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ABSTRACT 
 

Whether for commuting or leisure, cycling is a growing transport mode in many cities worldwide. 

However, it is still perceived as a dangerous activity. Although serious incidents related to cycling 

leading to major injuries are rare, the fear of getting hit or falling hinders the expansion of cycling as 

a major transport mode. Indeed, it has been shown that focusing on serious injuries only touches the 

tip of the iceberg. Near miss data can provide much more information about potential problems and 

how to avoid risky situations that may lead to serious incidents. Unfortunately, there is a gap in the 

knowledge in identifying and analysing near misses. This hinders drawing statistically significant 

conclusions to provide measures for the built-environment that ensure a safer environment for people 

on bikes. In this research, we develop a method to detect and analyse near misses and their risk factors 

using artificial intelligence. This is accomplished by analysing video streams linked to near miss 

incidents within a novel framework relying on deep learning and computer vision. This framework 

automatically detects near misses and extracts their risk factors from video streams before analysing 

their statistical significance. It also provides practical solutions implemented in a camera with 

embedded AI (URBAN-i Box) and a cloud-based service (URBAN-i Cloud) to tackle the stated issue in 

the real-world settings for use by researchers, policy-makers, or citizens. The research aims to provide 

human-centred evidence that may enable policy-makers and planners to provide a safer built 

environment for cycling in London, or elsewhere. More broadly, this research aims to contribute to 

the scientific literature with the theoretical and empirical foundations of a computer vision system 

that can be utilised for detecting and analysing other critical events in a complex environment. Such a 

system can be applied to a wide range of events, such as traffic incidents, crime or overcrowding. 

KEYWORDS:  Cities, critical events, artificial intelligence, deep learning, computer vision, cycling 
near misses



4 
 

 

 

 

 

 

STATEMENT OF IMPACT 
 

In this research, we introduce a computer vision system that is able to assist city planners and policy-

makers to detect and analyse cycling near misses and their risk factors. Based on artificial intelligence, 

the tool automatically analyses cycling near misses from video streams by understanding the 

interactions between people, the built and natural environment and different transport modes. The 

research will have several benefits in terms of improving road safety. This knowledge of risk factors 

will enable: 

 

• Individuals (cyclists and other road users) to change their behaviour to minimise risk. 

• Transport authorities to plan safer infrastructure and run informed awareness campaigns. 

• The production of more accurate risk maps, showing which routes are safest for cycling, and 

what types of incidents to be wary of.  

The application of the research output can be operationalised in the form of a cloud-based service 

(URBAN-i Cloud) or as a camera with embedded AI (URBAN-i Box) that can be used as an edge 

computing device to analyse cities from images/videos for better understanding cycling near misses. 
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URBAN-i Box  It refers to the introduced camera implementing research methodology. 
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 1 
INTRODUCTION 

 

 

1.1 Overview 

nderstanding the dynamics of cities is a difficult task due to their complex and rapidly 

evolving nature (Batty, 2008; Bettencourt, 2013; Bettencourt and West, 2010). In 

particular, understanding how the various components of cities interact to cause critical 

events such as traffic incidents, fires, or overcrowding is challenging. The heterogeneous nature of 

these issues, which often occur at the intersection of different city systems, makes the development 

of integrated and transferrable urban modelling methods difficult. Therefore, developing reliable 

frameworks for urban modelling tasks that make use of consistent, widely available input data is a 

priority in order to create a more holistic representation of the city. In recent years, new types of 

urban data sources have emerged that have the potential to address this task, including satellite 

imagery, volunteered geographic information and street-level images (Arribas-Bel, 2014). There is 

great potential in using such data to analyse urban scenes to facilitate decision making.  

Globally, all governments have a responsibility to protect their citizens and provide a safe 

environment. However, it remains a challenge to ensure safety in cities due to the many and varied 

risks that people face daily, from exposure to traffic incidents to crimes and terrorism. In general, 

recognising and modelling unsafe behaviour is complex because it requires understanding how 

humans interact with one another in the urban environment to produce risk. Linked to this, designing 

a safe built environment is a challenge because it requires understanding how people are likely to 

interact with infrastructure before it is built, balancing safety and performance. Behaviour depends 

on a multitude of factors, both tangible (e.g. crowdedness, weather, group dynamics) and intangible 

(e.g. personality, mood, cultural factors). If the individual and collective behaviour is not fully 

understood when policy decisions are made then there can be serious unintended consequences.  

Understanding the dynamics of cities is essential for detecting and analysing critical events in 

complex scenes. While our knowledge of the dynamics of cities is still limited, substantial urban 

models have been achieved by perceiving cities as complex systems. Various urban scholars have 

attempted to model cities through cellular automata, fractals, or multi-agent models based on 

complexity science and network theory (Batty, 1976, 1997, 2009; Batty, Couclelis, & Eichen, 1997; 

Michael Batty, Xie, & Sun, 1999b; Batty & Torrens, 2005; Bretagnolle, Daudé, & Pumain, 2006; W. Zhou 

U 
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& Li, 2013). However, these models, in many cases, either tend to over-simplify the initial settings of 

urban systems or explore cities from a mono-dimensional perspective (Batty and Torrens, 2001).  Until 

recently, the main limiting factor for these models has been a lack of available data and computing 

power to feed large scale simulations. However, this is now changing with the emergence of new 

forms of data and urban analytical techniques drawn from the fields of artificial intelligence and 

machine learning. 

Building our knowledge about cities through images is not a new concept. In fact, Lynch (1960)  

introduced how to perceive and understand cities from features– landmarks, focal points, skyline, 

pedestrian flow etc.– that anyone can recognize and understand, which was a very effective approach 

in perceiving the nuances of the urban world. Lynch’s ideas concerning a city’s features, in their 

original forms, may not cope with today’s rapid urban challenges. However, with the growth of the 

fields of deep learning and computer vision, understanding cities through the eyes of a computer 

opens the door for analysing the missing attributes of city dynamics. Large-scale analysis of digital 

images and patterns of captured features that may not be recognized of significance by human eyes 

can potentially enable various urban issues to be tackled. Such techniques can track information and 

extract elements from images in a similar way to how urban scholars used to perceive cities.  

One domain that stands to benefit from the use of large-scale image datasets is transport and urban 

mobility. Transport networks are a crucial element of cities, and traffic congestion and incidents place 

a significant burden on society. For this reason, urban transport networks have been monitored for 

many years through various means such as CCTV for automatic number plate recognition, loop 

detectors for flow measurement and signal timing adjustment, and GNSS for route analysis (Tarigan 

et al., 2017). These data can facilitate monitoring and forecasting network parameters. However, they 

fall short of being able to reveal deep insights into how the behaviour of agents (pedestrians, vehicles, 

bicycles) within the environment lead to undesirable consequences such as traffic congestion or 

incidents. Such insights are particularly important for vulnerable transport modes, such as cycling, for 

which large scale quantitative data is typically not collected. 

Cycling has increased in popularity in Europe and elsewhere (Dozza et al., 2017). Whether for leisure 

or commuting, its benefits in terms of public health and the reduction of environmental pollution have 

influenced planners and policy-makers to invest in cycling infrastructure (de Hartog et al., 2010; Juhra 

et al., 2012; Pucher et al., 2010; Steinbach et al., 2011). Globally, various policies, programmes and 

physical and non-physical interventions have been implemented to promote cycling (Pucher et al., 

2010; Savan et al., 2017). In the UK, for instance, Transport for London (TfL) has invested in many 

cycling infrastructure projects such as Cycle Superhighways, Quietways, Mini-Hollands and cycle hire 

schemes aimed at promoting a safer environment for people on bikes (TfL, 2018). However, 

generating evidence on the effectiveness of such schemes remains a challenge due to the sparsity of 

data on usage and incidents involving bicycles as a result of its low mode share. This masks the fact 

that even though the health benefit of cycling exceeds its risk (de Hartog et al., 2010), the risk remains 

high: “Compared with car occupants and with regard to time spent traveling, cyclists were 8 times 

more likely to be injured, 12 to be hospitalized, 16 to be seriously injured, and 3 to be killed” (Blaizot et 

al., 2013, p. 43). Furthermore, the experience of near misses, where a person on a bike was 

destabilised or had to take action to avoid a crash, can also add to the perception that cycling is 

dangerous. In the UK, people on bikes are likely to face at least one near miss for every six miles of a 

commute, according to Aldred and Crosweller (2015). This fear of getting hit or falling whilst cycling 
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hinders the wider adoption of cycling as a transport mode (Aldred, 2016; De Rome et al., 2014; Winters 

and Branion-Calles, 2017). However, due to their reported frequency, if data of near misses can be 

recorded, then they potentially provide a rich source of information for studying cyclists’ accident risk 

and to identify the factors that are associated with them. A promising source of such data is 

naturalistic data, such as that collected from action cameras often used by commuting cyclists. Video 

data, in particular, provide an opportunity to study the scene of near-misses to extract the range of 

factors related to them that may or may not be transport-related (Aldred, 2016; Beck et al., 2016; De 

Rome et al., 2014; Imprialou and Quddus, 2017; Teschke et al., 2014). These factors can be related to 

aspects such as visibility, physical conditions of the built environment, interaction among different 

agents, or behavioural and psychological factors related to the cyclist. Put together, cycling near 

misses can be seen as an urban system that occurs in cities based on different factors and events that 

may or may not be directly related to transportation. Understanding the different urban systems of 

cities and their dynamics is a crucial step for understanding and analysing cycling near misses and 

critical events in general.  

 In general, it is challenging to quantitatively analyse the risk of cycling due to the low number of 

recorded incidents (Aldred, 2018; De Rome et al., 2014), or the impact of the reporting bias in road 

crash data, in which the less severe the crash, the higher the probability of under-reporting it (Abay, 

2015). On the other hand, although many incidents may not result in a hospital visit or being reported 

to the police, people on bikes still report frequent situations where they need to take direct action to 

avoid a collision or feel destabilised. Cycling crashes are initiated by near miss situations that are not 

avoided and therefore result in a crash. By using this analogy, if data on these near misses can be 

recorded, then they can provide a rich source of information with which to study cyclists’ crash risk 

and identify the factors that are most associated with them.  

Cycling near miss is a transport-related subject. However, the factors related to near misses may or 

may not be transport-related (Aldred, 2016; Beck et al., 2016; De Rome et al., 2014; Imprialou and 

Quddus, 2017; Teschke et al., 2014), which requires understanding the whole picture. These factors 

can be related to aspects such as visibility, physical conditions of the built-up areas, interaction among 

different agents, or behavioural and psychological factors related to the cyclist. Put together, cycling 

near misses can be seen as an urban system that occurs in cities based on different factors and events 

that may or may not be directly related to transportation. Understanding the different urban systems 

of cities and their dynamics is a crucial step for understanding and analysing cycling near misses.  

1.2 Research questions 

The research aims to answer one crucial question: How can we tackle different scenarios of 

interaction among multi-agents to predict critical events in a complex environment, bearing in mind 

the conditions and the dynamics of the built and natural environments?  

Due to the interdisciplinary nature of the risk factors related to near miss events- that include 

visibility, physical conditions of the built environment, the interaction of the different transport modes 

and cycling/driving behaviour- only looking from the perspective of transportation may not be 

sufficient to address and the research question. While the risk factors related to near misses are 

diverse, the complexity is not only in tackling the causality between each factor and the near miss 

incidents, but rather the combination of the different factors that are more likely to cause near misses. 

Therefore, different methods are required to tackle the different nature of the factors.  
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To address such a wide scope question, we divide the problem into sub-questions, which are: 

1. How can we identify and predict urban systems that may influence near misses in cities?  

2. To what extent can computer vision be used to understand the nuances of urban 

components from images/ videos? 

3. To what extent can computer vision detect environmental conditions and visibility related 

factors from urban scenes? 

4. To what extent can computer vision recognise a safe or a near miss scene from the overall 

interactions of road users in complex scenes? 

5. When and where do cycling near-misses take place in cities? 

6. Which factors are more likely to cause cycling near misses?  

It is crucial to find methods that respond to each question, whereas can be pipelined to contribute 

to the wider perspective of the PhD research for understanding which scene belongs to a critical event 

besides extracting risk factors. 

1.3 Research scope and objectives 

This thesis focuses on the case of cycling near misses, as an example of tackling critical events, in 

unprecedented detail to develop an indicator for safety.  Importantly, such an indicator will be based 

on events that are frequent rather than rare and will, therefore, offer the policymaker an opportunity 

to evaluate interventions. Also, the goal of this research is to 1) develop a method to record near miss 

experiences using artificial intelligence by analysing video data streams linked to near miss incidents 

and 2) identify infrastructural elements which offer the greatest level of safety for the greatest number 

of cyclists and identify risk factors associated with the interaction of a specific type of cyclist and the 

type of environment in which they are travelling.  

On the other hand, it introduces a novel multi-purpose method that offers a realistic framework 

environment for understanding the dynamics of cities that contribute to understanding instant actions 

and critical events in cities, which can be applied to different domains. The method aims to map some 

of the agents and events in cities at a given time and space with respect to their behavioural 

complexity and without any simplification. The goal of this method is to extract and geo-reference 

information from unlabelled urban scene images or video streams that can act as an urban sensor. 

This will offer urban modellers a realistic platform for urban simulation for tackling the dynamics of 

various urban issues.  

The overall research objectives are:  

1. Detecting agents and their actions: Object detection methods will be used to detect humans 

and the transportation modes that they use, 

2. Sensing the environment: All aspects of the physical environment related to the various layers 

of the city will be sensed using computer vision methods, 

3. Recognising unsafe interactions of agents in a complex environment, 

4. Highlighting the causes and effects of the different risk factors on the detected critical events.  
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The research will have several benefits in terms of improving road safety. This knowledge of risk 

factors will enable: 

• Individuals (cyclists and other road users) to change their behaviour to minimise risk. 

• Transport authorities to plan safer infrastructure and run informed awareness campaigns. 

• The production of more accurate risk maps, showing which routes are safest for cycling and 

what types of incidents to be wary of.  

The proposed methods will have long term impacts by building a database of near-miss incidents 

from which continued analysis of risk factors can take place. On the other hand, this research will 

exemplify the application of computer vision and deep learning in understanding risky situations in 

urban areas beyond the concept of smart cities that are discussed and perceived widely in the 

mainstream.  

1.4 Research overall methodology 

The research aims to develop a computer vision framework for analysing video data streams linked 

to near miss incidents to identify the risk factors associated with cycling near misses. The research 

introduces a framework for sensing, quantifying, analysing and understanding the environmental, 

behavioural and interactional factors associated with risky events in cities in the case of cycling near 

misses. The developed AI technologies, relying on various computer vision methods, can process and 

analyse a large-scale of heterogeneous images and video streams that are widely generated in cities 

through different sub-methods, which are explained in detail in the overall methodology chapter 

(Chapter IV) to fulfil the aforementioned research objectives. Typically, deep learning models, most 

specifically Convolutional Neural Networks (CNN), have shown substantial progress in classifying 

images of a wide spectrum of classes (LeCun et al., 2015). Various deep CNN models with different 

architectures and hyper-parameters have been computed to recognize objects in large image 

repositories, such as the ImageNET dataset that contains 14,197,122 images that belong to 22,000 

different classes (Russakovsky et al., 2015). In order to address the multi-faced nature of the 

aforementioned questions, different types of quantitative methods are conducted. In general, the 

methods are selected based on two main reasons, first, in addressing the individual sub-question while 

contributing to the wider perspective of the research topic. Therefore, finding methods that can be 

implemented as pipelines where they can interact with each other in a framework is essential to carry 

out this research.  

1.5 Research ethical approval 

Ethical approval for data collection from individuals has been sought to collect data for analysis in 

this research.  

1.6 Research structure 

In Fig. 1.1, we show the research structure by introducing the stated topic, its motivation, research 

questions, and general methods in chapter 1. In chapter 2, we review computer vision in 

understanding the different aspects and complexity of cities. It explores the different algorithms 

related to computer vision and their application to date in understanding cities and the related urban 

systems that are applicable for understanding critical events such as near misses. In chapter 3, we 

review research related to near misses and the different methods used, highlighting the knowledge 

gap in the current methods for tackling near misses. We link chapter 2 and chapter 3 by highlighting 
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how computer vision can be utilised and an embedded AI system can be built to understand near 

misses. Chapter 4 addresses the overall research methodology, introducing the main framework and 

the motivations for the sub-methods in this research. In chapter 5, we introduce methods for 

extracting risk factors from images related to weather and visual conditions, named WeatherNet, We 

also introduce a method for detecting and mapping objects and transport modes from images, in 

addition to understanding the degradation of the built environment and road surface, named URBAN-

i. In chapter 6, we introduce CyclingNet, an action recognition method for detecting cycling near 

misses from video streams. Chapter 7 shows the causal inference method for understanding the effect 

of the detected factors, introduced in chapter 5, on the detected near miss events. Chapter 8 

addresses the finding and the discussion of the sub-methods, followed by chapter 9 which summarises 

and concludes the achieved work, in addition to drawing recommendations for planners and policy-

makers. 
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Figure 1.1 Research structure 
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2 
CITIES AND  

COMPUTER VISION 
 

2.1 Overview 

odelling urban systems has interested planners and modellers for decades.  Different 

models have been achieved relying on mathematics, cellular automation, complexity, 

and scaling. While most of these models tend to be a simplification of reality, today 

within the paradigm shifts of artificial intelligence across the different fields of science, the 

applications of computer vision show promising potential in understanding the realistic dynamics of 

cities. While cities are complex by nature, computer vision shows progress in tackling a variety of 

complex physical and non-physical visual tasks. In this chapter, we review the tasks and algorithms of 

computer vision and their applications in understanding cities. We attempt to subdivide computer 

vision algorithms into tasks and cities into layers to show evidence of where computer vision is 

intensively applied and where further research is needed. We focus on highlighting the potential role 

of computer vision in understanding urban systems related to the built environment, natural 

environment, human interaction, transportation, and infrastructure. After showing the diversity of 

computer vision algorithms and applications, the challenges that remain in understanding the 

integration between these different layers of cities and their interactions with one another relying on 

deep learning and computer vision. This review aims to provide a resource for urban planners and 

practitioners by 1) reviewing the main methodologies of computer vision and their applicability to 

various tasks of urban analytics, 2) illustrating the variation and nuances of deep learning and 

computer vision algorithms and their limitations in understanding cities, 3) giving a descriptive 

understanding of the algorithms of computer vision for policy-makers and planners, and how they are 

used in cities, 4) paving the way for developing AI-generated urban policies by highlighting the key 

enabling technologies and research directions.  

The materials and outcomes of this chapter are published as a journal article in Cities journal, 

entitled: “Understanding cities with machine eyes: A review of deep computer vision in urban 

analytics” (Ibrahim et al., 2020a). 

