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obviously contradicts the concept of run-time sustainabil-

ity which should support both anticipated and unanticipated

adaptation [17].

Arbitrarily updating a running application might lead to

inconsistent states which results in a system that behaves

unexpectedly. Consider a file transfer application (Figure 1)

that allows multiple clients to download files. Since files

to be transferred are large, the implementation of the basic

Transfer functionality splits them into smaller chunks and

sends them to the respective clients. Assume now that a

client requests that the chunks should be encrypted before

the transfer. Since the server runtime supports unanticipated

adaptations, the file transfer server can be extended with

the encryption behavior without stopping and restarting the

server.

The situation is depicted in Figure 1, showing two clients

using the file transfer service. Client 1 starts a transfer us-

ing the basic transfer functionality of splitting files. While

the transfer for Client 1 is running, Client 2 requests

the transfer of encrypted chunks which triggers the incor-

poration of the encryption behavior into the file server. If

the transfer for Client 1 is still running, the unanticipated

adaptation does not only affect the newly established trans-

fer session for Client 2 but also the session of Client 1

that receives encrypted chunks after the system change. Con-

sequently, the adaptation violates the consistency of the sys-

tem.

Figure 1: Inconsistency of Unanticipated Adaptation

Context-oriented Programming (COP) enables dynamic

adaptation to the context [13, 15]; however, this technique

lacks support for unanticipated adaptation. In COP, behav-

ioral inconsistencies may occur when multiple layers are

activated asynchronously, modifying the behavior of the ex-

Abstract
Unanticipated adaptation allows context-dependent appli-

cations to overcome the limitation of foreseen adaptation 
by incorporating previously unknown behavior. Introducing 
this concept in language-based approaches leads to incon-

sistencies as an object can have different views in differ-

ent contexts. Existing language-based approaches do not ad-

dress unanticipated adaptation and its associated run-time in-

consistencies. We propose an architecture for unanticipated 
adaptation at run time based on dynamic instance binding 
crafted in a loosely manner to asynchronously replace adapt-

able entities that allow for behavioral changes of objects. 
To solve inconsistencies, we introduce the notion of transac-

tions at the object level. Transactions guard the changing ob-

jects during their execution, ensuring consistent views. This 
allows for disruption-free, safe updates of adaptable entities 
by means of consistent unanticipated adaptation.

Categories and Subject Descriptors D.2.11 [Software Ar-
chitectures]: Framework
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1. Introduction
Adaptive software systems normally deal with anticipated 
adaptation enabling the base object to change its behavior

with respect to the context. System designers are required 
to provide definitions of adaptable entities and their adapta-

tions [13, 15] in advance. In highly dynamic environments

it might be infeasible to foresee all possible adaptations. 
Changing behavior requires to shutdown the running ap-

plication which causes a disruption for multi-user applica-

tions as clients need to reconnect and restart their tasks. This

 
 

Final edited form was published in "ECOOP '16: European Conference on Object-Oriented Programming. Rome 2016", S. 33 - 38. ISBN: 978-1-4503-4440-1 
https://doi.org/10.1145/2951965.2951966

1 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



ecuting code block. To manage these inconsistencies, COP

languages such as EventCJ [8], ServalCJ [9], Subjective-

C [3], and Ambience [2, 5], provide mechanisms to en-

sure consistent behavior execution as contexts are activated.

These mechanisms prevent conflicts between adaptations

known beforehand, e.g., specifying that the adaptations

GPSNavi and WiFiNavi should not be active simultaneously

in an indoors mapping application [8].

This paper proposes an approach for disruption-free, safe

updates of adaptable entities by means of consistent unantic-

ipated adaptation. First, we provide an architecture to realize

unanticipated adaptation based on the concept of dynamic

instance binding [15]. Second, we introduce the notion of

transaction to guard the behavioral objects’ change caused

by asynchronous binding of unexpected adaptable entities

to base instances. The transaction is inspired by the concept

of Tranquility [16] ensuring components are in a consistent

state before and after the update.

The contributions of this paper are twofold.

• A Java-based run-time architecture for unanticipated

adaptation in which the adaptable entities of an appli-

cation can be (re)loaded enabling behavioral change to

certain instances without restarting the runtime environ-

ment.

• Harness the flexible dynamic instance binding and cen-

tralized dynamic method dispatch from our architecture

to bring the concept of transaction to the object level to

safely update and adapt the run-time part.

2. Background
Our approach to handle unanticipated adaptation is based on

the concept of roles [14] as a means to dynamically change

objects’ behavior.

