104,228 research outputs found

    Language-driven Object Fusion into Neural Radiance Fields with Pose-Conditioned Dataset Updates

    Full text link
    Neural radiance field is an emerging rendering method that generates high-quality multi-view consistent images from a neural scene representation and volume rendering. Although neural radiance field-based techniques are robust for scene reconstruction, their ability to add or remove objects remains limited. This paper proposes a new language-driven approach for object manipulation with neural radiance fields through dataset updates. Specifically, to insert a new foreground object represented by a set of multi-view images into a background radiance field, we use a text-to-image diffusion model to learn and generate combined images that fuse the object of interest into the given background across views. These combined images are then used for refining the background radiance field so that we can render view-consistent images containing both the object and the background. To ensure view consistency, we propose a dataset updates strategy that prioritizes radiance field training with camera views close to the already-trained views prior to propagating the training to remaining views. We show that under the same dataset updates strategy, we can easily adapt our method for object insertion using data from text-to-3D models as well as object removal. Experimental results show that our method generates photorealistic images of the edited scenes, and outperforms state-of-the-art methods in 3D reconstruction and neural radiance field blending

    Learning Object-Centric Representations of Multi-Object Scenes from Multiple Views

    Get PDF
    Learning object-centric representations of multi-object scenes is a promising approach towards machine intelligence, facilitating high-level reasoning and control from visual sensory data. However, current approaches for unsupervised object-centric scene representation are incapable of aggregating information from multiple observations of a scene. As a result, these "single-view" methods form their representations of a 3D scene based only on a single 2D observation (view). Naturally, this leads to several inaccuracies, with these methods falling victim to single-view spatial ambiguities. To address this, we propose The Multi-View and Multi-Object Network (MulMON) -- a method for learning accurate, object-centric representations of multi-object scenes by leveraging multiple views. In order to sidestep the main technical difficulty of the multi-object-multi-view scenario -- maintaining object correspondences across views -- MulMON iteratively updates the latent object representations for a scene over multiple views. To ensure that these iterative updates do indeed aggregate spatial information to form a complete 3D scene understanding, MulMON is asked to predict the appearance of the scene from novel viewpoints during training. Through experiments, we show that MulMON better-resolves spatial ambiguities than single-view methods -- learning more accurate and disentangled object representations -- and also achieves new functionality in predicting object segmentations for novel viewpoints.Comment: Accepted at NeurIPS 2020 (Spotlight

    Update propagation in chimera, an active DOOD language

    Get PDF
    Propagating updates is an important task to be performed within many database services such as integrity checking, maintenance of materialized views, and condition monitoring. This paper is concerned with the propagation of updates in an active DOOD language. The approach proposed is to make use of Chimera triggers for computing induced updates. It will be shown how a subset of Chimera's deductive rules can be compiled to update propagation triggers. In its expressiveness the rule set considered corresponds to that of Datalog with sets and negation. Using triggers for implementing update propgation has the advantage that no special component has to be implemented as a trigger mechanism has. to exist anyway. In this paper we will not propose new techniques for computing induced updates but will transfer the techniques - well-known for the relational model - to the object-oriented case

    Consistent Unanticipated Adaptation for Context-Dependent Applications

    Get PDF
    Unanticipated adaptation allows context-dependent applications to overcome the limitation of foreseen adaptation by incorporating previously unknown behavior. Introducing this concept in language-based approaches leads to inconsistencies as an object can have different views in different contexts. Existing language-based approaches do not address unanticipated adaptation and its associated run-time inconsistencies. We propose an architecture for unanticipated adaptation at run time based on dynamic instance binding crafted in a loosely manner to asynchronously replace adaptable entities that allow for behavioral changes of objects. To solve inconsistencies, we introduce the notion of transactions at the object level. Transactions guard the changing objects during their execution, ensuring consistent views. This allows for disruption-free, safe updates of adaptable entities by means of consistent unanticipated adaptation

    Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition

    Get PDF
    Service robots are expected to operate effectively in human-centric environments for long periods of time. In such realistic scenarios, fine-grained object categorization is as important as basic-level object categorization. We tackle this problem by proposing an open-ended object recognition approach which concurrently learns both the object categories and the local features for encoding objects. In this work, each object is represented using a set of general latent visual topics and category-specific dictionaries. The general topics encode the common patterns of all categories, while the category-specific dictionary describes the content of each category in details. The proposed approach discovers both sets of general and specific representations in an unsupervised fashion and updates them incrementally using new object views. Experimental resultsshow that our approach yields significant improvements over the previous state-of-the-art approaches concerning scalability and object classification performance. Moreover, our approach demonstrates the capability of learning from very few training examples in a real-world setting. Regarding computation time, the best result was obtained with a Bag-of-Words method closely followed by a variant of the Latent Dirichlet Allocation approach

    Learning to Look Around: Intelligently Exploring Unseen Environments for Unknown Tasks

    Full text link
    It is common to implicitly assume access to intelligently captured inputs (e.g., photos from a human photographer), yet autonomously capturing good observations is itself a major challenge. We address the problem of learning to look around: if a visual agent has the ability to voluntarily acquire new views to observe its environment, how can it learn efficient exploratory behaviors to acquire informative observations? We propose a reinforcement learning solution, where the agent is rewarded for actions that reduce its uncertainty about the unobserved portions of its environment. Based on this principle, we develop a recurrent neural network-based approach to perform active completion of panoramic natural scenes and 3D object shapes. Crucially, the learned policies are not tied to any recognition task nor to the particular semantic content seen during training. As a result, 1) the learned "look around" behavior is relevant even for new tasks in unseen environments, and 2) training data acquisition involves no manual labeling. Through tests in diverse settings, we demonstrate that our approach learns useful generic policies that transfer to new unseen tasks and environments. Completion episodes are shown at https://goo.gl/BgWX3W
    • …
    corecore