M 
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2.2 Review Methodology 

The methodology of this review is divided into two parts: 1) manuscripts are collected that 

summarise the progress in deep learning methods and algorithms that are applicable to computer 

vision tasks, 2) manuscripts are collected that reflect the application of deep learning and computer 

vision in understanding cities in the last decade (since 2010).  For the first part, we present only the 

major methodological approaches. Papers that vary or improve on these main approaches are 

excluded. Most of these studies are presented in premier computer science conferences, including 

but not limited to CVPR, ICCV, ECCV and NeurIPS. For the second part, we extend the search to peer-

reviewed journals and conference proceedings listed in Scopus, Web of Science, Google Scholar and 

Science Direct, that can be accessed via a combination of keywords such as deep learning, cities, 

computer vision, land-use modelling, urban perception, prediction, detection, street-level images, 

aerial or satellite images. This is because the applied computer vision literature is often found in 

domain-specific journals rather than computer science conferences. 

In total, 641 manuscripts were collected to cover the two parts of the methodology. For the second 

part, the collected manuscripts were filtered to include only those related to computer vision of street-

level or aerial images, which use deep learning or hybrid models that include a convolutional structure. 

Studies that involve deep learning of other data types, such as 2D/3D LIDAR data are excluded. Studies 

that use classical machine learning or computer vision algorithms without involving deep learning are 

also excluded, except where they are required to draw a baseline to emphasise advancement or 

contrast. The algorithms are presented at a descriptive level, and readers are referred to the relevant 

literature for further details. 

2.3 The basics of computer vision 

Before exploring the domains where computer vision is applied in cities, it is worth identifying first 

what computer vision is and what its algorithms are capable of achieving from a generic perspective.  

Computer vision can be narrowed to the task of learning the qualitative representation of visual 

elements in their raw form in order to quantify them (LeCun et al., 2015). Similar to human eyes, the 

computer sees visual objects and creates a cognitive understanding of a scene based on a sequential 

sample of the presented images or frames of images in a task-specific manner. While computer vision 

is not new (i.e. Viola & Jones, 2001), deep learning, most specifically Convolutional Neural Networks 

(CNN), has made it possible for computer vision to tackle various issues and process images more 

precisely and efficiently (He et al., 2016; LeCun et al., 2015). These deep models, computation 

capabilities, and the availability of large datasets have made it possible for computer vision to 

permeate a wide range of applications in realistic settings (Cordts et al., 2016; Lin et al., 2014; 

Russakovsky et al., 2015).  Generally, the logic of computer vision, relying on these deep models, can 

be summarized as the construction of multiple hidden layers that are capable of accomplishing a range 

of vision tasks by extracting digital features that may or may not be recognisable to human eyes (Guo 

et al., 2016; Kuo, 2016; LeCun et al., 2015). The most commonly used are convolutional, pooling, 

flatten, and fully-connected layers. The general functions of these layers can be summarised as 

follows: 
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2.3.1 Convolution layers 

Convolution layers refer to the convolution operation or the dot product of a multi-dimensional 

input array (I) with its kernel (K) to output a feature map. It is defined as:  

𝑆(𝑖, 𝑗) = (𝑘 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚 𝐾(𝑚, 𝑛)                                (2.1) 

where i,j refer to the size of the input, and m, n refer to the size of the kernel. These layers are 

responsible for extracting features and they are often coupled with activation functions, such as 

Rectified linear units (ReLU), to add nonlinearity to the model. More hyperparameters can be used to 

control the outputs of the convolution operation, such as stride values (the distance where the 

convolutional kernel is applied). Fig. 2.1 shows an example of a convolution operation.  

 

Figure 2.1 Convolution operations with kernel size (3 x 3) and stride (1 x 1). 

2.3.2 Pooling layers 

Pooling layers replace the values of their inputs, at a given pixel location, with a statistical summary 

of the nearby values. This helps in making the representations of the feature maps invariant to small 

changes or translations of the input. Accordingly, this leads to a reduction in the dimensionality of the 

data. It is worth mentioning that there are different types of pooling functions (i.e. max pooling, 

average pooling, etc.) of which Max Pooling is the most common. In Max Pooling, the maximum values 

in a predefined filter size are kept, whereas the remaining ones are discarded. An example of Max 

Pooling is shown in Fig. 2.2. The 4 X 4 input array is divided into four 2 X 2 arrays. The 2 X 2 output 

returns the maximum value of each 2 X 2 array, shown in grey on the figure. 

 

Figure 2.2 Max pooling operations with kernel size (3 x 3) and stride (2 x 2). 
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2.3.3 Flatten layers 

A Flatten layer refers to the transformation of a multi-dimensional matrix to a vector to be fed 

forward to a fully-connected layer. For example, if an input of a shape (Batch size, 4, 4) is given to a 

Flatten layer, the output would be (Batch size, 16).  

2.3.4 Fully-connected layers 

A fully-connected layer, or a dense layer, is the primary component of a Multi-Layer Perceptron 

(MLP) model. In fully-connected layers, all neurons are fully connected to the neurons in the next layer 

and all previous activations in the case of a previous layer. Their activations can be computed based 

on the summation of their input multiplied by their weights followed by a bias offset as:  

 𝑌̂ = s(∑ 𝑤𝑖𝑥𝑖 + 𝑏)
𝑛

𝑖
                       (2.2) 

given that 𝑛 is the total number of neurons, 𝑥𝑖  are the input neurons and  𝑤𝑖  represents the weight of 

each neuron, 𝑏 represents the bias, s is the activation function.  

2.3.5 Residual blocks 

The residual blocks refer to the ability of the model to learn the underlying mapping by fitting 

stacked layers to an identity mapping denoted as (f(x) + 𝑥).  This formation can be achieved by feed-

forward of neural networks with a shortcut connection that can skip one or more layers. These skip 

connections aim to perform identity mapping by adding their outputs to the outputs of the stacked 

layers (See Fig. 2.3). This has proven to be a successful approach for maximising the ability of the 

model to learn from the representation of its input while addressing the vanishing problem of 

gradients in deep networks. There is a variation of residual networks or so-called ResNet, for instance, 

ResNet 18, 34,50, 101, or 152. These values refer to the number of layers built in a given network, 

including their residual links. For a further explanation for architecture and the hyperparameters of 

the model, see (He et al., 2016). 

 

Figure 2.3 Example of Residual block adapted from (He et al., 2016) 
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2.3.6 Advanced layers and techniques 

There are more advanced layers such as Long Short-Term Memory (LSTM) and self-attention, which 

will be explained in the upcoming chapters when they are utilised (i.e. Chapter V, and VI). The types, 

numbers, and orders of these layers are responsible for determining the functionality and the 

optimisation of both accuracy and time needed for the training and the inference of the model. The 

structure of the model and the fine-tuning of the various hyperparameters represents the innovation 

and the advancements of the state-of-the-art for pattern recognition for a given task (LeCun et al., 

2015). 

2.4 The tasks of computer vision 

Depending on the type of visual task, deep models can be trained differently with different layers 

and different sets of algorithms (Guo et al., 2016). As shown in Fig. 2.4, these algorithms of computer 

vision can be subdivided based on eight fundamental tasks, upon which other tasks can be framed 

and built. These are; image classification, segmentation and localisation, tracking, action recognition, 

perception, generative models, clustering, and decision-making. Table 2.1 shows the literature related 

to different computer vision tasks. It expands on the methods related to each task and its 

subcategories.  

 

Figure 2.4 Computer vision algorithms types 

 

 



 
 
 
CHAPTER II - LITERATURE REVIEW                                                                                               MOHAMED IBRAHIM 

 

25 
 

Table 2.1:  Methods related to different computer vision tasks 

VISION TASK SUB-CATEGORY METHOD  

CLASSIFICATION  ALEXNET (Krizhevsky et al., 2012) 

VGGNET (Simonyan and Zisserman, 2015) 

GOOGLENET (Szegedy et al., 2015) 

RESNETS (He et al., 2016) 

DENSNET (Huang et al., 2017) 

SEGMENTATION 

AND LOCALISATION 

 

OBJECT DETECTION R-CNN (Girshick et al., 2014a) 

FAST R-CNN (Ren et al., 2015) 

YOLO (Redmon et al., 2016)  

SSD (Liu et al., 2016) 

YOLOV2 (Redmon and Farhadi, 2017) 

YOLOV3 (Redmon and Farhadi, 2018a) 

RETINANET (Lin et al., 2020) 

SEMANTIC 

SEGMENTATION 

DEEPLAB 

 
(L.-C. Chen et al., 2016b) 

U-NET (Ronneberger et al., 2015) 

SEGNET (Badrinarayanan et al., 2017) 

- (Long et al., 2015) 

- (Peng et al., 2017) 

- (L.-C. Chen et al., 2016a) 

- (H. Zhao et al., 2017) 

- (Yu and Koltun, 2016) 

REFINENET (Lin, Milan, Shen, & Reid, 2017) 

- (Chen et al., 2017) 

- (Jegou et al., 2017) 

FOVEANET (Li et al., 2017a) 

LINKNET (Chaurasia and Culurciello, 2017) 

- (Yang et al., 2018) 

TRACKING OBJECTS  - (Kang, Ouyang, Li, & Wang, 2016) 

- (Girdhar et al., 2017) 

PATHTRACK (Manen et al., 2017) 



 
 
 
CHAPTER II - LITERATURE REVIEW                                                                                               MOHAMED IBRAHIM 

 

26 
 

 

ACTION 

RECOGNITION 

HUMAN POSE 

ESTIMATION 

 

DENSEPOSE (Guler et al., 2018) 

MULTIPOSENET (Kocabas et al., 2018) 

RMPE (Fang et al., 2017) 

- (Z. Cao et al., 2017) 

ACTION 

CLASSIFICATION 

- (Girdhar and Ramanan, 2017) 

 (Bilen et al., 2016) 

 (Zhu et al., 2019) 

 (Guo et al., 2018) 

 (B. Zhang et al., 2016) 

TEMPORAL ACTION 

DETECTION 

 

 (Diba et al., 2017) 

 (Gemert et al., 2015) 

 (Shou et al., 2017) 

 (Escorcia et al., 2016) 

 (Li et al., 2016) 

 (Xu et al., 2017) 

 (Chao et al., 2018) 

 (Buch et al., 2017) 

 (Y. Zhao et al., 2017) 

SPATIO-TEMPORAL 

ACTION DETECTION 

 

 (Chen & Corso, 2015) 

 (Becattini et al., 2021)  

 (Saha et al., 2017) 

 (Gemert et al., 2015) 

 (Zhu et al., 2017) 

 (El-Nouby and Taylor, 2018) 

 (Saha et al., 2016) 

 (Singh et al., 2017) 

 (Mettes et al., 2016) 

 (Weinzaepfel et al., 2015) 

TRAINED TO 

PERCEIVE 

UNDERSTANDING 

SCENES 

 

 (Eslami et al., 2018) 
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2.4.1 classification  

Deep learning models, most specifically Convolutional Neural Networks (CNN), have shown 

substantial progress in classifying images of a wide spectrum of classes (LeCun et al., 2015). Various 

deep CNN models with different architectures and hyper-parameters have been designed to recognise 

visual objects in large repositories of images (Russakovsky et al., 2015). Starting with AlexNet 

(Krizhevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2015), 

ResNet (He et al., 2016) and most recently, DenseNet (Huang et al., 2017), these CNN models are able 

to accurately recognize and classify a wide range of images. For instance, ResNet-152 achieved a 4.49% 

top-5 error score on the validation set of ImageNET (He et al., 2015a). 

2.4.2 Segmentation and localisation 

Segmentation and localisation are the processes of identifying multiple objects in a single image. 

These models use a single deep model in an end-to-end fashion, in which the first part of the model is 

an image classifier followed by different types of layers to localise different objects with a given 

confidence. Notable examples include the Region-based CNN model (R-CNN) (Girshick et al., 2014b), 

Fast R-CNN (Ren et al., 2015), You Only Look Once (YOLO) (Redmon & Farhadi, 2017, 2018) and the 

MultiBox Detectors for fast image segmentation, or so-called Single Shot Multi-Box Detector (SSD) 

technique (W. Liu et al., 2016). CNN models have shown significant progress in recognising and 

detecting objects in images with a minimal inference time and high overall validation accuracy.  

YOLOv3 achieves a 93.8% top-5 score on the COCO dataset (Redmon and Farhadi, 2018b).   

ESTIMATING DEPTH 

 

- (Cao et al., 2018) 

- (He, Wang, & Hu, 2018) 

TRAINED TO 

CREATE  

GANS - (Goodfellow et al., 2014a) 

- (Radford et al., 2015) 

- (S. Reed et al., 2016) 

STACKGAN (H. Zhang et al., 2017) 

- (Isola et al., 2017) 

CLUSTERING  

 

- (Caron et al., 2018) 

- (Xie et al., 2016) 

DEEPCLUSTER (Tian et al., 2017) 

 

MAKING DECISIONS DEEP Q-LEARNING  (Mnih et al., 2013) 

 (Hester et al., 2017) 

DOUBLE DEEP Q-

LEARNING 

 (van Hasselt et al., 2015) 

DUELING DEEP Q-

LEARNING  

 (Wang et al., 2016) 

A3C  (Mnih et al., 2016) 
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On the other hand, understanding the different components of urban scenes from street view 

images relying on computer vision is another crucial application for scene awareness (Li et al., 2017a). 

Scene parsing relying on semantic segmentation is a continuous success of CNN models for 

understanding and classifying the different components of an urban scene (Badrinarayanan et al., 

2017; Chen et al., 2017; L.-C. Chen et al., 2016a; Lin et al., 2017; Long et al., 2015; Peng et al., 2017; 

Yu and Koltun, 2016; H. Zhao et al., 2017). This pixel-level classification made it possible to recognize 

and understand the deep subtleties of the different components of an urban scene (i.e. road area, 

building, people, cars, vegetation). While such a complex approach is still exclusive to the applications 

of autonomous vehicles, it can be used to understand and extract information for urban studies and 

urban modelling. For further explanation related to localisation and object detection, see (Xiao et al., 

2020). 

2.4.3 Tracking objects 

After building a system of object detection, computer vision can be used for tracking multiple 

objects in a complex scene by adding features that correlate a pair of consecutive frames. This tracker 

system is capable of identifying a candidate box at each frame-level jointly with their time 

deformations (Girdhar et al., 2017). While different tracker systems can be built based on correlation 

filtering and online learning techniques between consecutive frames (X. Zhang et al., 2018), the state-

of-the-art research in object tracking uses an end-to-end CNN model to tackle both detection and 

tracking. This can add more advanced features (i.e. dealing with occlusion issues) for tracking various 

elements (Girdhar et al., 2017; Hou et al., 2017; Kang et al., 2016).  For further explanation related to 

deep visual tracking, see P. Li, Wang, Wang, & Lu (2018). 

2.4.4 Action recognition 

Computer vision coupled with deep CNN models is not only capable of tracking the motion of an 

object in a complex scene, but also classifying its multiple actions while tracking (Bilen et al., 2016; 

Wang et al., 2015; B. Zhang et al., 2016). Various computer vision algorithms have been developed to 

tackle humans poses and their interaction with an external object in a complex scene (El-Nouby and 

Taylor, 2018; Saha et al., 2016; Soomro and Shah, 2017; Weinzaepfel et al., 2016). 2D or 3D 

convolution layers (with or without the spatiotemporal dimensions) can identify the action of the 

object from its pose in relation to another target object. For instance, from the pose of a person sitting 

on a bike, the algorithms of computer vision can identify cycling as an action. This concept of the triplet 

inputs (object, verb, target) has been seminal for tackling real-world events and behaviours, from a 

simple still image to multi-frame images (Girdhar et al., 2017). 

2.4.5 Perception  

Perception tasks can be seen as classification or regression tasks that predict information that is not 

necessarily embedded directly in the image but can be inferred from the overall structure of the 

image. Perceiving a neighbourhood as safe or unsafe, for example, can be seen as a perception task, 

in which the machine extracts features from the structure of an image to classify the safety of the 

image. Even though understanding the overall gist of a scene is seminal for understanding more than 

an object in an image (Oliva and Torralba, 2006), few works have been done in this domain. The 

complexity of tackling this subject lies in sensing the class of an image by sensing the overall profound 

features of the image rather than identifying an object in the image.  
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Moreover, seeing what is far and what is close just by looking at a still image is another advantage 

of computer vision relying on deep CNN models. Cao, Wu, & Shen (2017) trained deep CNN models to 

estimate the depth in a single image by labelling the different depths on the image and training the 

model as a classification task.  In contrast, He, Wang, & Hu (2018) trained a deep CNN model to 

estimate the depth of a monocular image relying on the information of focal length that has proven 

to outperform the other state-of-the-art depth estimation algorithms based on deep learning models.  

2.4.6 Generative models 

Generative models refer to the ones that tend to output synthesized data by learning the 

representation of their input data in an unsupervised fashion, conditionally or unconditionally.  

There is a range of algorithms that are classified as generative models, such as Restricted Boltzmann 

Machine (RBM), deep belief networks, Autoencoders, and Generative adversarial Networks (GANs) 

(Goodfellow et al., 2017). This section refers only to GANs, which generate synthetic graphical data in 

an unsupervised training fashion relying on images as input. Unlike other tasks related to computer 

vision, the deep models of GANs, introduced in 2014, enable machines to generate new information 

that is similar to what the model has been trained to identify (Goodfellow et al., 2014). In other words, 

if the model is trained on images of trees, by using GANs, the model can generate a new image of a 

tree that preserves the fundamental features of a tree but with a new visual identity. This progress of 

deep learning enables the creation of unique objects or scenes by understanding the underlying 

features of the trained images or videos.  

GANs are trained differently from the abovementioned deep models, not only in terms of layers but 

rather, instead of the single end-to-end model, two deep parallel models are trained that compete 

with one another (Goodfellow, 2016; Goodfellow et al., 2014; Radford et al., 2015). The first one, the 

Generator model, generates new images to deceive the second model that holds the ground truth 

data, while the second model, the Discriminator model, blocks this new image until the generator 

model becomes advanced enough to generate new images that are similar enough to the ground truth 

that the discriminator model can no longer refuse them. This computationally intensive training, in an 

unsupervised manner, opens the door for computer-based creativity without the prior supervision of 

humans.  

GANs have been utilised in various applications. Isola et al. (2017) used conditional GANs to 

translate from one form of an image to another. For instance, by giving the model a satellite image of 

a location, the model can give the semantic segmentation of the location or vice versa. Zhang et al. 

(2016) created the stackGAN model to transform a text description of an image into a photo-realistic 

synthesis.  Moreover, Reed et al. (2016) have pushed the algorithms of GANs further. The machines 

can learn to draw not only from text distributions but also by telling the machine what and where to 

draw on the canvas. Apart from the daily-life applications, GANs have been used in the simulation of 

3D energy particle showers and physics-related applications (Paganini et al., 2018). 