2.1 Roles are Implicitly Context-Dependent
A single object may contain static and dynamic parts. For

example, a Person object has a social security number and

a name. These attributes are fixed throughout the object’s

lifetime. Objects may also have transient properties or be-

haviors according to a specific role they may play. For exam-

ple, a Person could be a student or an employee. Such tran-

sient parts are made available dynamically (e.g., activated,

bound), whenever they are needed in a concrete execution

context, for example in a school or workplace. In such sce-

narios, objects should be modeled by splitting the dynamic

parts (represented as roles) from the static ones. By doing

this, we achieve separation of concerns and code re-use. Ob-

ject instances can present different behavior at run time by

merging the dynamic parts of the object to its static parts.

This paper abstracts the role concept as views that provide

implicit context-dependent behaviors. The terms adaptable

entity, dynamic part, and role are used interchangeably to

describe the part of the objects that modify the behavior of

the static part or core object. There are several role features

out of discussion but it is worth to have a look in the 26

feature list proposed by Steimann [14] and Kühn et al. [11].

2.2 Dynamic Instance Binding
This section describes a dynamic instance binding mecha-

nism [15] that arbitrarily binds objects’ static part, modeled

as players, and their dynamic parts, presented as roles. The

key idea is to enable the behavior of the dynamic parts in

their binding to the static parts. The behavioral composition

of these objects happens at the instance level which enables

non-uniform adaptation for each instance.

The dynamic instance binding is inspired by the code

weaving scheme of Aspect-oriented Programming (AOP),

but rather than weaving players with multiple roles at the

byte code or source code levels, we keep the two distinct en-

tities independent inside our runtime. A look-up table (i.e.,

relational schema), is required to draw the binding informa-

tion for dynamic method dispatching. When methods are in-

voked, the dispatcher queries and selects appropriate role

instances from an instance pool and invokes them through

reflection. An architecture of this framework is partially de-

picted in Figure 3.

Snippet 1: File Transfer

1 class Transfer{ void send(){...} }
2 class Encryption{ void send(){...} }
3

4 public static void main(String [] args){
5 Registry reg=Registry.getInstance ();
6 Object transfer=reg.newPlayer(Transfer.class);
7 reg.invokeRole(transfer , "send"); //send raw
8 reg.bind(transfer , Encryption.class);
9 reg.invokeRole(transfer , "send"); // encrypted

10 }

Table 1: A Look-up Table

Id CoreId RoleId Sequence ...

1 transfer Encryption 1 ...

Snippet 1 shows how behavioral adaptations are encoded

and achieved in our framework using dynamic binding for

the case of the file transfer application. The Transfer and

Encryption objects both implement the send() method

(Lines 1-2). Assume the Encryption object is given at de-

sign time. Registry is the mediator managing the instance

pool, look-up table, and method dispatching. In Line 7, the

transfer instance calls its send() method (since there

is no role binding yet). After binding to an Encryption

object in Line 8, the relation is recorded in the look-up

table (Table 1). The sequence represents the ordering of

bindings to dispatch polymorphic methods. The transfer

instances calls the send() method again. This time the

send() method of Encryption class is selected for invoca-

tion (Line 9).

3. Unanticipated Adaptive Runtime
The design decision of the dynamic instance binding, de-

scribed in Section 2.2, is to achieve modularity not only at
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design time but also at run time. The modular run-time en-

ables easy replacement of adaptable entities (role) dynam-

ically at run time generating the possibility of (re)loading

existing or new role triggering unanticipated adaptation.

Figure 2: A Concept of Unanticipated Adaptation

A stepwise concept of bringing roles at run time is

depicted in Figure 2. First, it is necessary to have a dy-

namic instance binding as a runtime. Second, new roles are

(re)loaded via a dynamic Class Reloader. Last, the bind-

ing relation is constructed. The entire process does not de-

stroy the existing core objects. So that the application states

are fully preserved. This increases both flexibility and less

disruption when performing updates, as changing every in-

stance of a given type is not necessary.

3.1 Architecture
The Unanticipated Adaptive Runtime Architecture1 is il-

lustrated in Figure 3. The architecture consists of 4 main

components namely Preparation, Watcher Service, Unantic-
ipated Adaptation and Dynamic Instance Binding Runtime.

