821 research outputs found

    Deep Learning Methods for 3D Aerial and Satellite Data

    Get PDF
    Recent advances in digital electronics have led to an overabundance of observations from electro-optical (EO) imaging sensors spanning high spatial, spectral and temporal resolution. This unprecedented volume, variety, and velocity is overwhelming our capacity to manage and translate that data into actionable information. Although decades of image processing research have taken the human out of the loop for many important tasks, the human analyst is still an irreplaceable link in the image exploitation chain, especially for more complex tasks requiring contextual understanding, memory, discernment, and learning. If knowledge discovery is to keep pace with the growing availability of data, new processing paradigms are needed in order to automate the analysis of earth observation imagery and ease the burden of manual interpretation. To address this gap, this dissertation advances fundamental and applied research in deep learning for aerial and satellite imagery. We show how deep learning---a computational model inspired by the human brain---can be used for (1) tracking, (2) classifying, and (3) modeling from a variety of data sources including full-motion video (FMV), Light Detection and Ranging (LiDAR), and stereo photogrammetry. First we assess the ability of a bio-inspired tracking method to track small targets using aerial videos. The tracker uses three kinds of saliency maps: appearance, location, and motion. Our approach achieves the best overall performance, including being the only method capable of handling long-term occlusions. Second, we evaluate the classification accuracy of a multi-scale fully convolutional network to label individual points in LiDAR data. Our method uses only the 3D-coordinates and corresponding low-dimensional spectral features for each point. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6\%. Finally, we validate the prediction capability of our neighborhood-aware network to model the bare-earth surface of LiDAR and stereo photogrammetry point clouds. The network bypasses traditionally-used ground classifications and seamlessly integrate neighborhood features with point-wise and global features to predict a per point Digital Terrain Model (DTM). We compare our results with two widely used softwares for DTM extraction, ENVI and LAStools. Together, these efforts have the potential to alleviate the manual burden associated with some of the most challenging and time-consuming geospatial processing tasks, with implications for improving our response to issues of global security, emergency management, and disaster response

    Understanding cities with machine eyes: A review of deep computer vision in urban analytics

    Get PDF
    Modelling urban systems has interested planners and modellers for decades. Different models have been achieved relying on mathematics, cellular automation, complexity, and scaling. While most of these models tend to be a simplification of reality, today within the paradigm shifts of artificial intelligence across the different fields of science, the applications of computer vision show promising potential in understanding the realistic dynamics of cities. While cities are complex by nature, computer vision shows progress in tackling a variety of complex physical and non-physical visual tasks. In this article, we review the tasks and algorithms of computer vision and their applications in understanding cities. We attempt to subdivide computer vision algorithms into tasks, and cities into layers to show evidence of where computer vision is intensively applied and where further research is needed. We focus on highlighting the potential role of computer vision in understanding urban systems related to the built environment, natural environment, human interaction, transportation, and infrastructure. After showing the diversity of computer vision algorithms and applications, the challenges that remain in understanding the integration between these different layers of cities and their interactions with one another relying on deep learning and computer vision. We also show recommendations for practice and policy-making towards reaching AI-generated urban policies

    Object Tracking Based on Satellite Videos: A Literature Review

    Get PDF
    Video satellites have recently become an attractive method of Earth observation, providing consecutive images of the Earth’s surface for continuous monitoring of specific events. The development of on-board optical and communication systems has enabled the various applications of satellite image sequences. However, satellite video-based target tracking is a challenging research topic in remote sensing due to its relatively low spatial and temporal resolution. Thus, this survey systematically investigates current satellite video-based tracking approaches and benchmark datasets, focusing on five typical tracking applications: traffic target tracking, ship tracking, typhoon tracking, fire tracking, and ice motion tracking. The essential aspects of each tracking target are summarized, such as the tracking architecture, the fundamental characteristics, primary motivations, and contributions. Furthermore, popular visual tracking benchmarks and their respective properties are discussed. Finally, a revised multi-level dataset based on WPAFB videos is generated and quantitatively evaluated for future development in the satellite video-based tracking area. In addition, 54.3% of the tracklets with lower Difficulty Score (DS) are selected and renamed as the Easy group, while 27.2% and 18.5% of the tracklets are grouped into the Medium-DS group and the Hard-DS group, respectively

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Object Tracking in Vary Lighting Conditions for Fog based Intelligent Surveillance of Public Spaces

    Get PDF
    With rapid development of computer vision and artificial intelligence, cities are becoming more and more intelligent. Recently, since intelligent surveillance was applied in all kind of smart city services, object tracking attracted more attention. However, two serious problems blocked development of visual tracking in real applications. The first problem is its lower performance under intense illumination variation while the second issue is its slow speed. This paper addressed these two problems by proposing a correlation filter based tracker. Fog computing platform was deployed to accelerate the proposed tracking approach. The tracker was constructed by multiple positions' detections and alternate templates (MPAT). The detection position was repositioned according to the estimated speed of target by optical flow method, and the alternate template was stored with a template update mechanism, which were all computed at the edge. Experimental results on large-scale public benchmark datasets showed the effectiveness of the proposed method in comparison with state-of-the-art methods

    A computer vision system for detecting and analysing critical events in cities

    Get PDF
    Whether for commuting or leisure, cycling is a growing transport mode in many cities worldwide. However, it is still perceived as a dangerous activity. Although serious incidents related to cycling leading to major injuries are rare, the fear of getting hit or falling hinders the expansion of cycling as a major transport mode. Indeed, it has been shown that focusing on serious injuries only touches the tip of the iceberg. Near miss data can provide much more information about potential problems and how to avoid risky situations that may lead to serious incidents. Unfortunately, there is a gap in the knowledge in identifying and analysing near misses. This hinders drawing statistically significant conclusions to provide measures for the built-environment that ensure a safer environment for people on bikes. In this research, we develop a method to detect and analyse near misses and their risk factors using artificial intelligence. This is accomplished by analysing video streams linked to near miss incidents within a novel framework relying on deep learning and computer vision. This framework automatically detects near misses and extracts their risk factors from video streams before analysing their statistical significance. It also provides practical solutions implemented in a camera with embedded AI (URBAN-i Box) and a cloud-based service (URBAN-i Cloud) to tackle the stated issue in the real-world settings for use by researchers, policy-makers, or citizens. The research aims to provide human-centred evidence that may enable policy-makers and planners to provide a safer built environment for cycling in London, or elsewhere. More broadly, this research aims to contribute to the scientific literature with the theoretical and empirical foundations of a computer vision system that can be utilised for detecting and analysing other critical events in a complex environment. Such a system can be applied to a wide range of events, such as traffic incidents, crime or overcrowding
    • …
    corecore