2.4.7 Clustering  

Commonly, clustering is a form of unsupervised learning, in which the machines are able to cluster 

different still images or multi-frame images based on their content or embedded objects without prior 

human supervision (Caron et al., 2018; Tian et al., 2017; Xie et al., 2016). So far, different computer 
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vision algorithms have been developed to tackle this task and eliminate the need for a long process of 

manual labelling from still images. Recently, Eslami et al. (2018) introduced the Generative Query 

Network (GQN) for scene representation without human supervision. The GQN takes images from a 

different perspective as an input and generates a visual representation of the scene from an 

unobserved perspective. This process of coupling generative models with clustering introduces a new 

form of artificial intelligence to understand scene representation without human supervision. 

2.4.8 Making decisions 

By looking at the edge of computer vision and coupling its deep models with reinforcement learning, 

or so-called Deep Reinforcement Learning (DRL), machines can be trained to explore and compute the 

outcomes of different scenarios in order to make real-time decisions based on visual aspects of the 

environment (Hester et al., 2017; Mnih et al., 2016). This level of cognitive ability of machines by 

applying one or more of the abovementioned tasks can enable an agent to grasp information and 

interact with an environment to optimize target resources without human supervision.  

Due to the complexity of the algorithms related to this subject, most examples are in virtual or 

gaming environments (Mnih et al., 2013). However, most significantly, Mirowski et al. (2018) utilised 

DRL to enable a machine to navigate through the unstructured environment of the street network 

relying on street-level images. In this work, the machine learns to navigate by understanding 

landmarks from images and to determine its location and its target destination.  

In summary, Table 1 shows the literature related to the different computer vision tasks. It expands 

on the methods related to each task and their sub-categories.   

2.5 Recognising the urban world 

Understanding the dynamics of cities remains a complex issue. Data collection, for instance, is one 

of the crucial domains where automation is highly desirable, in which computer vision has been 

successfully applied in capturing and analysing various objects depicted in urban scenes.  Specifically, 

scene parsing and semantic segmentation represent crucial tasks of computer vision for a better 

understanding of the elements of an urban scene. From images, computer vision can localize multiple 

objects in cities or simply segment the entire scene based on a group of themes, such as sky, ground, 

road, building, vegetation, etc. (Chaurasia and Culurciello, 2017; Zhou et al., 2017). By putting all the 

above-mentioned tasks together, computer vision shows good potential in urban analytics for 

analysing the multi-layers of cities. For the purposes of this review, we define these layers as; the built 

environment, the natural environment, humans and their physical interactions, transport modes and 

traffic-related issues, and infrastructure. The main reason for breaking down cities in these layers is 

to be able to tackle the applications of computer vision in each field of science related to urban 

analytics, in which the methods, scope, language used, and the nature of work may vary depending 

on the discipline. For instance, research that has been done in understanding the built environment 

may vary in nature from that done to understand transportation, even though the methods of deep 

learning and computer vision may be similar.  

Fig. 2.5 shows examples of computer vision applications in cities to detect multidisciplinary tasks 

that belong to the five layers of cities, whereas table 2.2 shows the applications of computer vision to 

these layers.  Each layer is broken down into further subcategories as appropriate. 
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Figure 2.5 The layers of the city where computer vision is applied 
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Table 2.2 Computer vision algorithms that tackle urban-related issues 

CITY LAYER CATEGORY METHOD 

THE BUILT 

ENVIRONMENT 
URBAN COMPONENTS SEMANTIC 

SEGMENTATION 
(Zhou et al., 2017) 

(Chaurasia and Culurciello, 2017) 

(Chen et al., 2016) 

(He et al., 2019) 

(Helbich et al., 2019) 

(Amirkolaee and Arefi, 2019) 

(Wurm et al., 2019) 

(Cordts et al., 2016) 

OBJECTDETECTION (Yang et al., 2019) 

(R. Chew et al., 2018) 

LAND USE CLASSIFICATION  CLASSIFICATION AND 

SEMANTIC 

SEGMENTATION 

(Demir et al., 2018) 

(Sharma et al., 2017) 

(Audebert et al., 2018) 

CLASSIFICATION (Wang, Xu, Dong, Gui, & Pu, 2018) 

(Srivastava et al., 2019) 

(R. F. Chew et al., 2018) 

URBAN PERCEPTION CLASSIFICATION AND 

PERCEPTION 
(J. Zhao et al., 2018) 

(Law et al., 2018) 

(Zhang et al., 2019) 

(Seresinhe et al., 2017) 

(Oliva and Torralba, 2006) 

(W. Wang et al., 2018) 

(Salesses et al., 2013) 

(Dubey et al., 2016) 

(Naik et al., 2016) 

(Quercia et al., 2014) 

URBAN SAFETY (De Nadai et al., 2016) 

(Naik et al., 2014) 

HUMAN 

INTERACTION 
 OBJECT DETECTION (Priya et al., 2015) 

TRANSPORTATION 

AND TRAFFIC 
TRAFFIC SURVEILLANCE  CLASSIFICATION AND  

OBJECT DETECTION 
(Bottino et al., 2016) 

ACTION RECOGNITION (Yu et al., 2017) 

OBJECT DETECTION (Yang and Pun-Cheng, 2018) 

SAFETY/ ACCIDENTS CLASSIFICATION AND 

OBJECT DETECTION 
(Sayed et al., 2013) 

(Zaki et al., 2013) 

THE NATURAL 

ENVIRONMENT 
FLORA AND FAUNA OBJECT DETECTION (Cai et al., 2018a) 

(Hong et al., 2019) 

SEMANTIC 

SEGMENTATION 
(Krause et al., 2018) 

(Williams et al., 2017) 

CLASSIFICATION (Mohanty et al., 2016) 

(Sun et al., 2017) 

ENVIRONMENTAL AND WEATHER 

CONDITIONS  
CLASSIFICATION AND 

PERCEPTION 
(C. Liu et al., 2016) 

(W. Liu et al., 2017) 

(Villarreal Guerra et al., 2018) 

(Elhoseiny et al., 2015) 



 
 
 
CHAPTER II - LITERATURE REVIEW                                                                                               MOHAMED IBRAHIM 

 

33 
 

2.5.1 The built environment 

This section addresses cities from an architectural and urban design perspective, for example, 

understanding cities from a land-use perspective, the level of the physical appearance of the street-

level that may indicate or measure housing prices, or even the level of safety with a certain 

neighbourhood.  

When it comes to understanding the built environment, different challenges face urban planners 

and policy-makers. For example, modelling the physical appearance of complex urban areas is a multi-

faceted issue that is vital for planners and policy-makers for making decisions for improving living 

conditions in cities. The collection of data that reflects the current status of the built environment is a 

critical issue for urban analytics. So far, the applications of computer vision have merged not only to 

detect various urban components but also to understand the appearance and the safety factors of an 

urban scene.  While there is a wide range of applications of computer vision in cities, these applications 

can be divided into two approaches that either analyse cities from street-level images or remote 

sensing data such as satellite images.   

2.5.1.1 Seeing cities from above 

Analysing cities from above relying on remote sensing and geographical information systems (GIS), 

perhaps, is the most common approach for planners (J. Chen et al., 2016). Applications of computer 

vision jointly with these systems are capable of automating urban tasks such as mapping and zoning. 

Most recently, the notion of DeepGlobe (Demir et al., 2018) aimed to describe the earth from satellite 

images. DeepGlobe can extract streets, buildings and the different types of land-cover. Similarly, 

(Wang, Xu, Dong, Gui, & Pu, 2018) used a CNN model to segment satellite images into multi-classes at 

the pixel level. Marcos, Volpi, Kellenberger, & Tuia (2018) used the CNN model for land cover mapping, 

solving the issue of rotation of objects. Vanhoey et al. (2017) introduced VarCity as an approach of 

automating the construction of a city-scale 3D model based on semantic segmentation and machine 

processing of urban components (buildings, built environment, vegetation, roads, etc.).  

Furthermore, relying on deep learning, Amirkolaee & Arefi (2019) estimated heights from single 

aerial images, Wang et al. (2018) used deep CNN models for remote sensing image registration. Wurm, 

Stark, Zhu, Weigand, & Taubenböck (2019) relied on semantic segmentation to classify slum areas 

from aerial images. 

These presented methods may differ from one another in terms of accuracies or purposes. 

However, the main limitation remains in how these models can be generalised to fit for multiple 

locations beyond the context where the models are trained and tested.   

(Sirirattanapol et al., 2019) 

INFRASTRUCTURE CONCRETE CONDITION OBJECT DETECTION (Cha, Choi, & Büyüköztürk, 2017) 

(B. Wang et al., 2018) 

PAVEMENT/ ROAD CONDITION OBJECT DETECTION (Maeda et al., 2018) 

BRIDGE COMPONENT 

RECOGNITION  
SEMANTIC 

SEGMENTATION 
(Narazaki et al., 2017) 
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2.4.1.2 Seeing cities from a street-level 

While it is vital to understand the overall urban systems of cities from an aerial view, seeing cities 

from the street-level adds more layers of information. These images can capture rapid urban changes 

in day-to-day life and offer more opportunities to model urban dynamics. However, capturing these 

rapid urban changes is a more complex task.  Street-level images, taken by individuals or represented 

in Google’s Street View API, have been used to identify a wide range of urban components, from 

buildings to small objects such as street signs. For instance, Nguyen et al. (2018) used a CNN model to 

detect building types, crosswalks, and street greenness as a way to automatically quantify 

neighbourhood qualities.  

Similarly, a range of applications based on classifying, segmenting and localising pixels from street-

level images was a common approach for understanding the components of an urban scene (Chaurasia 

& Culurciello, 2017; Li, Jie, et al., 2017; Yang, Yu, Zhang, Li, & Yang, 2018; Zhou et al., 2017). Scene 

parsing relying on semantic segmentation is a continual success of CNN models for understanding and 

classifying the different components of the built environment at a pixel-level (Badrinarayanan et al., 

2017; Chen et al., 2017; L.-C. Chen et al., 2016a; Lin et al., 2017; Long et al., 2015; Peng et al., 2017; 

Yu and Koltun, 2016).  Relying on both street-level images and satellite images,  Kang, Körner, Wang, 

Taubenböck, & Zhu (2018) used a deep CNN model to classify land use in satellite images by learning 

from building blocks of similar functions.  

Quantifying the physical and non-physical appearance of cities is another area that has been 

intensively researched. Naik et al. (2016) quantified the physical appearance of neighbourhoods based 

on individuals’ ranking perceptions of the urban spaces using a framework of two CNN models that 

are concatenated and fused to predict a score for paired street-level images, known as Streetscore-

CNN. Similarly, Zhang et al. (2018) quantified urban spaces of street-level images labelled into six 

categories (Depressing, Boring, Beautiful, Safe, Lively, Wealthy)  based on a crowdsourced dataset 

(MIT places pulse). By applying a supervised deep CNN model, they can predict the class for a given 

street view image.  Liu, Silva, Wu, & Wang (2017) evaluated the urban visual appearance based on two 

indicators of the quality of street façade and the continuity of the street walls relying on the expert 

ranking that is evaluated with a public survey. Moreover, Naik, Kominers, Raskar, Glaeser, & Hidalgo 

(2017) have used computer vision to measure the dynamics of neighbourhood characteristics from 

time series street view images adjoined with socioeconomic data in five US cities.  As a different 

approach, Law et al. (2019) used street view images to identify housing prices from urban perception 

relying on computer vision.  

While seeing cities at a street-level adds more information and gives an opportunity to understand 

the rapid changes that occur in an everyday urban scene in cities, the images used from Google street-

view images only represent urban areas at a single weather condition, commonly clear weather, 

neglecting other visual and weather conditions that impact the appearance of cities. Furthermore, 

more research is needed on how to make the best use of street-level images coming from various 

sources, such as CCTV, dashcams or crowdsources, within and across domains. 
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2.5.2 Humans interactions 

Deep learning and computer vision have shown substantial progress in understanding a wide range 

of applications not only related to human detection but also understanding their activities and 

interaction with other objects  (Kale & Patil, 2016; Mohamed & Ali, 2013; Zhang et al., 2017). Such 

approaches can assist planners and policy-makers to better understand tasks related to wellbeing and 

human behaviour in cities. For instance, Priya, Paul, & Singh (2015) used deep learning and computer 

vision to classify human actions, such as walking, running, sitting or dancing, for multi-frame images. 

Guler, Neverova, & Kokkinos (2018) used a region-based CNN model (RCCN) to estimate the various 

human poses from a single image to better understand human interactions. Gkioxari, Girshick, Dollar, 

& He (2017) used computer vision to predict human actions over a specific target object from every 

day still images. This novel approach provides substantial progress in understanding human 

interaction with different objects. Furthermore, adjoining human pose detection with tracking 

(Girdhar et al., 2017) used computer vision to detect and track key human body points from videos. 

This could enable, for example, tackling various issues related to human safety and wellbeing in cities, 

such as detecting when a person falls or detecting abnormal behaviour such as crime-related actions. 

Indeed, a knowledge gap appears in scaling up deep computer vision algorithms for monitoring and 

detecting irregular behaviours at a city level in real-time.  

2.5.3 Transportation and traffic 

Transportation and traffic is a crucial and complex layer that merges and interacts with other layers 

of the city. There is a wide range of computer vision applications that aim to tackle transport modes 

and their common issues, such as road safety and optimisation of traffic (Buch et al., 2011; Priya et 

al., 2015). Subjectively, traffic surveillance and intelligent transportation systems hold the largest 

share of computer vision related applications in cities. Typical tasks include vehicle detection, 

counting, overtake detection, and traffic incident detection (Mahmud, Ferreira, Hoque, & Tavassoli, 

2017; Yang & Pun-Cheng, 2018). A full review of the literature on vehicle detection is beyond the scope 

of this chapter. For a comprehensive review, consult Yang and Pun-Cheng (2018). 

Understanding the different traffic scenarios and interactions of the different transport modes by 

computer vision is crucial. Bottino, Garbo, Loiacono, & Quer (2016) introduced ‘Street Viewer’ as a 

system to tackle and analyse the different scenarios of traffic behaviour from street view images. 

Sayed, Zaki, & Autey (2013) used computer vision to evaluate the safety measures of vehicle-bicycle 

conflicts. Zaki, Sayed, Tageldin, & Hussein (2013) used computer vision to analyse the conflicts among 

pedestrians and vehicles at a signalized intersection. Zaki & Sayed (2013) introduced a framework 

relying on computer vision to classify the different types of road users.  

Building on the aforementioned artificial intelligence approaches for traffic-related issues, 

computer vision is a core element when it comes to smart mobility and autonomous vehicles. Different 

applications relying on computer vision are being used to make transport modes aware of the 

surrounding environments either for safety indications or moving towards a self-navigation system. 

However, the technology of autonomous vehicles is not the focus of this research but rather the 

interactions of transport modes with the aforementioned layers in cities (Faisal et al., 2019).  
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2.5.4 The natural environment 

The natural environment (i.e. green space, landscape, climate conditions, etc.) is a crucial layer 

when it comes to understanding cities. It influences our perception of the visual appearance of the 

built environment and also affects mobility and human interaction in cities.  Different aspects related 

to this natural layer of cities have been tackled by computer vision. These applications vary from 

mapping vegetation and greenery in cities, or so-called ‘Treepedia’ (Cai et al., 2018b), estimating 

vegetation area (Stubbings et al., 2019), identifying plant types (Krause et al., 2018; Sun et al., 2017), 

to a deeper understanding of the natural environment and wildlife such as detecting plant-related 

diseases (Mohanty et al., 2016) and understanding the patterns of social interaction among animals 

(Robie, Seagraves, Egnor, & Branson, 2017). 

 Deep learning and computer vision have also been used to infer the weather, climatic and air 

conditions in cities. Liu et al. (2016) used the CNN model to identify extreme weather conditions from 

aerial images of climate simulations and reanalysis products. Liu, Tsow, Zou, & Tao, (2016) used images 

to analyse particle pollution for Beijing, Shanghai and Phoenix relying on region of interest selection, 

feature extraction and regression models. Z. Li et al. (2019) developed a model to detect clouds from 

high-resolution aerial view images relying on CNNs, named multi-scale convolutional feature fusion.  

 While there is noticeable progress in terms of methods development and accuracy enhancement 

among the presented papers, the common limitation remains in the lack of a single model or a 

framework that fuses various models to infer the different weather and environmental conditions.  

2.5.5 Infrastructure 

Cities comprise a range of infrastructure systems that represent a large portion of their economy. 

Inspecting these systems and detecting their deficiencies is a crucial aspect for engineers and planners 

in cities. The focus of this section differs from the built environment section by analysing materials 

and the civil engineering related issues that are not covered in the aforementioned sections.  

So far, the applications of computer vision have been seen in a wide range of domains related to 

infrastructure and civil engineering (Gopalakrishnan, 2018; Griffiths and Boehm, 2018), most 

importantly in analysing defects (Feng et al., 2017). For instance, B. Wang, Zhao, Gao, Zhang, & Wang 

(2018) used computer vision to detect concrete crack damage. Similarly,  Cha, Choi, & Büyüköztürk 

(2017) applied computer vision relying on a deep CNN model to detect crack damage of concrete. On 

the other hand, Maeda et al. (2018) used computer vision to detect road damage from images that 

are taken from mobile devices.  

2.6 What remains missing? 

Section 3 of this chapter presented the different types of computer vision algorithms that are 

available to researchers, and the sectors in which they have been applied were presented in section 

4. Typically, these models have been applied in a sectoral fashion to a specific problem. Comparatively, 

little attention has been placed on how to understand the interconnections between the different 

layers of the city. These interconnections will eventually lead to increased capabilities of computer 

vision and AI to aid decision making and policy. In this section, we outline two under-researched areas 

in which computer vision has enormous potential. 
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2.6.1 Integrated models of the layers of the city 

A significant challenge remains in modelling the interconnectedness and dependencies of the 

different layers of the city that were introduced in Fig. 2.5. The first step in this regard is the integration 

of models that have been developed for each layer in isolation. For example, there is still a knowledge 

gap in how to use computer vision coupled with deep learning to understand the interaction between 

people in cities and transport modes, or the influence of one mode on the others in terms of 

accessibility and safety. While the technology is there, the challenge remains in combining different 

models in a framework that enables them to tackle complex, multi-layered issues using the same data 

source, rather than just combining or fusing outputs from different data sources. On the other hand, 

even if the knowledge of the models is transferable among the different layers of cities, the challenges 

remain in finding comprehensive image data sources that cover a wide scope of tasks and functions 

in cities.   

2.6.2 The scale of applying computer vision in cities 

Understanding cities requires both local and global perspectives, in which scale plays a crucial role 

in tackling urban issues. Different algorithms have been used to understand, for instance, individuals’ 

actions and activities. Challenges remain in applying and scaling up such algorithms to the city level. 