In these four components, there are 7 steps in total to be com-

pleted for adapting the behavior. Step 1 takes unknown new

behaviors which are required for application update. Such

behaviors are coded as roles and compiled in Step 2 (Prepa-
ration). New roles are going to be bound to existing core

objects, so that the core instances must be queried for iden-

tity from the runtime (Step 3) by a given tool. After that,

the required unanticipated operations are configured in the

Adaptation.xml in Step 4. The structure of this XML file is

given in Snippet 2. Next, the Watcher Service, a daemon exe-

cuting in a separate thread, monitors the change of XML file

and fires events to an Unanticipated Adaptation component.

In step 5, the Unanticipated Adaptation component handles

the parsing of XML files conforming to the adaptation op-

erations that align with the API in the Runtime. In step 6,

the runtime performs tasks with respect to instructions de-

fined in XML file. Finally, in step 7, classes are reloaded and

bound to particular running objects granting new behaviors.

3.2 Unanticipated Adaptation in Action
The watcher service is a separately threaded daemon to

monitor the change of adaptation XML file. Whenever the

file change is detected, the daemon triggers the unanticipated

adaptation phase to start parsing the XML configuration and

to perform unanticipated adaptive operations. The structure

1 Prototype is available at https://github.com/nguonly/lyrt-with-transaction

Figure 3: Unanticipated Adaptive Run-time Architecture

of the XML file is shown in Snippet 2. The bind and rebind

functions are the binding operation of a core player with

associated coreId attribute value to a roleType attribute

that is stemmed from the Preparation Phase. The bind

operation binds a core player to a new role and if the role

type is already bound then it ignores the new binding. In

other words, the new definition of roles is not reloading. In

contrast, rebind operation is a bundle of the unbind and

bind ones. So it always reloads the new definition of roles

if developers intend to modify the role source code directly

on-the-fly.

Snippet 2: A Sample Adaptation XML

1 <?xml version ="1.0"?>
2 <adaptation >
3 <rebind coreId="234" roleType="Encryption" />
4 <bind coreId="456" roleType="Compression" />
5 <unbind coreId="678" roleType="Encryption" />
6 </adaptation >

Snippet 3: File Transfer Example

1 public static void main(String [] args){
2 Thread watcher = new WatcherService ();
3 watcher.start (); // monitor Adaptation.xml
4 Registry reg=Registry.getInstance ();
5 Object transfer=reg.newPlayer(Transfer.class);
6 while(! isEOF(file)){
7 reg.invokeRole(transfer , "send"); //call send();
8 }
9 }

10

11 // Convert XML to Adaptation Operations
12 public void parse(){
13 Registry reg=Registry.getInstance ();
14 //parse Adaptation.xml to operation below
15 reg.rebind (234, "Encryption");//234= transfer
16 }

Snippet 3 revisits the file transfer example in Figure 1.

Assume now that Encryption is unknown at design time.

There are two threads executing in parallel, the watcher

service monitoring the change of XML file and the main

thread executing send() of the transfer instance. In the
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loop (Lines 6-8) a raw formatted chunk of a file is contin-

uously sent with original behaviors. Supposedly, the sys-

tem needs to change the behaviors by replacing from raw

to encrypted format. Then the designer prepares for unantic-

ipated adaptation, described earlier, and provides the adapta-

tion description similar to Snippet 2. The change of XML file

triggers the code in parse(). Subsequently, the transfer

instance (with 234 identity) is forced to change the send-

ing behavior from raw to encrypted format as the bound

Encryption.class is currently active.

As noted in the code above, the Encryption.class is

unknown during the design time. Nonetheless, Java still al-

lows it to be (re)loaded by Class Loader after the program

has been started. However, there are two main disadvan-

tages; one is the unknown typed system but still it can be

referenced as the Object type. This problem has no impact

on our architecture since only core object’s typed system is

required. In other words, no typed system of roles is required

because of reflection, the method dispatcher looks for and

invokes the matched signature of a method of bound roles

(cf. Section 2.2). Furthermore, the main code and core ob-

jects provided at compile time remain untouched and our

architecture changes only their dynamic parts (roles). An-

other problem is the reloading class definition. It means

that once it is loaded, no matter its definition is changed,

compiled and reloaded, the first loaded version is still used.

The customized ClassReloader, a subclass of the standard

ClassLoader, can be a solution that allows a class to be

loaded by multiple class reloaders leading to different in-

stances with different definitions to co-exist in a JVM. This

solution has been applied in many systems already such as

OSGi2.

4. Transactions for Behavioral Consistency
This section briefly reviews the concepts of quiescence and

tranquility that address consistent behavioral updates at the

component level, and subsequently introduces a transaction

mechanism for safe adaptation of long-lasting method exe-

cutions at the object level.

