approach 86.70
[8] hierarchy of discriminative space-time neighborhood features 87.30

4.4.3. Evaluation on the UCF11 and UCF50 Datasets

We compared the proposed model with the state of the art for the UCF11 and UCF50 datasets,
with successful methods that have proven particularly suitable in dealing with the many practical
problems represented in these realistic datasets. As shown in Table 5, our method outperforms
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significantly all the state-of-the-art approaches for UCF11 dataset with the exception of a deep neural
network, which delivers an accuracy 1.82% higher.

Table 6 shows the comparison of proposed approach for UCF50 dataset. Even in this very
challenging and realistic dataset, the D-STBoE model shows reliable recognition performance. This
further indicates that the class-specific visual expression formation is discriminative and that the
D-STBoE model is effective for action recognition.

Table 5. Accuracy evaluation of our method compared to state-of-the-art methods on the
UCF11 Dataset.

Author  Method Results
Proposed Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model 96.94
[43] Spatio-temporal features with deep neural network 98.76
[59] Universal multi-view dictionary 85.90
[55] Foreground Trajectory extraction method 91.37
[70] Graph-based multiple-instance learning 84.60
[65] Local motion and group sparsity-based approach 86.10
[66] Dense trajectories and motion boundary descriptors 84.10
[68] Invariant spatio-temporal features with independent subspace analysis ~ 75.80

Table 6. Accuracy evaluation of our method compared to state-of-the-art methods on the

UCF50 Dataset.
Author  Method Results
Proposed  Dynamic Spatio-temporal Bag of Expressions (D-STBoE) Model ~ 94.10
[71] HMG + iDT Descriptor 93.00
[72] Bag of Words and Fusion Methods 92.30
[5] Dense Trajectories 91.70
[66] Dense Trajectories and motion boundary descriptor 91.20

A particular strength of the proposed model is that it shows some degree of tolerance to
occlusion and viewpoint variation. Figures 13 and 14 show some positive examples of the "Basketball’
action (UCF11 dataset) captured from different viewpoints and "Spiking” action (UCF11 dataset) in a
non-occluded and occluded environment respectively. As the proposed D-STBoE model generates a
visual expression based on cuboid neighborhood density, it only focuses on relevant local information
which enhances its discrimination power.

Figure 13. DPositive examples of ’Basketball’ action (UCF11 dataset [27]) captured from
different viewpoints.
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Figure 14. DPositive examples of 'Spiking’ action (UCF11 dataset [27]) in non-occluded and
occluded environment.

5. Conclusions and Future Work

In this paper, a dynamic spatio-temporal Bag of Expressions model for human action recognition
has been introduced. Not only does it preserve the inherent qualities of the classical BoVW approach
but it also acquires contextual information that would be lost with a conventional formation of visual
words representation. We proposed a new Bag of Expressions generation method based on the
density of spatio-temporal cube of visual words. The new model addresses the inter-class variation
challenge observed in realistic scenarios by using a class-specific representation for visual expression
generation. Viewpoint variation and occlusion challenges are also partially addressed by considering
the spatio-temporal relation of visual words representation. The model was tested on four publicly
available datasets that is, KTH, UCF Sports, UCF11 and UCF50. D-STBoE consistently outperformed
all state-of-the-art ‘traditional” methods while achieving competitive results when compared to deep
learning approaches, which demonstrated best performance on two of the four datasets. In terms
of practical deployment, D-STBoE could be a competitive solution compared to deep learning based
systems, since, unlike them, it does not require a large dataset for training that is, D-STBoE is better
suited for practical applications where availability of training data is usually limited.

Future work will explore the potential advantage of using spatio-temporal cube’s density
based neighborhood information for deep learning features and methods and also investigate
exploiting spatio-temporal neighborhood information for action detection in even more realistic
and complex scenarios.
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