Although there are different models, as discussed in the literature, that extract information at the city 

scale, the nature of the developed algorithms is still limited to the analysis of a certain location or a 

city. The reason for this is either because of a lack of computational resources or the inability of trained 

models to generalise to a larger dataset at a city level. Models often require further training and 

optimisation to be deployed in real-life applications. It is well known that computer vision algorithms 

require large sets of labelled data, which must often be manually labelled. Labels can be 

crowdsourced, but there is often a cost involved and accuracy is difficult to guarantee. Semi- or weakly 

supervised learning methods are promising approaches in this regard (S. Guo et al., 2018). 

2.7 Summary 

Understanding cities has been a profound interest for many scholars across a wide range of 

disciplines. Modelling the different urban systems of cities is a long term purpose for many urban and 

transport planners. While cities are complex by nature and classical urban modelling may not capture 

the actual complexities of urban systems, computer vision shows progress in tackling a variety of 

complex physical and non-physical visual tasks. In this chapter, we provide a review of deep learning 

and computer vision and its application so far in understanding cities. The chapter highlights the 

different types of algorithms of computer vision and their application to cities and their multifaced 

issues. It aimed to show the nuances of the variations of these algorithms within the same task.  It also 

aimed to show what has been done so far to understand cities by machine vision and what remains 

missing for future research work within this domain. 

We attempt to highlight the potential role of computer vision in understanding the interactions 

between the built environment, people and transportation to tackle the complexity and nonlinearity 

of many urban and transport issues for better policy-making and planning safer cities. We also 

highlight the current limitations that require further work to reach an integrated computer vision-

based urban models that are capable of making automatic decisions. While there are substantial works 

achieved in response to the different layers of cities as shown in this chapter, the challenges remain 
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in understanding the intersection between these different layers and their interaction and causality 

to one another by computer vision. For instance, there are still knowledge gaps for utilising the 

application of computer vision and deep learning to understand the interaction between people in 

cities and transport modes, or the influence of one mode on the others in terms of accessibility and 

safety. While the technology there, for instance, for tackling and predicting incidences, the issue 

remains in deploying a framework that agglomerate various models in a pipeline fashion.   

Inference and prediction are at no doubts a great success for assisting our understanding and 

estimating different events that occur in cities, however, making an automated and optimised decision 

based on models’ predictions remains a crucial aspect.  There are still a limited number of researches 

that have been done in the domain of deep reinforcement that tackles real-life issues in urban areas. 

As previously mentioned, the main reason for this is the complexity of applying such algorithms in 

real-life events. However, DRL remains a promising sector that takes computer vision from a model to 

detect a model that can be learned to know where to look and how to decide without humans’ 

supervision.   
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3 

CYCLING NEAR MISSES 
 AND THE POTENTIAL FOR  
AN EMBEDDED AI SYSTEM  

 

3.1 Overview  

hether for commuting or leisure, cycling is a growing transport mode in many countries. 
However, cycling is still perceived by many as a dangerous activity. Because the modal 
share of cycling tends to be low, serious incidents related to cycling are rare. 

Nevertheless, the fear of getting hit or falling while cycling hinders its expansion as a transport mode, 
and it has been shown that focusing on fatal and seriously injured casualties alone only touches the 
tip of the iceberg. Compared with reported incidents, there are many more incidents in which the 
person on the bike was destabilised or needed to take action to avoid a crash, named near misses. 
Because of their frequency, data related to near misses can provide much more information about the 
risk factors associated with cycling. The quality and coverage of this information depends on the 
method of data collection, from survey data to video data and processing, from manual to automated. 
There remains a gap in our understanding of how best to identify and predict near misses and draw 
statistically significant conclusions, which may lead to better intervention measures and the creation 
of a safer environment for people on bikes. In this chapter, we review the literature on cycling near 
misses, focusing on the data collection methods adopted, the scope and the risk factors identified. In 
doing so, we demonstrate that, while many near misses are a result of a combination of different 
factors that may or may not be transport-related, the current approach of tackling these factors may 
not be adequate for understanding the interconnections between all risk factors. To address this 
limitation, we highlight the potential of extracting data using a unified input (images/videos) relying 
on computer vision methods to automatically extract the wide spectrum of near miss risk factors, in 
addition to detecting the types of events associated with near misses. This review aims to provide a 
resource for planners, policy-makers and researchers by 1) defining near misses, their types and their 
risk factors, 2) reviewing the main methodologies of recording and analysing near misses and their 
applicability and limitations, 3) showing a summary of the variation of near misses and their limitations 
in understanding the stated issue, 4) introducing a new potential framework understanding near 
misses through machine vision, in which models can be utilised to extract risk factors and infer near 
misses, 5) paving the way for developing AI-related automated systems that could be used to tackle 
crash risk by focusing on near misses, in which we highlight the key enabling technologies and research 
directions. 

The materials and outcomes of this chapter are published as a journal article in transport reviews 

journal, entitled: “Cycling near misses: A review of the current methods, challenges and the potential 

of an AI-embedded system” (Ibrahim et al., 2020b). 

W 



 
 
 
CHAPTER III - LITERATURE REVIEW                                                                                              MOHAMED IBRAHIM 

 

40 
 

3.2 Review methodology 

We adopted a systematic review approach using PRISMA guidelines (PRISMA, 2015). Figure one 

shows the flow of the information through the different stages of the systematic review.  

First, all manuscripts related to cycling near misses were gathered to date. These manuscripts 

included peer-reviewed journal articles, governmental and non-governmental reports, and 

conference proceedings. They covered the different aspects of cycling near misses, methods used, and 

the risk factors identified. These manuscripts can be accessed from four search engines (Scopus, 

Google Scholar,  and Web of Science) via a combination of ‘cycling’ or ‘road ‘with keywords in a 

Boolean expression such as Cycling AND near AND miss*, cycling AND perceived AND risk*, perceived  

AND traffic and risk*, cycling AND near AND collision*, road AND conflict*, cycling AND risk and risk*.  

The total results for the specified combined terms are 556, 435, and 389 for google scholar, Web of 

Science, and Scopus, respectively. After removing duplicates, the sample size was reduced to 531. 

Second, records were first screened by title and abstracts, which reduced the records to 325. The 

second phase of screening included reviewing each manuscript,  which reduced the number to 189 

manuscripts that focus on the various types of conflicts between different road users, including near 

misses. At this phase, manuscripts were filtered to exclude studies that involved collisions without 

addressing near misses were excluded, except where they were required to draw a baseline or lesson 

learned that could be beneficial for near miss studies. Studies that involved safety policies that address 

cycling without addressing near misses are excluded. Last, we reduced studies to 19 manuscripts that 

focus only on cycling near misses which we focused on analysing in detail (See Fig. 3.1). 

 

Figure 3.1: Flow chart for the screened records used for the systematic review 
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3.3 What is cycling near miss? 

3.3.1 Definition 

There are different conceptions and terms that pinpoint the subject of a ‘narrowly avoided collision’. 

It can be defined as: ‘perceived crash risk’ (Chaurand and Delhomme, 2013; Strauss et al., 2013), 

‘perceived traffic risk’ (Sanders, 2015), ‘near collision’ (Johnson et al., 2010), or simply ‘near miss’ 

(Aldred, 2016; Poulos et al., 2012). While a ‘cycling near miss’ is a subjective term that may differ 

based on individuals’ experiences and their perceptions of risk, in most cases it is defined as a situation 

in which a person on a bike was required to act to avoid a crash, such as braking, speeding, swerving 

or stopping.  In some cases, the definition may be extended to include those events that caused the 

person on the bike to feel unstable or unsafe, such as a close pass or tailgating.  

3.3.2 Types of cycling near miss 

Different studies have categorised near misses in different ways. For instance, some studies focus 

on the conflicts between people on bikes and drivers (Beck et al., 2019), or people on bikes and 

pedestrians (Paschalidis et al., 2016), in which different types of risky situations are categorised. 

Another approach is to categorise near misses depending on the type of conflict; either a moving 

object or stationary (Nelson et al., 2015). The most comprehensive categorisation to date was 

introduced by Aldred & Goodman (2018), based on an empirical study that included 2586 diaries from 

a sample of 396 participants over two years (2014-2015). This study summarised the types of cycling 

near misses were summarised in eight groups. These groups are: 1) a close pass, 2) a near left or right 

hook, 3) someone pulling in or out, 4) a near-dooring, 5) swerve around an obstruction, 6) pedestrian 

steps out, 7) someone approaching head-on, or 8) tailgating. Their study found that close pass near 

misses were the most frequent incident type.  

 

Figure 3.2: Types of cycling near misses and their potential impact 
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In Fig. 3.2, we aim to visualise the different types of cycling near misses addressed in the literature 

to better understand the road users or objects involved and their potential impact on people on bikes. 

In doing so, we aim to highlight the areas that need to be covered for any future method to be 

comprehensive when addressing cycling near misses. 

3.4 Methods and materials used for understanding near misses 

Studies have focused on different factors related to cycling near misses and have also used different 

data collection techniques and methods. These methods can be divided into three types of 

observational studies: 1) Observational studies relying on self-reported questionnaires, 2) Analysis of 

video of cyclist behaviour at specific sites, i.e. at an intersection, and 3) analysis of video from cameras 

used on their bike, the so-called naturalistic study. 

3.4.1 Self-report studies  

Self-report studies are the dominant design for most cycling near miss studies. In an observational 

study, data are gathered and statistically analysed to show associations and draw conclusions. There 

are three main ways in which data are collected for a self-reporting study: 1) using a self-reporting 

mechanism based on a questionnaire survey for a group of participants (Aldred and Crosweller, 2015; 

Chaurand and Delhomme, 2013; Fuller et al., 2013; Lawson et al., 2013; Paschalidis et al., 2016), or 2) 

using a self-reporting mechanism based on crowdsourcing platforms where data can be uploaded 

(Nelson et al., 2015; Poulos et al., 2012). 

Data gathered based on crowdsourcing have led to significant progress in mapping cycling ridership 

and safety measures (Jestico et al., 2016; Nelson et al., 2015). However, while observational studies 

can offer insights about the behaviour of people on bikes over a longer period, the data gathered is 

limited by potential biases such as over or under-representation of certain cyclist groups or the types 

of risk factors, in addition to limitation and biases due to manual labelling and processing based on 

the collectors’ interpretations (Dozza & Werneke, 2014).  

3.4.2  Video analysis at specific sites   

In a site observational study, video streams for a given context are used that highlight certain safety 

issues. A focus group of cyclists or non-cyclists participate and observe these video streams to evaluate 

behaviours. Rather than focussing on near miss events, these studies ask participants to evaluate the 

level of risk or presence of hazards in the video stream. Vansteenkiste et al. (2016) used site 

observation to develop a hazard perception test for children, finding that children’s reactions to, and 

interpretations of, hazards are less developed than adults. Lehtonen et al., (2016) asked frequent and 

infrequent riders to watch video clips and rate risk through a caution estimate, finding that more 

frequent riders identified a higher number of caution estimate rises. This indicates that awareness of 

risk increases with rider experience. Such studies are important because they enable understanding 

of the differences in exposure to risk between certain groups of riders. 

While site observations using cameras may overcome the limitation of interpretation found in self-

report studies, the amount of data processing, specifically image processing, limits the scalability of 

this type of method. Additionally, multiple cameras are required at different positions to capture the 

entire environment and observe the dynamics of cycling behaviour and the interactions among the 

different agents (Dozza & Werneke, 2014). However, this approach can potentially enable the analysis 
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of near misses at scale by leveraging the supply of CCTV cameras installed on road networks, 

particularly in cities. Zangenehpour et al. (2016) used cameras to collect overview footage of 

intersections and analyse variations in vehicle-bicycle interactions in the presence/absence of cycle 

tracks. This work was facilitated by automated tracking of road users using a computer vision 

approach, which could be applied to CCTV feeds (Zangenehpour et al., 2015).  

3.4.3 Naturalistic study 

The naturalistic approach is often perceived as one of the most reliable methods for understanding 

road-user behaviours and analysing risk factors (Dozza et al., 2016a; Dozza and Werneke, 2014; 

Schleinitz et al., 2017). In this method, a group of participants ride instrumented bikes while carrying 

out their routine activities. Cameras and sensors are fitted to the bike or rider that collect data related 

to riding behaviour, the surrounding environment and the interactions with other road-users.  The 

types of data gathered vary depending on the purpose of the research and the installed equipment 

and sensors. The first example of a naturalistic study was in Melbourne, Australia, where riders were 

given helmet-mounted cameras (Johnson et al., 2010). This camera position was chosen because it 

gave the rider’s perspective and enabled their behaviour to be analysed (e.g. shoulder checks). While 

this approach enables risk factors to be analysed through manual analysis of the video data, 

quantitative features such as rider speed, geolocation and acceleration/deceleration cannot be 

extracted. More recent studies have used instrumented bikes containing at least a video camera and 

a GPS device (Gustafsson and Archer, 2013). More sophisticated setups can contain units for inertial 

measurement, a signal button to record critical incidents and near misses, brake force sensors (Dozza 

& Werneke, 2014), or even LiDAR sensors for measuring the range of nearby objects such as passing 

vehicles (Beck et al., 2019). Naturalistic approaches have also been used to study differences in 

behaviour between pedal bike and e-bike users, which is an emerging area of concern for policymakers 

(Schleinitz et al., 2017). 

 The main advantage of the naturalistic approach is that detailed information is collected about the 

behaviours and actions of agents involved in an event, as well as the instantaneous features of the 

environment. By definition, the naturalistic approach also collects data in which no event occurred, 

which can be used as counterfactual events in a case-control framework. However, processing data 

collected in naturalistic studies is labour intensive and automated methods are required if such data 

are to be collected at scale.   

3.5 Factors related to near misses and their impacts  

Different methods have different advantages and limitations when it comes to including and 

analysing the wide range of risk factors. In general, cycling near misses are transport-related, however, 

their risk factors may or may not be transport-related (Aldred, 2016; Beck et al., 2016; De Rome et al., 

2014; Vanparijs et al., 2015). This creates challenges for methods currently used in the literature – 

either in extracting these factors or analysing them - to assess in a single study. Based on the literature, 

we categorise these factors into aspects related to visibility, physical conditions of the built 

environment, interaction among different agents (e.g. people or animals), and behavioural and 

psychological factors related to the cyclist.  
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Fig. 3.3 shows the interaction of these four categories that could lead to a near miss. Most of the 

factors belong to behavioural, physical, or visibility related factors. In many cases, near misses occur 

as a result of a combination of several independent factors represented by the ‘interaction’ section of 

the diagram. 

Many studies focus on the impacts of one of the risk factors for a near miss while excluding other 

factors. Poulos et al. (2012) analysed near misses based on the type of cycling infrastructure, including 

pedestrian footpath, shared path, road with no bicycle lane, bicycle path, and road with a bicycle lane. 

Johnson et al. (2013) studied collision and near-collision characteristics based on people on bikes and 

open vehicle doors, highlighting how an open vehicle door could lead to frequent and serious injuries 

that could sometimes be fatal. Few studies, however, explore the holistic nature of the factors related 

to near misses. 

Table 3.1 summarises the 19 studies identified in the literature in terms of methods used, near 

miss type and risk factors covered, broken down by the categories shown in figure 3. The categories 

are further subdivided according to specific risk factors. The interaction risk factors are combined with 

the near miss type in column three. The extent to which each risk factor has been analysed in the 

literature by each method is discussed in sections 5.1 to 5.4, below.  

 

 

 

 

Figure 3.3: Types of factors related to cycling near misses 
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Table 3.1: Current near miss literature and covered scope and risk factors 
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3.5.1 Behavioural aspects  

Behavioural aspects play an important role in defining the various cycling styles that may influence 

the types and the frequency of near miss events. They can be subcategorised into three groups: 1) 

Individual characteristics, 2) trip characteristics, and 3) safety measures.   
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All of the 19 reviewed studies cover individual characteristics to a greater or lesser extent. First, 

most of the cycling near miss studies focus on covering multiple factors related to socio-demographic 

aspects of people on bikes. It is noticeable from table 3.1 that self-report studies generally collect 

more demographic data than site observational and naturalistic studies, which is due to their design. 

Safety measures related to individual behaviours are crucial for avoiding near misses. Johnson et al. 

(2014) studied the behaviours and perceptions of both drivers and people on bikes towards cycling 

safety. They found that drivers who also cycle are more likely to have a positive attitude towards 

cycling. They also highlighted the importance of rethinking driver education when overtaking people 

on bikes; considering head checks, buffer space, and adequate indications. Walker et al. (2014) found 

that the appearance of the person and the type of outfit they wore has an insignificant effect on the 

clearance distance drivers gave when overtaking people on bikes, contrary, police/video-recording 

jacket is the only outfit that has a significant correlation with the passing proximities.  Nelson et al. 

(2015) found that the frequency of near misses was higher when cycling without bike lights than when 

using front and backlights.  

3.5.2 Physical conditions 

Fifteen of the 19 studies referred to physical conditions. While there are different factors related to 

the built environment that influence the choice of cycling routes from a behavioural perspective 

(Broach et al., 2012), these are also factors that cause potential risk for encountering collisions or a 

near miss (Cho et al., 2009). As Aldred notes: ”The vast majority of near misses were judged potentially 

preventable by changes to road user behaviour and/or the cycling environment’’ (Aldred, 2016, p. 78). 

Therefore, physical conditions play an important role in either experiencing a near miss or avoiding 

one. Based on the literature review, we have subcategorised these into four groups: 1) Infrastructure, 

2) surface conditions, 3) location and 4) surrounding context.  

In terms of infrastructure, Parkin and Meyers (2010) found that in the presence of a cycle lane, 

drivers may drive within their marked lane with less consideration of ensuring a comfortable passing 

distance for people on bikes in the adjacent cycle lane. This has been confirmed in a recent study by 

Beck et al. (2019) on close pass events.  

Several studies include factors related to surface conditions, such as wet, dry, well-maintained, or 

deteriorated surfaces (Aldred, 2016; Branion-Calles et al., 2017; Gustafsson and Archer, 2013; Nelson 

et al., 2015; Schleinitz et al., 2015). Dozza et al. (2012) found that some near misses occurred when 

the condition was icy. Nelson et al. (2015) found that the near misses mostly took place on dry surfaces  

(64.6% of the total near misses) with no parking on the road (60.1% of the total near misses). However, 

these frequencies are based on the count of responses rather than the significance of the result, which 

may be due to the self-selection of either trip routes or time. The challenge remains in understanding 

how the individual factors combine with physical conditions to produce risk. 