4.1 Quiescence and Tranquility
In component-based approaches, quiescence and tranquility

are mechanisms to allow a component, denoted as a node,

to be updated while keeping the whole system in a con-

sistent behavior within a transaction. A transaction is a se-

quence of messages that must be executed atomically [16].

An adapting system needs to wait until a node reaches quies-

cent or tranquil state in order to update itself. The satisfying

conditions for both quiescence and tranquility are described

by Kramer and Magee [10] and Vandewoude et al. [16] re-

spectively. Both present a sufficient condition to safely up-

date a node in a consistent manner but tranquility offers less

disruption.

2 www.osgi.org

Consider the updatability of nodes Y and Z as depicted

in Figure 4 [16]. In quiescence both Y and Z can be up-

dated as long as they are in passive state which is only in

times 1 and 7. Tranquility still requires Y and Z to be pas-

sive; however, it allows Z to update at all points in time ex-

cept 4. Assume the system adapts by replacing Y and Z in

time 5. Consequently, Z ’s behavior has changed from trans-

action T[X] to transaction T[U]. Like quiescence, tranquility

allows Y to be updated only at times 1 and 7 because T[X]
is still ongoing. Evidently, transaction T[W] initiated by W
cannot use an updated version of Y although T[W] and T[X]
are independent of each other.

Figure 4: Updatability in a Transaction

Both quiescence and tranquility are proposed without the

notion of context-dependent behavior which would enable

a node to behave simultaneously different in multiple set-

tings. Both concepts assume a node has a single view before

and after it has been updated. This causes a long disruption

because Y ’s updated behavior can be used once Y is not in-

volved in a transaction anymore. Thus we propose another

safe update mechanism for context-dependent systems al-

lowing Y to have new behavior in T[W] while preserving

its old behavior in T[X] as it did from times 2 to 5.

4.2 Transaction at Object Level
Both quiescence and tranquility are applicable for compo-

nent-based approaches where the notion of transaction is ex-

plicitly provided and a component is considered a singleton

entity that processes messages in a message queue. At object

level there is no notion of transaction and objects cannot be

considered as black-box entities. The lack of these properties

makes it challenging to apply quiescence and tranquility at

object level according to Ebraert et al. [6]. Consider now the

example in Figure 4 at the object level where Y is an object

instance. Updating Y ’s behavior is achieved by Unantici-
pated Adaptation as described in Section 3. However, ensur-
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ing consistency and reducing disruption if an update happens

at time 5 remains a challenge as depicted in Figure 1.

We tackle this challenge by introducing the notion of

transaction at the object level. We provide a Transaction

class which defines a code block (Snippet 4) that enables the

developer to execute a set of methods in the sense that all en-

gaged instances have a consistent behavior during the whole

execution. It prevents engaged instances from applying up-

dates for the current transaction.

Snippet 4: Transaction Declaration

1 try(Transaction tx = new Transaction ()){
2 while (! isEOF(file)){
3 reg.invokeRole(transfer , "send");
4 }
5 }

Transaction works on top of our dynamic instance bind-

ing and the centralized dynamic method dispatch derived

from the binding information in the look-up table.

We extend the existing look-up table (Section 2.2) by

adding the binding time and phantom attribute to keep track

of roles bound to instances and to mark roles which have to

be removed after a transaction finished. Whenever a transac-

tion is declared, the instance of the transaction is registered

in the look-up table with appropriated timestamp entering

the transaction and the thread identity activating the trans-

action (Table 3). The implementation is shown in Snippet 5

with self-explaining comments.

Snippet 5: Transaction Implementation

1 class Transaction implements AutoClosable{
2 public Transaction (){ // Transaction starts
3 //1. Register this transaction with timestamp
4 Registry.addTransaction(this , currentThread);
5 }
6

7 @0verride
8 public void close(){ // Transaction ends
9 //1. Remove phantom role if any

10 Registry.delPhantomRoles(this);
11 //2. Remove active transaction
12 Registry.delTransaction(this , currentThread);
13 }
14 }

If new roles are bound to an instance which is already

engaging in a transaction, these new roles will temporarily

be disregarded by the method dispatcher. There might be

another transaction T2 started after the first one T1 and after

new roles have been attached to a core object o1 which is

already part of T1. Roles attached after T1 has started are

taken into account for method dispatch in T2 but not in T1 as

depicted in Figure 5.