Different studies have focused on the location of cycling, highlighting a higher exposure to near 

misses at intersections (Branion-Calles et al., 2017). Strauss et al. (2013) analysed 650 intersections in 

Montreal in which cyclists were exposed to injury incidents. They found that more cyclists tended to 

suffer injuries at junctions but with a lower injury rate due to the non-linear correlation between injury 

occurrence and bicycle volume. They also highlighted that the frequency of cycling crashes is 
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associated with the changes in the flows of both vehicles and bicycles based on injury data of people 

on bikes between 2003 and 2008 in Montreal, Canada. Additionally, crashes were more likely to 

happen at intersections that include a bus stop. The important role of the built environment was 

underscored, in which a change in conditions (i.e. presence of cycle lane, land use mix, presence of a 

school, etc.) is more likely to cause a direct impact on cyclist activity and safety. 

There is still an absence of near miss studies that directly investigate the impact of the surrounding 

context that may densify the flow of traffic for cyclists, pedestrians, and vehicles in a certain location 

in cities, which may cause potential risk exposure for the people on bikes. This has been outlined by 

Vanparijs et al. (2015) in their review of studies related to exposure measurement. They reviewed the 

different methods that measure cycling exposure to incidents, including time, distance, and trips as 

exposure units. They showed that the lack of exposure data hinders the ability to draw significant 

conclusions. They also highlighted that this data often neglects minor incidents, subsequently near 

miss events are more likely to be missing as well, which makes it difficult to understand safety levels 

between different types of infrastructure, and the age categories of people on bikes.  

3.5.3 Visibility-related conditions   

Visibility related conditions play a role in crashes and near misses (Lacherez et al., 2013), particularly, 

factors related to 1) the time of the day, 2) weather conditions, and 3) the level of illumination, 

including the existence of glare. Of the reviewed studies, only two cover weather conditions, while 

nine cover lighting conditions or time of day. (Branion-Calles et al., 2017) use secondary data sources 

to infer weather and lighting conditions, using the time of sunrise/sunset and meteorological data at 

a single location in the two cities studied. This may fail to capture local variations in weather, street 

lighting and glare caused by the direction of travel. (Dozza et al., 2012) highlights some factors related 

to six unique events but does not analyse risk factors.  

There are a limited number of studies that included factors related to weather conditions to address 

their impact on the occurrence of near miss events. Branion-Calles et al. (2017) addressed weather 

conditions such as clear, cloudy, rain, and fog in analysing near misses. Based on descriptive analysis, 

they found that a higher frequency of near misses and crashes are reported when the weather is rainy, 

snowy or foggy compared with cloudy or clear conditions.   

While the time of the day could be a significant risk factor in cycling crashes (Johnson et al., 2013), 

many studies neglect the issue of time completely (Aldred, 2016; Aldred and Goodman, 2018; 

Chaurand and Delhomme, 2013; Fuller et al., 2013; Lawson et al., 2013; Lehtonen et al., 2016; 

Paschalidis et al., 2016; Poulos et al., 2012; Sanders, 2015; Vansteenkiste et al., 2016). Other studies 

use a binary classification of day and night, without considering more nuanced effects on the lighting 

conditions such as those caused by direct sunlight at dawn and dusk. For instance, Branion-Calles et 

al. (2017) studied near misses according to the time of either peak hours or off-peak hours. Gustafsson 

and Archer (2013) categorised time to ‘morning (06:30-9:30)’ and ‘afternoon (15:30-18:30)’, 

highlighting that more incidents and safety issues occur in the morning time. These nuances are 

important and have been recognised by recent studies analysing the impact of the built environment 

and its influence on near misses. For instance, Aldred and Crosweller (2015) studied incidents and 
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exposure by the time of the day including am and pm peaks, in which they found that the numbers of 

trips and subsequently the incidents are considered to be low after 12 am till 6 am.  

The impact of the lighting conditions, including glare, on near miss events, remains under-

investigated. Branion-Calles et al. (2017) mentioned lighting conditions as risk factors represented in 

two classes of day or night-time only.  Dozza et al. (2012) mentioned the effect of glare on the quality 

of the video streams, without studying its impact on the frequencies of near misses. Even though 

Nelson et al. (2015) had looked at glare based on self-reporting data, this data only provides a 

subjective account of the incident and glare may have been present but not mentioned. Therefore the 

data may not represent a reliable source of information to study the impact of glare.  

3.5.4 Interaction between road-users 

While near misses can involve a single individual riding a bike, they are often the result of 

interactions between the rider and other road-users, such as people in cars, people driving or other 

people on bikes. During a journey, a bike rider will have many safe interactions with other road-users, 

which makes it difficult to define those situations that lead to elevated risk. Therefore, quantitative 

studies in this area have tended to focus on a single type of interaction. A notable example is (Beck et 

al., 2019), who focussed on passing distance. Their study used a distance sensor attached to a bicycle 

to measure the range of passing vehicles. Using a passing distance of 1 metre at <= 60km/h (1.5m at 

>= 60km/h) informed by Australian legislation, they identified that 1 in 17 passing events was a close 

pass. As mentioned in section 5.2, they found that the presence of a bike lane was associated with a 

closer passing distance. This type of study is important in identifying a particular type of risky 

behaviour, but the use of a 1 metre passing distance is somewhat arbitrary. For example, in the UK, 

Operation Close Pass uses 1.5 metres as a safe passing distance; if this figure was used in (Beck et al., 

2019) it would change the interpretation of results. In general, there is no good evidence on what is 

safe under what circumstances, and as the authors, note: “It is important to understand how cyclists’ 

subjective experiences align with quantified passing distances” (Beck et al., 2019, p. 259).  

Some studies focused on a specific type of interaction that may result in a near miss if the safety 

measures are not considered properly. For instance, Dozza et al. (2016) provided an in-depth analysis 

of how drivers overtake bicycles during passing events. They found that manoeuvres, especially on 

rural roads, are often more critical since they happen at higher speeds (approx. 70km/h) with less time 

to avoid collisions (less than 2s) if critical or unforeseen events took place.  

3.5.5 Combined factors  

The various permutations of factors described above indicate the complexity of understanding how 

risk factors interact to cause near misses. Fig. 3.4 shows a dendrogram of the different factors that 

may be involved. Factors highlighted in black are those identified from the reviewed studies, while 

those in blue are additional factors that could be considered. The number of potential factors 

illustrates that, theoretically, even if one of the individual factors is not statistically significant from a 

linear perspective, it may influence the occurrence of a near miss from a nonlinear perspective. 

Consequently, due to the potential of the existence of nonlinearity in near-miss research, the types of 

methods used to conduct near miss research may vary depending on which factors are addressed and 

how the data are collected.  



 
 
 
CHAPTER III - LITERATURE REVIEW                                                                                              MOHAMED IBRAHIM 

 

50 
 

Table 3.2 summarises the risk factors covered in the 19 studies, broken down by method, where the 

number in each cell is the count of studies of that type that refer to that risk factor. In general, the 

built environment and cyclist characteristics are covered by more studies because they are static or 

slowly changing variables. It should be noted that, while the same factors are covered by many studies, 

the form and quality of the data can be very different. For example, a self-report study may include a 

question on the presence/absence of a cycle lane, while a naturalistic study using video will allow 

interpretation of the type of cycle lane, the road condition and the surrounding context, albeit usually 

with expert interpretation.  

Dynamic variables such as lighting and weather conditions are more difficult to capture using each 

of the methods, but for different reasons. In self-reporting studies, these variables require recall and 

may be subjective, which means that they are usually incorporated in simple terms such as day/night 

time or rain/no rain. Naturalistic studies and site video analysis can capture more nuanced factors but 

they require labelling of video data, which is usually manual and time-consuming. 

 

Figure 3.4: Risk factors related to cycling near misses 
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Table 3.2: summary of near miss studies 
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A combination of naturalistic studies with self-reporting has the potential to capture the broadest 

range of information, while site video analysis is severely limited in its ability to capture demographic 

factors. It is also important to note that, while self-reporting captures the characteristics of the rider, 

it cannot easily capture the characteristics of the other road users involved. In the next section, a 

detailed discussion of the limitations of current methods and gaps in the literature is presented. 

 3.6 Gaps in the literature  

There are methodological challenges for collecting and analysing road safety data and its risk factors 

(Schlögl and Stütz, 2017).  There are several limitations in the existing methods used to understand 

near misses. These limitations are:  1) How to eliminate factors due to manual labelling of data, 2) The 

current lack of functionality of sensors, 3) small data samples, 4) limited scope of studies, 5) The 

absence of a unified method for understanding near miss, which leads to 6) lack of understanding of 

the impact of the risk factors. 

3.6.1 Elimination of factors due to manual labelling 

One of the crucial drawbacks in current studies is that the analysis of sensor data has been 

dependent on manual labelling, which is highly time-consuming and may also introduce some bias in 

how data sets are labelled, limiting the transferability of findings to a different context.  
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3.6.2 Limitations of sensor data 

The current sensors used have not been developed to measure the range of possible factors that 

might influence near misses. In particular, current approaches mean that it is difficult to compare 

sensor data from one location to another, especially where the environmental context can be very 

different (e.g. urban vs rural, hot vs cold climate, etc.). 

3.6.3 Limitation of data sample size 

Current studies have involved small data sets making it difficult to draw statistically significant 

conclusions, which again limits the ability to draw conclusions relevant across a range of contexts. 

Even though the naturalistic approach shows progress in collecting rich data on the context and factors 

related to near misses, the current approach of labelling data manually reduces its potential for large 

scale implementation without automated data processing.  

3.6.4 Limitation of the study scope 

Most studies focus either on certain types of near misses, i.e. passing events, with a wide range of 

risk factors (Beck et al., 2019), or on a range of near-miss types with a limited number of analysed risk 

factors (Aldred, 2016; Aldred and Crosweller, 2015).  

3.6.5 The absence of a unified framework for understanding near misses 

Previous studies of cycling near misses have lacked a method for understanding near misses 

regardless of the context, the types of near misses, or the related risk factors associated with these 

incidents. Overcoming this limitation may lead to a deeper understanding of near misses and for 

drawing transferable guidelines.  

3.6.6 Limitation in understanding the impact of the risk factors 

Understanding the causality and effect of the given risk factors on near misses in a Bayesian 

approach requires the variables to be random and controlled via unbiased variables that show a direct 

effect on both risk factors and near misses. Given the limitation in extracting a wide range of risk 

factors with a large sample size as aforementioned, we cannot currently quantify and assess the 

impact of risk factors in an unbiased and systematic way.  

3.7 The potential for computer vision to recognise near misses and their risk 

factors 

Cycling near misses can be viewed in the wider context of the place and time in which they occur. 

Our knowledge about near misses and their related risk factors could be built through video streams 

that may provide a very effective approach to identifying patterns related to their occurrence. In 

general, the success of artificial intelligence and computer vision in pattern recognition in the last 

decade, (LeCun et al., 2015) has added a new dimension towards understanding cities generally. 

Computer vision has the potential to understand cycling near misses by extracting safety-related 

features from still or multi-frame images in complex daily life scenes. However, we argue that near 

miss studies should not focus solely on extracting known risk factors. All the different layers of cities 

(the built environment, human interaction, transportation and traffic, the natural environment and 

infrastructure) can have potential impacts on the experience of a rider and should not be discounted 

(as explained in chapter II).  Using the different algorithms of computer vision, coupled with deep 
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learning, we can extract and analyse these features to develop automated systems that can be applied 

to multiple tasks, functioning at different scales. This will help draw significant conclusions and assist 

the process of policy-making. 

To develop an autonomous and multi-tasking system to detect near miss scenes, their types, and 

the associated risk factors, seven steps need to be considered: 1) Sensing and classifying the physical 

environment, 2) detecting objects and obstacles, 3) inferring distance and detecting safety measures, 

4) recognising motion, 5) recognising actions and inferring behaviours, 6) inferring individual 

characteristics. Such a system would make use of a range of computer vision techniques, such as image 

classification, segmentation (classifying an image at a pixel level), object detection, action recognition, 

scene awareness and understanding the underlying gist of a scene. By embedding these technologies 

within sensors, this approach would move beyond naturalistic studies towards automatic 

quantification and analysis of risk, and 7) Integrating all algorithms, which could allow causal 

inference. 

Fig. 3.5 shows how deep learning and computer vision algorithms can be integrated to identify: 1) 

The risk factors, 2) near miss scenes, 3) types of near misses and 4) the impact of the different risk 

factors on the different types of near misses. We discuss each of the components in turn in the 

following subsections. 

 

Figure 3.5: Conceptual framework for an embedded AI system to understand cycling near miss 
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3.7.1 Sensing and classifying the physical environment 

As explained in chapter 2, CNN models make it possible to tackle risk factors related to cycling near 

misses, particularly those related to the physical environment and the visual conditions. ResNet (He 

et al., 2016) has shown substantial progress in recognising thousands of objects and by far represents 

the state-of-the-art in terms of scalable deep models for classification tasks. Using This method, 

different models can be developed to extract risk factors related to cycling near misses. These models 

can be capable of detecting weather conditions and time of day and understanding the overall 

deterioration of the environment and surface conditions. Given sufficient training data, bespoke 

models can be built to detect the different dynamics of the physical environment.  

3.7.2 Detecting objects and obstacles 

Detecting road users or objects, such as a car door, is indispensable for understanding the risk factors 

related to cycling near misses and for classifying the different types of near misses as previously 

discussed (Section 3.2). Localisation is the process of identifying multiple objects in a single frame and 

is also applicable to video streams. These models use a single deep model in an end-to-end fashion to 

localise different objects with a given confidence. Similar to classification, different models of different 

convolutional structures have been developed to segment and localise objects in a single frame of an 

image such as You Only Look Once (YOLO) (Redmon and Farhadi, 2017), and MultiBox Detectors (SSD) 

(W. Liu et al., 2016).  Relying on this type of algorithm, extracting and mapping pedestrian and 

transport modes from complex urban settings can be achieved to recognise the different agents. This 

is the first step in understanding the interaction of people on bikes with other road users.  

3.7.3 Inferring distance and detecting safety measures  

Understanding what is a safe or unsafe distance when passing or overtaking a bicycle is crucial for 

detecting near miss scenes and identifying their types. CNN based computer vision techniques can be 

trained to infer the distance of objects from the camera just by looking at a still image or a video 

stream. For instance, Cao et al., (2018) trained deep CNN models to estimate the depth in a single 

image by labelling the different depths on the image. Also, He, Wang, & Hu (2018) trained a deep CNN 

model to estimate the depth of a monocular image. In the context of near misses, CNN algorithms can 

be trained with images labelled using Light Detection and Ranging (LiDAR), or ultrasonic range sensors. 

By utilising the depth estimation algorithms, a standard buffer distance can be measured and detected 

from cycling video streams, which would contribute to understanding the different types of near 

misses.  

Furthermore, it is foreseeable that once trained, these algorithms will no longer require the range 

sensors and can be applied to video streams collected in isolation. This opens up near miss study to 

the vast amounts of data that are routinely collected by riders who use action cameras.  

3.7.4 Recognising motion 

Understanding the overall motions of the different objects in the scene is another key role in 

understanding scenes of near misses and identifying their types. Various computer vision models rely 

on estimating the change in motion for a sequential frame of images, or so-called optical flow (Alvarez 

et al., 2007; Andrade et al., 2006; Ayvaci et al., 2012; Baker et al., 2011; Butler et al., 2012; Enkelmann, 

n.d.; Mallot et al., 1991; Sun et al., 2010).  
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Estimating optical flow from cycling video streams would enable the differentiation of the moving 

objects from the stationary part of the scene, in addition to understanding obstacles and occlusion. 

Thus, it would allow a better understanding of such instant actions as near misses.  

3.7.5 Recognising actions and inferring behaviours 

Moving from tracking the motion of objects in a complex scene towards classifying multiple actions 

while tracking, deep models also have shown continuous progress (Bilen et al., 2016; Wang et al., 

2015; B. Zhang et al., 2016). In fact, deep computer vision models have been successful in 

understanding human behaviours based on the poses of human skeletons and how they interact with 

other objects in a complex environment.  While the issue of detecting cycling near misses from moving 

bicycles in real-world settings has not been addressed in the literature, there is a well-established 

body of knowledge on action recognition from video streams, as explained in Chapter II. Action 

recognition using computer vision typically involves two steps: 1) extracting and encoding features 

and 2) classifying features into action classes. By utilising action-recognition models to detect the 

overall motion, the unsafe riding scenes and near misses can be automatically detected and 

categorised. There are variants of action recognition models that focus mainly on understanding 

human activities rather than the overall perception of the interaction between different agents or the 

clue of the scene in the case of the stated issue of near misses.  

In summary, not only do the architecture of action recognition models vary, but also the training 

process and the data fusion approach. Some models have been trained in an end-to-end network, 

whereas others are designed and trained in a two-stream network with an early or late-stage fusion 

of data types (RGB frames, optical flow data, etc.).  While complex model structures have yielded 

higher accuracies in given tasks, specifically, the two-streams network, these differences have 

consequences on the trade-off between model accuracy, complexity, and time needed for inference. 

3.7.6 Inferring individual characteristics 

Computer vision coupled with deep learning shows good potential for extracting information related 

to individual characteristics (as mentioned in Section 5.1). However, this topic remains the most 

significant bottleneck in achieving the system outlined in figure 5.  While it is feasible to collect 

personal characteristics of people using an embedded AI device, inferring the characteristics of those 

they come into contact with is more of a challenge and is a common issue for all near-miss study 

methodologies. Various deep models have shown good potential in extracting information in this 

regard, such as recognising gender (Levi and Hassncer, 2015; Narang and Bourlai, 2016), age (Levi and 

Hassncer, 2015), facial emotions (Minaee et al., 2021), and ethnicity (Narang and Bourlai, 2016). 

Building on these models could be beneficial for understanding the various characteristics of people 

on bikes and other road-users that would help to understand the impacts of near misses, along with 

their different types and the other risk factors.  

3.7.7 Integrating all algorithms 

There are different approaches for integrating different tasks, which depend on the availability of 

multi-label data, the ability of fusing data of different input parameters, or the availability of 

computational resources. Multitask and ensemble learning are two crucial approaches for learning 

multiple tasks (Goodfellow et al., 2017).  Multitask learning refers to simultaneous training of several 
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tasks of the same input, in which tasks can share intermediate-level representation in some shared 

layers. This approach aims to improve generalisation by pooling the examples outputted by several 

tasks (Goodfellow et al., 2017).  On the other hand, ensemble learning refers to combining multiple 

models to solve a given problem. There are different purposes of ensemble learning, most commonly, 

the bootstrap aggregating (or bagging) technique (Goodfellow et al., 2017). In this approach, several 

models are trained differently for a given task and combined to reduce generalisation error. Ensemble 

learning, however, is also used for other purposes such as data fusion or incremental learning (Parikh 

and Polikar, 2007). Certain problems can be too difficult for a given classifier to solve or too 

computationally expensive to conduct, in which case the divide-and-conquer approach can be utilised 

through incremental learning. Accordingly, ensemble learning seems suited to the diversity of 

computational tasks required to recognise cycling near misses and their risk factors. Different tasks 

can be learned by the representation of the input incrementally. This approach will allow flexibility in 

how the input data can be used and organised for each given task and minimise the computational 

requirements of training several models for various tasks at once. It would also allow modification and 

further development, at a later stage, of any given model without affecting the other assembled tasks. 

 By putting all algorithms together, a rich data set can be generated that includes information related 

to risk factors and the frequency and type of near misses. This would respond to the current 

knowledge gap in the applied methods used for studying cycling near misses. Moreover, regression 

models can be used to understand the causality and the impact of the wider range of extracted risk 

factors associated with the different types of near misses, leading to robust conclusions being drawn 

that could be more effective for both people on bikes and policy-makers.  

3.8 Summary 

In this chapter, we reviewed the literature on cycling near misses and demonstrated that because 

many near misses are a result of a combination of different factors that may not be transport-related, 

the current approaches to tackling these factors are not adequate to fully understand the genesis of 

a near miss. Here, we explore the potential of extracting data of different disciplines using a unified 

input (images/videos) that relies on computer vision methods to automatically extract the wide 

spectrum of risk factors that may cause potential risk for people on bikes. 

Different studies have focused on analysing the perceived risk related to the various types of near 

misses, in which particular progress has been achieved related to understanding the most frequent 

types of near miss - close passes - when people on bikes are over-taken in unsafe or uncomfortable 

manoeuvres by other road-users. There are various challenges related to the current methods used 

to collect, analyse, and produce evidence that could assist policy-making towards minimising risky 

situations in cities. In this chapter, we reviewed the different studies, highlighting the methods and 

scope are to underline the knowledge gap in which further work is needed.  

While the approach of the naturalistic study seems to be promising in understanding instant and 

risky situations such as near misses, the current methods related to collecting and analysing video 

streams remain a challenge for drawing significant conclusions. In the following chapters, we propose 

a framework based on artificial intelligence, relying specifically on the domain of computer vision, to 

overcome the current limitations and move towards a unified method of understanding near misses. 

Our conceptual framework explains how different deep models can be trained and utilised to reach 
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an embedded AI system that automates the detection of near miss scenes, analyses their types, their 

risk factors, and draws significant conclusions based on the causality of risk factors, behaviours of 

people on bikes, and their mutual interaction with other road-users.   
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4 
OVERALL 

METHODOLOGY 
  
 

4.1 Overview 

his chapter presents the methodological framework for a system that makes use of computer 

vision to understand when, where, and why cycling near misses occur in cities. The main aims 

are threefold; 1) to detect the wide spectrum of risk factors that may be associated with or 

cause near misses, 2) to distinguish near miss scenes from safe scenes, 3) to understand the effect of 

the identified risk factors on cycling near misses. The overall research methodology consists of four 

phases, each of which develops a method to addresses part of the stated aims. Each method is 

independent of the others and works on a specific task. However, the overall methodology provides 

an integrated framework that functions as a pipeline for detecting various road-users and events in 

cities (people, transport modes, weather conditions, built environment conditions, action recognition) 

relying on deep learning and computer vision. This chapter also introduces a framework stringency 

index that aims to evaluate the overall performance of the proposed framework for a given task, such 

as detecting cycling near misses.  

 

T 
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4.2 Proposed framework 

 

Figure 4.1: Research overall methodology 
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The framework is built based on ensemble learning (as discussed in section 3.7.7) with a single input 

of video streams. The framework outputs four outcomes: 1) critical event detection (in this case, near 

misses), 2) a list of detected risk factors and objects, and last 4) causal inference for the detected 

factors on the detected critical event. The pipeline is fully coded in Python programming, relying on 

three main libraries for deep learning; Tensorflow, Keras, and Pytorch. After training, testing, and 

validation, the pre-trained deep learning models are utilised for analysing future scenes as a pragmatic 

computer vision tool. For the objectives of this research, there are multiple advantages to selecting 

ensemble learning. During the training phase, this approach allows various tasks to be trained 

separately based on their input and computational requirements or the availability of data the might 

not be possible with other approaches such as Multitask learning. At inference, it allows the single 

input to be treated differently throughout the pipeline as either single-frame images or sequential 

images based on the specific tasks that will be explained in this chapter. In the post-production phase, 

ensemble learning allows the pipeline of the framework to be modified or expanded for a given task 

without affecting the other models in the pipeline. 

Fig. 4.1 shows the overall workflow of the proposed pipeline when a video stream is received as 

input. First, phases I and II extract risk factors and agents (pedestrians, cycles, vehicles etc.), 

respectively, while phase III detects instant actions (near misses) in parallel. The outputs of all 

preceding phases are then fed into phase IV, where causal inference is performed.  The four phases 

are described in detail in the following subsections: 

4.2.1 Phase I: Sensing and detecting the conditions of the environment 

This phase tackles the different factors related to the environment that may influence the safety of 

the cyclist. Alongside image classification, understanding the overall gist of a scene is crucial for 

understanding the built environment (Oliva and Torralba, 2006) and few studies have been done in 

this area. For instance, sensing the qualitative measures that are related to the built environment that 

may contribute to near-misses, such as road infrastructure, lighting and weather conditions. This 

phase comprises three models: 1) URBAN-i, 2) WeatherNet, and 3) SlipNet. 

Model I-WeatherNet: Weather and visual conditions are often addressed individually. WeatherNet 

introduces a novel framework to automatically extract this information from street-level images 

relying on deep learning and computer vision using a unified method without any pre-defined 

constraints in the processed images (i.e. pre-determined field of view, angle, positioning, or cropping). 

The WeatherNet model comprises four deep Convolutional Neural Network (CNN) models and uses 

residual learning to extract various weather and visual conditions such as; Dawn/dusk, day and night 

for the time of day; glare for lighting conditions; and clear, rainy, snowy, and foggy for weather 

conditions. 

Model II-SlipNet: Wet road conditions, combined with other factors related to visibility, weather 

and/or physical conditions may contribute to many risky situations and instant events when it comes 

to mobility in a complex environment. Whether driving, cycling, or even walking, a wet surface may 

cause potential near misses, or serious incidents. The classification of the road is often interpreted 

based on the perceived weather and precipitation conditions. However, in reality, there may be cases 

where the ground is wet enough to cause a critical event while the sun is shining, and conversely, 
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there may be rainy days where the ground is not yet wet. To tackle this subtle issue, we introduce 

SlipNet. SlipNet is a deep computer vision model based on Convolutional Neural Network (CNN) that 

classifies road conditions, independently of the current weather or overall visual conditions.  

4.2.2 Phase II: Detecting and tracking objects 

In this phase, we introduce simultaneous object detection and tracking of road users to the overall 

framework. The phase consists of two main models: 1) URBAN-i (Object-detection) and 2) multi-object 

tracking. 

Model III-URBAN-i (Object-detection): 

To detect road users (i.e. people, cars, trucks, buses, motorcycles, and bicycles) from extracted 

scenes, the framework uses a Single Shot Mulibox Detector (SSD) method. This method is discussed in 

terms of architecture, training, and validation in chapter VI. Unlike other object detection approaches, 

these methods rely on a single feed-forward deep CNN model. It produces bounding boxes and a 

confidence score for each category of objects presented in the image. There are three reasons for 

selecting this approach for object detection. First, the model relies on a single deep CNN model to do 

the prediction, which makes it easier and faster to train. Second, this state-of-the-art method for 

object detection shows competitive results when compared to the other object detection methods in 

many deep learning datasets, such as PASCAL VOC2007 (Everingham et al., 2015) and COCO (Lin et al., 

2014). 

Model IV- Multi-object tracker method: 

After object detection, we adopted and implemented the Simple Online and Realtime Tracking 

(SORT) method (Bewley et al., 2016). The SORT method is suitable for online object-tracking because 

1) Its speed allows fast computation without a huge drop on FPS, 2) it relies on simple techniques such 

as Kalman Filter, which makes it easy to implement online without previous training.   

The models and methods addressed in Phase I and Phase II will be explained in detail in chapter V.  

4.2.3 Phase III: Detecting instant actions  

Model V-CyclingNet: 

In this phase, we introduce a novel method called CyclingNet for detecting cycling near misses from 

video streams generated by a mounted frontal camera on a bike. CyclingNet is a deep computer vision 

model based on a convolutional structure embedded with Self-attention Bidirectional Long-short 

Term Memory (LSTM) blocks that aim to understand near misses from both sequential images of 

scenes and their optical flows. The model is trained on scenes of both safe rides and near misses. 

Action recognition, relying on the CyclingNet model will be discussed in detail in Chapter VI. 

4.2.4 Phase IV: Causal inference  

We aim, after precisely extracting a combination of risk factors, to understand: 1) the cause and 

effect of individual risk factors on the detected events, 2) the causality of these risk factors in the 

detected events in a time series. Accordingly, this phase relies on statistical modelling techniques to 
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uncover the causes and the effects of each extracted factor on the detected events. It includes two 

types of analysis, which will be covered, in detail, in Chapter VII. These types of analysis are: 

1) Logistic Regression: We use the detected variable corresponding to critical events as the 

dependent variable, with detected objects and risk factors are independent or control variables in a 

logistic regression model. Besides the logistic model, we also include different parametric and non-

parametric tests (i.e. t-test) to determine the strength and significance of the results.  

2) Granger Causality: Granger causality is a probabilistic method for investigating the causality 

between two variables in a time series dataset. Unlike understanding the general cause and effect of 

the individual factors, causality, or the ‘Granger-cause’, focuses on highlighting when a particular 

variable comes before another in time series data.  

4.3 Materials and datasets 

Each deep model introduced in the overall methodology is trained separately on different datasets 

that serve the purpose of the given task of the model, which will be discussed in the upcoming three 

chapters (Chapter V, VI, and VII). However, it is essential to highlight that the proposed framework is 

validated on a single dataset that accumulates video streams of safe and unsafe rides in various 

weather, visual and built environment conditions. The dataset is also utilised and explained in detail 

in Chapter VI. In summary, this self-collected dataset from YouTube consists of 74,477 sequential 

frames, and we computed their equivalents of optical flows frames (74,469). 8,567 sequential frames 

belong to near miss cases (11.5% of the total sequential frames), which occur at sparse intervals. They 

represent 209 unique near miss videos of an average duration of 1.3 seconds (40.9 sequential frames). 

The purpose of this dataset is to validate the performance of the overall methodology rather than 

the individual methods. It is worth mentioning that this dataset is manually labelled to ensure higher 

accuracy and relevance of the dataset to the stated issues of this research. 

4.4 Framework Stringency Index  

Similar to training and validation datasets, the performance of each model introduced in the pipeline 

of the overall methodology is evaluated with different metrics and loss functions depending on the 

types and scopes of the given task of the model, which will be discussed in detail in the upcoming 

chapters (Chapter V, VI, and VII). Nevertheless, the models not only vary based on their evaluation 

metrics but also in the resulting accuracies and precisions. On the other hand, as shown in Fig. 4.1, 

The relations between these different models vary. For instance, some models function consecutively, 

while others function in parallel to other phases. The goal of this research is to provide a stable 

framework to be used as a computer vision tool for the detection of near misses, risk factors, and their 

effects on near misses. This makes it a challenge for a pipeline of mixed models and different ensemble 

techniques to be evaluated as a whole. Traditionally, the performance can be measured based on the 

sum of the losses of each model when models are evaluated similarly and hold the same weights of 

utilisation in the entire pipeline. Given that we aim to develop a verified pipeline of the different pre-

trained models, we introduce a new stringency index to indicate the performance of the entire 

framework on a given input that can draw a conclusion based on three aspects: 1) the individual loss 
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of each model, 2) the number of outputs of each model, and 3) the weight of the utilisation of each 

model in the framework. The framework Stringency Index (SI) is defined as: 

𝑆𝐼 = ∑ ∑ ∑  ((𝛽𝑖 ∙ 𝑃𝑖)/𝑡)
𝑗
𝑖=1

𝑛
𝑜=1

𝑡
1                                   (4.6) 

where 𝑗 denotes the number of outputs per model, 𝑛 denotes the number of models in the framework, 

𝑡 represents the total number of sequential frames, 𝑃 represents the estimated average precision 

between the predicted and actual value for a single output 𝑜 of a given model 𝑖, and  𝛽 represents the 

normalised statistical weight of a given risk factor on a given task (i.e. detection of near miss), which 

will be addressed, in detail, in chapter VII.  

4.5 Summary 

This chapter introduces the overall methodology of the research. It shows the organisation of the 

different deep and mathematical models in an integrated pipeline. The general goals of this 

framework are to detect critical issues in cities, such as cycling near misses, while extracting their risk 

factors and their effect on these critical events. This chapter also introduces a framework stringency 

index that aims to evaluate the overall methodology, in addition to the evaluation metrics conducted 

on the individual methods and models. The importance of this index can be highlighted in evaluating 

the weights and the importance of the individual models in their function and utility in the overall 

methodology, nevertheless, the number of outputs that each sub-method contributes to the overall 

methodology. Last, the chapter also highlights the importance of the flexibility of the introduced 

pipeline that could allow and cope with any future adaptation, either in terms of refining methods or 

introducing new ones.  
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5 
SENSING THE ENVIRONMENT  

AND EXTRACTING RISK FACTORS 
  

5.1 Overview 

 ensing the environment at a given time and space is indispensable for scene awareness and a 

better understanding of critical events. This chapter describes a set of algorithms that are used 

to sense the environment and extract risk factors that may be associated with near misses, which 

are used in phases I and II of the methodological framework presented in figure 4.1 in Chapter 4. The 

algorithms are intended to detect the multi-labels of weather, visual and surface conditions with a 

unified method that can be easily used for practice. The proposed framework automatically extracts 

this information from street-level images relying on deep learning and computer vision using a unified 

method without any pre-defined constraints in the processed images. In phase one, a pipeline of five 

deep Convolutional Neural Network (CNN) models is trained, relying on residual learning using 

ResNet50 architecture, to extract various factors such as Dawn/dusk, day and night for time detection, 

and glare for lighting conditions, clear, rainy, snowy, and foggy for weather conditions, and lastly wet 

or dry for surface conditions. In phase two, an object detection model is introduced to detect and track 

the different road users (such as persons, cars, trucks, bicycles, trains, motorcycles and buses).  

 

The materials and outcomes of this chapter are published in two journal articles and a conference 

paper as follows:  1) WeatherNet (Ibrahim et al., 2019a), 2) URBAN-i (Ibrahim et al., 2019a), and 3) 

SlipNet (Ibrahim et al., 2020a).

 

s 
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5.2 The overall framework map 

This chapter covers the first two phases of the overall methodology introduced in Chapter IV. Fig. 

5.1 shows a thumbnail of the overall methodology, highlighting the study area covered in this chapter. 

The first phase covers sensing the overall environment and extracting risk factors, whereas the second 

one covers the localisation and tracking of road users. It is worth mentioning that these two phases 

are trained separately. However, their inference takes place, in parallel computation, simultaneously.  

5.3 WeatherNet 

5.3.1 Architecture 

WeatherNet is a framework of parallel deep CNN models trained to recognise weather and visual 
conditions from street-level images of urban scenes (See Fig. 5.2). The architecture comprises four 
deep CNN models to detect dawn/dusk, day, night-time, glare, rain, snow, and fog, respectively. The 
four models are: 1) NightNet detects the differences between dawn/dusk, day and night-time. It aims 
to understand the dynamics of time despite the dynamics of weather conditions and urban structure, 
2) GlareNet detects images with glare regardless of its source (sun or artificial light) in all weather 
conditions and times of the day. Glare is defined as a direct light source that can be seen to cause rings 
or a star effect on the length of the camera without any correction, 3) PrecipitationNet detects clear, 
rainy, or snowy weather for day and night-time. It is worth mentioning that “clear” as a term is used 
to refer to no precipitation, 4) FogNet detects the presence of fog.  

 

Figure 5.1: Keymap of the overall methodology covered in this chapter 
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Models 2 and 4 are trained as binary classifiers (0, 1) that detect whether one of the aforementioned 

events occurs, whereas models 1 and 3 are trained to output one of three classes. The main reasons 

for training different sets of CNN models then combining them in a framework are the complexity of 

the classification of urban scenes and the mutual occurrence of one or more of the events at the same 

time. Fig. 5.3 explains the classes that may occur in one scene by solid arrows, whereas the mutually 

exclusive classes are not linked. For instance, it may be rainy and foggy during the daytime, while glare 

 

Figure 5.2: The framework of the WeatherNet. 

 

 

Figure 5.3: Exclusive vs co-existing classification classes. 
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is present. Therefore, combining separate models that detect a certain event in a binary/categorical 

fashion gives a better description of the events in a single image.  This also lends modularity to the 

system, enabling simple use of all or part of the framework for different studies, depending on which 

factors are useful. Furthermore, the modular form makes the performance of the individual models 

independent of each other, which allows the modification or improvement of one classifier or more 

without changing the entire framework.  

The architecture of the introduced models is based on residual blocks (for more details, see section 

2.3). We have selected ResNet50, in addition to our base model, for designing our network. The main 

reason for selecting ResNet50 is due to the trade-off between accuracies, training, and inference 

runtime. The training and testing images are resized to (224 X 224 X 3) and fed-forward to the input 

layer of ResNet50 via transfer learning. The gradients, pre-trained on the ImageNet database 

(Krizhevsky et al., 2012; Russakovsky et al., 2015),  of the different residual blocks of convolution, 

pooling, batch normalisation layers are set to false, whereas the gradient of the two fully-connected 

layers of 64 nodes are activated by a ReLU function (Dahl et al., 2013; Glorot et al., 2011), defined as:  

  𝑓(𝑥) = max (0, x)                                   (5.1) 

where 𝑥 is the value of the input neuron.  

The output layer of the model gives a binary output of single neurons activated based on a sigmoid 

function, defined as: 

  𝛅(𝒙) =
𝟏

𝟏+𝒆−𝒙                                                                                                                                  (5.2) 

where 𝑥 is the value of the input neuron. 

The four CNN models are trained based on the back-propagation of error with a batch size of 32, 

with ‘adam’ optimiser (Kingma and Ba, 2015) and with an initial learning rate of 0.001 and momentum 

of 0.9. Each model is trained for 100 training cycles (epochs).  

5.3.2 Base model architecture 

In order to evaluate the introduced methods in this chapter, we have built a deep Convolutional 

Neural Network (CNN) model (Guo et al., 2016; Hinton et al., 2006; LeCun et al., 2015) that can be 

used as a base model. This model represents a lighter version of the Vgg16 model that requires less 

time for training from scratch with minimal computational resources and has been utilised previously 

for detecting slums and informal settlements from street-level images (Ibrahim et al., 2019a). The 

model transforms images into an input layer of size (200 x 200 x 3). The overall architecture of the 

base model is built based on 10 hidden layers of different types. After the input layer, the model 

consists of 4 convolutional layers. After the first two, each layer is followed by a Max-pooling layer. 