Referring to the introductory example the following bind-

ing relations are stored in the look-up table (Table 2) and the

list of active transactions is given in Table 3. The transfer

object, in transaction tx1, uses its original behavior to send

the data in a raw format as the transaction takes place before

the Encryption role is bound. Transaction tx2 is initialized

after the Encryption role is bound, hence it is included in

the method dispatch for invocations within tx2.

Table 2: A Modified Look-up Table

Id BindingTime Phantom CoreId RoleId ...

1 T+5 nil transfer Encryption ...

Table 3: A List of Active Transactions

Id EnteringTime Trans. Id Thread

1 T tx1 1
2 T+7 tx2 2

Additionally, roles can also be removed or updated

(reloading a bound role type). Roles that are to be unbound

during a transaction are marked for removal (phantom) in the

look-up table without destroying their instances. In another

transaction they are disregarded by the method dispatch to

ensure consistency. Phantom roles will be destroyed once

the transaction ends. Reloading roles does not affect con-

sistency since the dynamic class loader can load multiple

versions of a given type as explained in section 3.2.

Figure 5: Comparison

Figure 5 shows a comparison of consistency and disrup-

tion. A system without transaction is prone to behavioral in-

consistencies if updates occur in the middle of the transac-

tion. Such updates are addressed by tranquility; however, in a

context-dependent system there is no reason to prevent other

transactions from applying new behavior. Our approach sat-

isfies both consistent and non-disruptive behavioral updates.

5. Related Work
This work is an extension to the dynamic instance binding

mechanism [15] for role-based software systems. In this pa-

per we simplify the binding mechanism to suit generic ob-

jects in OOP, where some of objects are static or core, while

others are dynamic (i.e., roles). Binding these two types of

objects results in core objects having dynamic behavior.

COP enables the adaptation of systems’ behavior with

respect to their execution environment [13]. Existing COP

languages relate to our approach in two ways: languages that

deal with unanticipated adaptation and languages that assure

adaptation’s consistency.

In general, COP approaches do not account for unantic-

ipated adaptation, in the sense that contexts and context-

dependent behavior are defined beforehand. Notably, Con-

textJS [12] uses the flexibility of meta-programming to

Final edited form was published in "ECOOP '16: European Conference on Object-Oriented Programming. Rome 2016", S. 33 - 38. ISBN: 978-1-4503-4440-1 
https://doi.org/10.1145/2951965.2951966

5 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



support powerful layer activation mechanisms which could

be extended to manage unanticipated adaptation. Similarly,

Context Traits [7] provides a mechanism to discover and in-

corporates new contexts and their associated behavior at run

time [1]. However, these mechanisms do not address incon-

sistencies that may arise from the introduction of unknown

behavior.

Different types of run-time inconsistencies are addressed

in COP languages. CoPNs manage the consistency between

adaptations according to their defined context dependency

relations [4]. Inconsistencies arising from the concurrent use

of multiple activation scopes, i.e., global activation, asyn-

chronous activation, can also be checked at run time. Ser-

valCJ [9], and the work of Cardozo et al. [3, 5] manage

the consistency between different context activation seman-

tics. Nonetheless, the adaptable definitions must be given

in advanced. Influenced by the concept of quiescence [10]

and tranquility [16], our approach deals with state-behavior

inconsistencies when composing adaptations with core ob-

jects. We use a transaction to ensure uniformly consistent be-

havior for every object executing inside a transaction. More-

over, we ensure there is no disruption to any other transac-

tion after the adaptation.

6. Conclusion
We illustrate the issue of dealing with unanticipated adap-

tation where roles, adaptable entities, can be (re-)loaded

arbitrarily from different threads causing object instances

to change their behavior. Injecting new behavior can be

achieved at run time by dynamic instance binding. This

loosely couples core and role to grant the possibility of

roles replacement at run time leading to dynamic adapta-

tion. The inconsistencies caused by adaptation during long-

lasting method executions are solved by the proposed trans-

action mechanism which is inspired by the concepts of qui-

escence and tranquility, and prevents engaged instances from

being changed. This is achieved by extending the method

dispatcher which performs invocations only for the behav-

ior activated at the beginning of a transaction. Our solution

enables both consistent and non-disruptive updates.

Next, we will evaluate the overhead caused by the dy-

namic instance binding and transaction mechanism. In addi-

tion, the investigation of different application scenarios that

expose our approach to different situations in order to eval-

uate the limitations of the proposed consistency mechanism

is planned.
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