After the Flatten layer, two fully-connected layers are applied, followed by a single neuron output 

layer.  

 The First three layers consist of 32 Feature maps of subsampling (3 x 3), While the third one consists 

of 128 feature maps of subsampling (3 x 3).  The four convolutional layers rely on Rectified Linear Unit 

(ReLU) as an activation function to increase the nonlinearity of the model and enhance the 

performance of the neurons (Dahl et al., 2013; Glorot et al., 2011).  
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Moreover, the three Max-pooling layers are of a downsampling size (2 x 2). These layers are 

responsible for reducing dimensionality, in addition, it allows the model to adapt to the variation of 

the scale, rotation, or skewing of samples that represent a certain feature (Scherer et al., 2010). After 

these convolutional and Max-pooling layers, the flatten layers allow the model to convert the feature 

maps to neuron vectors that can be feed-forwarded to the two fully-connected layers. The first fully-

connected layer consists of 256 neurons, whereas the second one consists of 64 neurons. Both of 

these layers are activated based on a ReLU function. In order to avoid overfitting, we have applied 

features dropout regulation after several hidden layers (Dahl et al., 2013; Srivastava et al., 2014). The 

output layer is based on the number of outputs of each model. It is activated based on a sigmoid 

function.  

5.3.3 Data  

While Google Street-view images are a good source for various deep learning applications in cities, 

the images presented there only represent urban areas at a single weather condition, commonly clear 

weather, neglecting other visual and weather conditions that impact the appearance of cities. On the 

other hand, there are different datasets for detecting different weather conditions. For instance, the 

Image2Weather dataset consists of more than 180,000 images of global landmarks of four weather 

categories, such as sunny, cloudy, rainy, snowy and foggy (Chu et al., 2016). Similarly, the Multi-class 

Weather Image (MWI) dataset consists of 20,000 images of different weather conditions (Z. Zhang et 

al., 2016). Another example is a binary weather dataset that contains 10,000 images belonging to 

either sunny or cloudy weather (Lu et al., 2017). Also, a large dataset of images is presented to describe 

weather conditions from the view of cloud intensity, such as clear, partly cloudy, mostly cloudy, or 

cloudy, including time and location data (Islam et al., 2013). However, the dataset only represents 

cities at daytime for clouds intensity, neglecting the other factors. 

Put together, creating our own dataset that represents the different environmental conditions of 

urban scenes becomes a crucial step to conduct this research. The dataset comprises 23,865 images 

that are gathered from the web, specifically Google images for training and testing, using different 

queries for each class of the weather and visual conditions that includes day and night-time, glare, 

fog, rain, snow and clear weather. These images can be accessed from Google image engine with a 

python script via a combination of ‘street view’, ‘urban area’, ‘highway’ or ‘road‘ with keywords for 

weather classes and an optional keyword for city names in a Boolean expression. For example, in the 

case of rain, these expressions are rainy AND road, rainy AND urban AND scene*, rainy AND street*, 

rainy AND highway,  rainy AND London, rainy AND Paris, rainy AND Cairo, or rainy AND city. After 

repeating this process for each class and before reaching the final size of the dataset, the downloaded 

images are inspected qualitatively to remove duplicates and disregard images that do not belong to 

any of the subcategories of each given task.  
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It is worth mentioning that the process of manually labelling these images to the subcategories of 

each given task and verifying the outcome is time-intensive. This is because some images may include 

features belonging to two exclusive classes. After the first inspection, a thorough categorisation 

needed to be made, especially when images do not contain enough features to represent a visual 

class. A decision to disregard these images is needed. Accordingly, such a process increases the 

workload and time interval needed to make realistic labelling for the data beyond their meta-data. 

On the other hand, selecting images based on their public accessibility without breaching any 

individuals’ copyrights was also a key for selecting or disregarding images. Subsequently, the images 

collected were used only for training and testing, without publicly sharing or posting them elsewhere. 

Table 5.1 summarises the classes and sample size of data sets used for each model. Fig. 5.4 shows a 

sample of the different classes for training, testing, and validation. The datasets for each CNN model 

are subdivided into training and testing sets in an 80%-20% train-to-test fashion.  

 

Figure 5.4: Samples of WeatherNet dataset 

Table 5.1: Sample size and categories of the data sets 

CNN model  Dataset classes Sample size 

Model1- NightNet Dawn/Dusk 1673 
 Day 2584 
 Night 1848 

Model2- GlareNet Glare 1159 
 No glare 3549 

Model3- PrecipitationNet Clear 4017 
 Rain 2343 
 Snow 2347 

Model4- FogNet Fog 718 
 No fog 3627 
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The images used for training are still limited, nevertheless, deep models require a large data set to 

ensure better generalisation.  Accordingly, we have applied a data augmentation technique, on the 

one hand, to enhance the training of the model, on the other, to account for the class imbalance of 

each model by generating extra images for the under-represented classes such as fog and glare. The 

algorithm allows the model to create random images based on four attributes; rescale, shear, zoom, 

and horizontal flips. These techniques are often common approaches for best practices to enhance 

the training process and the overall performance of deep learning models (Goodfellow et al., 2017; 

LeCun et al., 2015). While these approaches augment the training data, yet they do not change the 

class of the images. Nonetheless, they offer realistic possibilities that can represent various urban 

scenes of the same location. Fig. 5.5 shows an example of an original image and a sample of 15 

augmented images generated from the original image.   

5.3.4 Evaluation metrics  

We evaluate the performance of each CNN model using the following metrics: A cost function of 

Cross-Entropy to evaluate the model loss during training, testing, and validation. It is defined as: 

E = − ∑ 𝑡𝑖
𝑛
𝑖 log(𝑦𝑖)                                                                                                                                         (5.3)  

where 𝒕𝒊 is the target vector, 𝒚𝒊 is the output vector, n represents the number of classes. We also 

calculated accuracy, precision and recall, false-positive rate, and F1-score for each model, defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)                                                                           (5.4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                                                                (5.5) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                        (5.6) 

𝐹𝑎𝑙𝑠𝑒 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)                                                                               (5.7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                   (5.8) 

Where 𝑇𝑃 are the predicted true-positive values, 𝑇𝑁 are the predicted true-negative values, 𝐹𝑃 are 

the predicted false-positive values, and 𝐹𝑁 are the predicted false-negative values.  

Last, we compare the performance of our framework with other benchmarks in terms of scope and 

accuracy. This discussion is partly qualitative due to the absence of benchmark data sets to compare 

 

 

Figure 5.5: The urban scene for a planner area in London and examples of data augmentation  
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all methods results. However, we also evaluate the performance of WeatherNet on two available 

datasets (Gbeminiyi Oluwafemi and Zenghui, 2019; B. Zhao et al., 2018) and compare the results of 

our framework with the original outputs.  

5.3.5 WeatherNet results 

Putting all the algorithms of WeatherNet together, the framework can enable the users to extract 

information of georeferenced weather and visual conditions to be used for multi-purpose research 

related to scene awareness, in which weather and visual conditions play a crucial role.  

Table 5.2 summarises the evaluation metrics of each CNN model at the testing phase. After training 

the four CNN models for 100 epochs, the accuracies for the NightNet, GlareNet, PrecipitationNet, and 

FogNet on the test data sets are 91.6%, 94.8%, 93.2%, and 95.6%, respectively. The models also show 

high precision and F1-score with low false-positive rates of 6% or lower. These results achieved by 

transfer learning strongly outperform the performance of the introduced base model. To investigate 

further the performance and the fitness of each model during training and testing, Fig. 5.6 shows the 

training and validation accuracies for each epoch, highlighting the overall performance and fitness of 

each model. It shows the consistency of the accuracies between the training and testing curves, in 

which no over-fitting is observed. However, due to the high variance in data and subtle differences 

among classes for the same model, the output for each training cycle show a high level of instability 

to converge and reach global minimum loss. 

 

Table 5.2: Diagnoses of the CNN models for the test sets. 

CNN model  
Loss (Cross 

Entropy) 

Accuracy 

(%) 

Precision 
(a) 

Recall/ 

True-

positive 

rate (a) 

False-

positive 

rate (a) 

F1-

score 

Model1- NightNet 0.098 91.6 0.885 0.825 0.045 0.854 

Model2- GlareNet 0.040 94.8 0.883 0.895 0.035 0.889 

Model3- 

PrecipitationNet(b) 0.077 93.2 0.959 0.932 0.068 0.947 

Model4- FogNet 0.037 95.6 0.862 0.829 0.022 0.845 

(a) The metrics are evaluated for the referenced class -indexed zero- for each model. 
(b)  This model contains three classes, in which the false-positive rate is shared with the classes prior to the 

referenced class. 
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Table 5.3 evaluates our framework against other existing methods that deal with some aspects of 

weather and visual condition detection. The method used for each model and the yielded accuracy on 

the dataset used for each method is also shown. WeatherNet performs favourably in terms of accuracy 

compared with the other methods, but it should be noted that the datasets used are not the same. 

 

 

 

 

Figure 5.6: The training and test accuracies per training cycle for each CNN model 
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Methods  

Night-time 

detection 

(classes) 

Glare 

detection 

Fog 

detection 

Weather 

detection 

(classes) 

Overall 

score 

(Roser and Moosmann, 

2008) 

Regions of 

interest- 

Histograms 

- - - 

X (clear, 

light rain, 

heavy rain) 

0.85 

(Islam et al., 2013) 

Support 

Vector 

Regressor 

- - - 

X (clear, 

partly 

cloudy, 

mostly 

cloudy, 

cloudy) 

NA 

(Chu et al., 2016) 

Random 

Forest 

Classifier  

- - x 

X (Sunny, 

cloudy, 

rainy, 

snowy) 

0.70 

(Lu et al., 2017) CNN model - - - 
X (Sunny, 

cloudy) 
0.91 

(Villarreal Guerra et al., 

2018) 

Different types 

of CNN 

models 

- - x 
X (snowy, 

rainy) 
0.80 

(Gbeminiyi Oluwafemi 

and Zenghui, 2019) 

SAID 

ENSEMBLE 
METHOD 

- - - 

X (sunny, 

cloudy, 
rainy) 

0.86 

(B. Zhao et al., 2018) CNN-LSTM  - - x 

X (sunny, 

cloudy, 

rainy, 

snowy) 

0.91 

WeatherNet 

 

Multiple 

Residual deep 

models 

x 

(Dawn/dusk, 

day, night) 

x x 
X (Clear, 

rain, snow) 
0.93 

 

Table 5.3: Evaluations of WeatherNet framework on other open-sourced datasets. 

Open-

sourced 

benchmark 

datasets 

Total images Labels Method 
Testing 
scope 

Original method 
score 

WeatherNet score 

Multi-class 

Weather 

Dataset for 

Image 

Classification 

(Gbemi

niyi 

Oluwafe

mi and 

Zenghui

, 2019) 

1,125 

Cloudy, 

sunshine, 

rain, 

sunset 

SAID 

ENSEMBLE 

METHOD II 

Rain 

detection 
Accuracy: 95.20% Accuracy: 97.69% 

Multi-label 

weather 

dataset (test-

set) 

(Zhao et 

al., 

2019) 

2,000 

(Sunny, 

cloudy, 

rainy, 

snowy, 

foggy) 

CNN-Att-

ConvLSTM 

Sunny/clear 

detection 

Fog  

detection 

Rain 

detection 

Snow 

detection  

(Precision/Recall/F1) 

0.838/0.843/0.840 

(Precision/Recall/F1): 

0.856/0.861/0.858  

(Precision/Recall/F1): 

0.856/0.758/0.804 

(Precision/Recall/F1): 

0.894/0.938/0.915 

(Precision/Recall/F1): 

0.924/0.827/0.872 

(Precision/Recall/F1): 

0.833/0.940/0.883 

(Precision/Recall/F1): 

0.958/0.651/0.775 

(Precision/Recall/F1): 

0.789/1/0.882 

Average 

scores 

AP, AR, AF1 

0.86, 0.85, 0.85 

AP, AR, AF1 

0.88, 0.85,0.85 
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To provide a quantitative comparison, we apply the WeatherNet to two open-source datasets used 

in previous studies (Gbeminiyi Oluwafemi and Zenghui, 2019; Zhao et al., 2018). Table 5.4 describes 

the datasets used for evaluation in terms of size, labels and the original approach used for prediction. 

The outcomes and evaluation of our model scores on these datasets in comparison to the original are 

shown, using the same evaluation metrics used in the original research (accuracy for the first dataset 

as it the one measure mentioned in their article, precision, recall and F1-score for the second dataset). 

In the case of the first dataset, the table shows the labels used in the method introduced by Gbeminiyi 

Oluwafemi and Zenghui (2019), which are cloudy, sunshine, rain, sunset. It is worth mentioning that 

the comparison is only based on one class, rain, which is the only common class between WeatherNet 

and their method. WeatherNet achieves a higher accuracy score than their method using their test 

set. In the case of the second dataset, our model shows a higher precision than the original method 

when classifying clear and rain but a lower precision when classifying fog and snow. Nevertheless, a 

higher recall for only fog and snow classes has been achieved by WeatherNet. By comparing F1-scores, 

WeatherNet achieves higher scores when it comes to classifying clear and fog weather and lower ones 

when classifying rainy and snowy weather. Both methods achieve an equal average F1-score of 0.85 

and an equal average recall of 0.85, whereas WeatherNet achieves a higher average precision. On the 

other hand, it is worth mentioning that the comparison has been made only for the classes that are 

common for both methods, whereas some classes, such as night-time, day-time, daw/dusk time, and 

glare,  have not been included in the comparison due to their absence in the mentioned method 

introduced by Zhao et al. (2019), whereas one class, cloudy, has been excluded from the comparison 

due to its absence in WeatherNet. 

Last, as we aim to use the proposed framework pragmatically for recognising and mapping weather 

and visual conditions in cities, Fig. 5.7 shows a few examples of the different model predictions of a 

wide range of urban scene images taking from different cities globally. It highlights the diversity of the 

images used for prediction. Regardless of the change of urban structure, camera angles, scene lighting, 

and components, the proposed models show high accuracy for scene awareness related to visual and 

weather conditions. 
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5.3.6 Limitations 

The proposed framework shows novelty in analysing a wide range of street-level images of cities 

that belong to various urban structures, visual, and weather conditions globally. The precision of the 

framework in classification depends on the individual accuracy of each trained CNN model. While the 

miss-classification error for each classifier is below 8% on the test sets, as for future work, more 

 

 

 

Figure 5.7: The results of the CNN models on street-level images from different cities globally 
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experiments with different architectures of CNN models or the way the framework is pipelined may 

enhance the accuracy. 

While the trained deep models show high accuracy, precision, recall and F1-score in classifying 

scenes regardless of the position of the camera, weather, or lighting conditions, misclassification still 

can be encountered in scenes. This is due to various settings, such as scenes of heavy cloud that tends 

to seem rainy or scenes of heavy fog that tend to seem snowy. Similar to human eyes, single shots can 

be interpreted differently if they have only been seen once, and the quality of classification can be 

enhanced by seeing sequential images. Similarly, such an issue can be solved when video stream data 

is fed to the framework, where a threshold or a smoothing function is applied for a sequence of frames 

of short-time intervals. Subsequently, the best probabilities of the prediction can be taken into 

account for classification. The overall accuracy of multi frames can be enhanced by a threshold of 

multiple predictions. 

Comparing the performance of the proposed models to previous work remains a limitation due to 

the absence of weather datasets that comprise similar classes as presented in this research (i.e. 

including images of weather at day and night-time and images with and without glare). However, this 

makes the proposed model indispensable in responding to the current knowledge gap in this research 

area and for analysing the variations of urban scene images by deep learning and computer vision that 

may be helpful for driver-assistance systems or planners and policy-makers in cities. 

5.4 SlipNet 

Road conditions, in terms of slippery, combined with other factors related to visibility, weather 

and/or physical conditions may hold responsible for many risky situations and instant events when it 

comes to mobility in a complex environment. Whether driving, cycling, or even walking, a wet surface 

may cause potential near misses or serious incidents. The classification of the road is often interpreted 

based on the perceived weather and precipitation conditions, however, in reality, they may be cases 

where the ground is wet while it is a sunny day which can cause critical events than on a rainy day, 

whereas the ground is not wet yet. To tackle this subtle issue, we introduce SlipNet. The SlipNet is a 

deep computer vision model based on CNN to only classify road conditions, despite the current 

weather or overall visual conditions. Combined with other state-of-the-art models, such as 

WeatherNet, we aim to precisely extract a combination of risk factors that can be used for 

understanding the causality of risky situations such as near misses or serious incidents. Accordingly, 

this model is indispensable for any safety-related research.   

 

 

Figure 5.8: the architecture of the SlipNet model 
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5.4.1 Architecture 

Fig.  5.8 shows the overall architecture of the SlipNet model. Similar to WeatherNet, we trained the 

SlipNet model based on residual learning, relying on ResNet50 architecture via transfer learning.  Two 

fully-connected layers were added, each contains 64 neurons and activated with Linear Rectified Unit 

(ReLU), to output a single neuron.  We applied a Dropout layer after each fully-connected layer of size 

0.3 to avoid over-fitness. The binary classes are determined based on a threshold of 0.6 of the 

probability of the outputted neuron. Such a threshold is selected based on a trial and error to output 

a prediction with optimum Recall, False-negative, and Precision values.  The accuracy of the trained 

model is based on the function of the cross-entropy of error. After 100 cycles of training (epochs), the 

training and testing accuracies are higher than 90%, whereas the loss is less than 0. 1. The outcomes 

of the training and testing curves for both accuracy and loss show relatively uniform results with no 

strong evidence of over-fitness. While the model can be improved in various ways from a data 

collection perspective and hyperparameter tuning, the current result of the SlipNet model shows a 

reliable outcome for generalisation and deployment purposes to be used for extracting data from 

images or video streams.  

5.4.2 Data 

There are no existing deep learning datasets that label and classify the surface conditions in terms 

of slippery. While Google Street View images are a good database for many urban analytics 

applications, they represent urban scenes in a single condition of clear weather during the daytime. 

This lacks the essential variations of the different conditions to train the introduced model.  Given this 

limitation and the absence of any benchmark data set, collecting our database becomes the only 

reliable resource to conduct this research. Based on the Google images search engine, we collected 

more than 5000 images that belong to urban and non-urban scenes, which includes various types and 

conditions of the ground at different times and different weather conditions. Also, these images are 

collected without any restriction for the image size, existence of urban forms, components, or field of 

view. After visual inspection, we focused on 3367 images that belong to both dry and wet ground. 

Furthermore, these 3367 images are divided according to training and test with 0.8 to 0.2 proportions, 

respectively.  

The ground truth for the model is defined based on three criteria. First, the obvious case of the 

surface conditions from where the urban scene image is taken. Second, the metadata associated with 

the images from search engines (such as Google search engine) when data is gathered. Put all 

together, the collected images are assessed for ensuring label relevancy and a wide representation of 

image orientation and lighting conditions by visual inspection and only then the images are labelled 

to either wet or dry surface. It is worth mentioning that these images are only used for training and 

validation, whereas the images presented in the results section for further validation are taken by the 

authors. 

In order to allow a higher degree of freedom for analysing the status of a wide spectrum of urban 

scene images, we trained the model to understand both aerial perspective and street view images. 

Accordingly, this will allow the model to identify the status of the urban scenes, regardless of the angle 

and the elevation of the input image. On the other hand, the model can also classify images of daytime 

or night-time shots of different weathers, including sunny, foggy, rainy, or snowy weather.  While this 

variation complicates the training process and adds limitations to the model, however, it allows the 
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proposed model to be widely used and furtherly developed to meet various mapping or sensing 

purposes. 

5.4.3 Results 

Table 5.5 summarises the evaluation metrics of the SlipNet model at the testing phase. After training 

the model for 60 epochs, the model’s accuracies are 94.2% and 92.3% for training and testing, 

respectively, as shown in Fig. 5.9. The models also show high precision and F1-score with low false-

positive rates of less than 1%.On the other hand, Fig.5.10 shows the prediction results on a sample of 

the test set, highlighting the variations of urban scenes that include various weather, visual, and 

ground conditions. 

 

Table 5.4: Diagnoses of the SlipNet models for the test sets. 

CNN 

model  

Loss (Cross-

Entropy) 

Accuracy 

(%) 
Precision  

Recall/ True-

positive rate  

False-

positive 

rate  

F1-score 

 SlipNet 0.098 92.3 0.918 0.940 0.096 0.929 

 

Figure 5.9: The training and test accuracies per training cycle for each CNN model 
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5.4.4 Limitations 

While the introduced integrated model shows novelty in analysing a wide range of images that 

belong to different environmental conditions, the limitations of some models such as the SlipNet 

model appear in analysing images that are mixed with two classes in the same scene (i.e. mainly dry 

surface with a partly wet surface). In future work, a potential way to develop the model further is by 

using semantic segmentation and scene parsing. This pixel-level segmentation would allow the model 

to provide multiple categorizations and localisations of the predicted class for a single image. 

Accordingly, this will enhance the accuracy of the model when detecting complex scenes in the real 

world. 

The model precision in detecting and classifying urban scenes depends on several factors. First, the 

individual accuracy of each pre-trained CNN model is a key factor. Each one can be fine-tuned to 

achieve better accuracy and results with larger training datasets, higher computational power, and 

deeper networks.  However, the goal of this research is to show evidence on how to sense and tackle 

the complexity of urban issues with deep learning and computer vision with less effort and using data 

that are available and accessible by everyone anywhere in the globe, without the means of expensive 

sensors. 

5.5 Object detection and tracking 

5.5.1 Architecture 

The introduced architecture consists of two consecutive phases that are trained separately, in which 

the output of the object detection model is an input for the tracking method. First, to detect people 

and transport modes from urban scenes, we have used a Single Shot Multibox Detector (SSD) method 

(W. Liu et al., 2016). Fig. 11 shows the overall architecture of the SSD model. Unlike other object  

 

Figure 5.10: Sample of the inferred images by the SlipNet model 
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detection approaches, SDD relies on a single feed-forward deep CNN model. It produces bounding 

boxes and a confidence score for each category of objects presented in the image. There are three 

reasons for selecting this approach for object detection. First, the model relies on a single deep CNN 

model to make the prediction, and this makes it easier and faster to train. Second, this state of the art 

method for object detection shows competitive results when compared to the other object detection 

methods in many deep learning datasets, such as PASCAL VOC2007 (Everingham et al., 2015), COCO 

(Lin et al., 2014), and ILSVRC.  

The object-detection model architecture relies on a base network for high-quality image 

classification, as discussed in section 2, that is truncated before the layers of classification, and an 

additional structure to the network is added. The first base of this network is built on the architecture 

of the VGG16 model that deals with classifying several image categories (Simonyan and Zisserman, 

2015), including people and the different transport modes. The second part of the model relies on 

multi-scale feature maps and convolutional layers for object detection. These added convolutional 

features enable the model to detect an object at different scales and give a confidence score for each 

bounding box for the occurrence of an object in the image. The major difference of this approach in 

comparison to the training of other detectors is that the model only requires an input image with a 

bounding box as a ground truth. This facilitates the training process of the model while maintaining 

high accuracy for object detection.  

The objective loss function of the model is defined based on the weighted sum of the confidence 

loss (conf) and the localization loss (loc) (W. Liu et al., 2016). It is computed as: 

𝐿(𝑥, 𝑙, 𝑔) =  
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) + 𝛼 𝐿𝑙𝑜𝑐 (𝑥, 𝑙, 𝑔))                   (5.9) 

where 𝑁 is the number of the matched default bounding boxes, if 𝑁 = 0, the loss is set to 0, 𝛼 is set 

to 1 by cross-validating the model. The confidence loss (𝐿𝑐𝑜𝑛𝑓) is defined based on a softmax loss for 

multiple confident of classes (c).  

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) =  − ∑ 𝑥𝑖𝑗
𝑝 log(𝑐̂𝑖

𝑝) −𝑁
𝑖∈𝑃𝑜𝑠 ∑ log(𝑐̂𝑖

0)𝑖∈𝑁𝑒𝑔 ,  

where 𝑐̂𝑖
𝑝 =  

exp (𝑐𝑖
𝑝

)

∑ exp (𝑐
𝑖
𝑝

)𝑝
                     (5.10) 

 

Figure 5.11: the architecture of the SSD model 
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The localization loss (𝐿𝑙𝑜𝑐 ) is a smooth loss between the parameters of the predicted box (𝑙) and 

the ground truth bounding box (𝑔) where the centre of the default bounding box (d) is (𝑐𝑥, 𝑥𝑦) and its 

width (𝑤) and height (ℎ). It is computed as: 

𝐿𝑙𝑜𝑐 (𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘

𝑚∈{𝑐𝑥,𝑥𝑦,𝑤,ℎ} 𝑠𝑚𝑜𝑜𝑡ℎ 𝐿1(𝑙𝑖
𝑚 − 𝑔̂𝑖

𝑚)𝑁
𝑖∈𝑃𝑜𝑠                   (5.11) 

We have used the weights of an open-source pre-trained SSD model implemented using the Pytorch 

library in Python programming (deGroot and Brown, 2017). The goal was not to train a new deep 

learning model for object recognition to achieve better results but rather to adapt the current state-

of-the-art model to the other algorithms of the URBAN-i model. 

In order to track the detected multi-objects in the sequential frames, we adopted the SORT method 

(Bewley et al., 2016). The advantages of using this method, besides its high performance, can be 

summarised in two main aspects: First, Its inference speed allows faster computation for the overall 

methodology without dropping multiple FPS. Second, Its simplicity for implementation without 

previous training is crucial for deploying the overall pipeline of the introduced framework. The 

objectives of the SORT method is threefold: 1) to propagate the states of an object into future frames, 

2) correlating the detections of the current phase with the existing objects, and last 3) managing the 

lifespan of the bounding boxes of the tracked objects. To achieve these objectives, the SORT method 

relies on Kalman Filter (Kalman, 1960) and Hungarian algorithms that use a series of measurements 

observed over time to infer unknown variables of the displacements of an object in sequential frames. 

This identity of an object and displacements of the inferred frame is based on a linear constant velocity 

model, which is independent of the motions of other objects and camera movement. The state of each 

object can be identified as:  

𝑋 =  [ u, v, s, r, 𝑢,, 𝑣,, 𝑠,]𝑇                                                                                                                             (5.12) 

where u, 𝑣 denote the coordinates of a pixel centred at the object,  S and r denote the scale and aspect 

ratio of the bounding box of an object, respectively. It is worth mentioning that the aspect ratio is 

considered a constant. When an object is detected, the detected bounding box is used to update the 

object state by solving the velocity component via a Kalman filter method.  

The method is evaluated when an object enters and leave the image by two metrics: 1) Similar to 

object detection evaluation with the Localisation loss introduced in equation 5.11, Intersection Over 

Union (IOU) method is used, in which detection is considered only when the overlap is less the IOUmin 

and the tracking is initialised by the dimensions of the detected bounding box with velocity set to zero. 

After initialisations, the covariance of the velocity is evaluated by a loss metric (Tloss ) that penalises 

the linear inference of the velocity after initialisation.  

5.5.2 Data  

In the case of object detection, the weights of the base network of the model, the VGG16 model, 

has been trained on the ILSVRC CLS-LOC dataset (Russakovsky et al., 2015).  After truncating the base 

network by converting the last fully connected layers to convolutional layers and adapting its network 

with pre-discussed changes, the model is trained on PASCAL VOC 2007 dataset for image recognition 

(Everingham et al., 2015). For strengthening the model performance for different object sizes, a data 

augmentation technique has been conducted. For each image, the model computed several random 
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samplings based on various techniques, such as sampling the patch so that the minimum Jaccard 

overlapping the object is either numerically defined or randomly sampled.  

5.5.3 Results 

The average precision of the object detection model computed on a test set of PascalVOC dataset 

with a threshold of 0.1 is 71.51% for an Intersection Over Union (IOU) of 0.5. Table 5.6 shows the 

average precision for each object class.  

Table 5.5: Diagnoses of the Object detection models for the test sets. 

Detected 

class 

Person Bicycle Car Bus Motorbike Truck 

AP1 

(IOU=0.5) 

0.75 0.79 0.81 0.77 0.81 0.77 

1The average precision is calculated with an IOU value of 0.5 

In the case of tracking, the SORT method is evaluated on Multi-Object Tracking (MOT) benchmark 

datasets (Leal-Taixé et al., 2015). The dataset consists of various sequential urban scenes taken by still 

and moving cameras. MOT 2015 -training set comprises 5500 sequential frames, with 39,905 bounding 

boxes of multi-objects, whereas the test set comprises 5,783 sequential frames, with 61,440 bounding 

boxes. After training the SORT model, Table 5.7 summarises the model results. It achieved 33.4 Multi-

Object Tracking Accuracy (MOTA) on the test set and Multi-Object Tracking Precision (MOTP) of 0.72. 

Besides its high performance, the model can be implemented in real-time, making it a reliable and 

fast-tracking system.  

Table 5.6: Diagnoses of SORT model  
The table is adapted from (Bewley et al., 2016). 

Method Type MOTA MOTP False alarm/ frame 

SORT Online 

detection1 

33.4 0.721 1.3% 

1The average runtime of the model is 20 fps on GPU Titan v and CPU i7  

5.6 Spatio-temporal data extraction 

This sub-model deals with the extraction of the coordinates and the time data of where and when 

the urban scene images are taken. This information is extracted from the Exchangeable image file 

format (EXIF) data that is accompanied by an image that features GPS data.  This will allow capturing 

changes of the urban world according to a wide range of temporal scales, from the scale of year to 

even a second, to cope with the nature and the interdisciplinary of urban modelling tasks.  

The algorithms define different functions to extract the coordinates, date and time, where the 

URBAN-i model can iterate through images to identify and extract these data and write it to a file 

besides the data captured from the aforementioned models.  

To extract the geographical coordinates, time, and date data, we have defined three functions that 

deal with each task separately. First, we have defined a function to extract the X and Y coordinates 

and convert them into latitude and longitude. Second, we have defined an array to extract date (year, 

month, and day), and Last, we have defined an array to extract time (hour, minute, second). The 

Python code is adapted and modified based on Sandler (2011). 
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5.7 What makes the integrated models the state-of-the-art  

Cities are complex systems by nature, in which the dynamics of their appearance is highly influenced 

by multiple factors. Weather, visual and surface conditions are some of these prominent factors that 

not only impact the appearance of cities but also complicate the process of understanding them. In 

this chapter, we introduced the first two phases of the overall framework to tackle the variations and 

the dynamics of cities’ appearances from the perspective of weather, visual and ground conditions, in 

addition to detecting road users. From a single street-level image of an urban scene, the framework 

can capture information related to visual conditions such as dawn, dusk, day or night time, in addition 

to detecting glare. While on the other hand, the framework can detect weather conditions such as 

clear, fog, rain, and snow. It can qualify the conditions of the road surface, in addition to detecting and 

counting road users that appeared in the scene. Fig. 5.12 shows a sample of testing images of various 

urban settings, visual and weather conditions. 

   

    

  

Figure 5.12: Samples of testing images using the framework 
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Several points can be discussed in detail regarding the introduced individual models. First, SlipNet 

is the first deep model that detects the conditions of the road surface from images, regardless of the 

weather conditions. Second, the innovation of the WeatherNet, in comparison to the current state-

of-the-art, can be seen in three aspects:  

1. The framework can tackle various weather and visual states, including detecting glare, which 

has never been tackled in previous deep learning and computer vision research. By using a 

unified and simple method, the WeatherNet framework is capable of classifying day or night-

time, glare, fog, rain, and snow. Most of the previous models recognise only a limited number 

of weather conditions, neglecting other vital factors.  

2. Unlike the current weather recognition models, the proposed framework does not require 

any pre-defined constraints such as applying filters, defining a camera angle, or defining an 

action area to the processed image. This simplicity of input makes the proposed framework 

user-friendly and a base for practical applications for both computer scientists and non-

computer scientists to capture information related to weather and appearance of cities from 

user-defined datasets of street-level images.  

3. Although weather and visual conditions depend on time and space, there are no weather 

stations in each location in cities, and the data forecasted and captured rather represent the 

agglomeration of locations rather than a precise condition for each location. This undermines 

the dynamics of the visual appearance of cities.  Accordingly, the proposed framework 

captures weather and visual information. This can enable city planners to map the dynamics 

of cities according to their weather and visual appearance, which can be a useful tool to 

understand the dynamics of the appearance of locations and the impacts of these weather 

and visual dynamics on other aspects of cities (i.e. understanding locations in cities that most 

likely to cause accidents or risks under certain weather and visual conditions). 

5.8 Summary  

  In this chapter, we presented new computer vision tools that can be utilised to model and sense 

the dynamics of urban areas. Besides contributing to tackling cycling near misses, these introduced 

tools exemplify the application of AI and deep learning in understanding cities. We present a novel 

framework that includes WeatherNet, The SlipNet and object detection and tracking models to detect 

and map weather, visual and surface conditions from single-images relying on deep learning and 

computer vision. After training several deep models, we obtained a validation accuracy of 91.6% or 

higher for all trained classifiers.  For instance, the WeatherNet model can detect ten classes: 

Dawn/dusk, day, night, glare, no glare, fog, no fog, clear, rainy, and snowy weather. We aimed to 

exemplify the application of deep learning and computer vision for scene awareness and to 

understand the dynamics of the appearance of urban scenes that could be useful for autonomous 

applications in cities or elsewhere.  
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6 
ACTION  

RECOGNITION 
 

6.1 Overview 

 his chapter introduces a novel method called CyclingNet for detecting cycling near misses 

from video streams generated by a mounted frontal camera on a bike regardless of the camera 

position, the conditions of the built environment, the visual conditions and without any 

restrictions on the riding behaviour. CyclingNet is a deep computer vision model comprising 

algorithms based on convolutional structure embedded with Self-attention bidirectional Long-short 

Term Memory (LSTM) blocks that aim to understand near misses from both sequential images of scenes 

and their optical flows. The model is trained on scenes of both safe rides and near misses. After 42 hours 

of training on a single GPU, the model shows high validation on the training, validation and testing 

sets.  The model is intended to be used for generating information that can draw significant conclusions 

regarding cycling behaviour in cities and elsewhere, which could help planners and policy-makers to 

better understand the requirement of safety measures when designing infrastructure or drawing 

policies. As for future work, the model can be pipelined with other state-of-the-art classifiers and object 

detectors simultaneously to understand the causality of near misses based on factors related to 

interactions of road users, the built and the natural environments. 

 

 The materials of this chapter are published as a journal article in the IET intelligent transport 

systems journal, entitled: “CyclingNet: Detecting cycling near misses from video streams in complex 

urban scenes with deep learning” (Ibrahim et al., 2021).

 

T 
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6.2 The overall framework map 

This chapter covers the third phase of the overall methodology introduced in Chapter IV. Fig. 6.1 

shows a thumbnail of the overall methodology, highlighting the study area covered in this chapter. 

The input of this phase is the sequential frames of the video streams captured while cycling in urban 

areas.   

The main contributions of this chapter are: 

• Automating the detection of cycling near misses in a near real-time detection. 

• A novel end-to-end deep model for recognising cycling near misses from untrimmed video 

streams in complex urban settings. 

• A human-labelled large scale dataset for classifying video streams of moving bicycles, at a 

frame level, of near misses and safe rides. 

• A comprehensive set of experiments to evaluate the different architectures of deep models 

that can be used as a baseline for future research in this study domain. 

 

Figure 6.1: Keymap of the overall methodology covered in this chapter 
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6.3 Model requirements  

As stated in Chapter III, we define a near miss as “a situation in which a person on a bike was required 

to act to avoid a crash, such as braking, speeding, swerving or stopping. In some cases, the definition 

may be extended to include those events that caused the person on the bike to feel unstable or unsafe, 

such as a close pass or tailgating”. In order to identify these events, a computer vision algorithm must 

be capable of distinguishing such a set of instant actions from normal riding behaviour, which may 

also include actions similar to those taken during a near miss.   

Near misses can be seen as instant actions that take place by other objects in the scene. Accordingly, 

there are three main elements that the model needs to learn in order to recognise near misses: 1) The 

relative motions of the elements in the scene, 2) the spatial structure of the scene, and 3) memory to 

recognise what happened in the past.  

Subjectively, understanding the change in motion could lead to a better way of understanding the 

actions related to both safe and unsafe rides since each object conserves its motion between 

consecutive frames and neighbouring pixels are more likely to conserve similar motion. Accordingly, 

combining street-level frame images with their optical flow for a number of consecutive frames may 

lead to a better approach to recognise near misses from video streams.  

6.4 Model architecture 

In order to respond to the aforementioned requirements, we propose the CyclingNet model. The 

CyclingNet is a novel single-stream spatio-temporal deep model that is trained in an end-to-end 

fashion. It aims to include the features of two-streams networks by including the spatial and temporal 

aspects of the video stream while providing an inference in near real-time similar to the single-stream 

networks. Its algorithms comprise four main sections; data structure, feature extraction, self-

awareness, and integration and prediction.  Fig. 6.2 shows the order of the main algorithms and how 

the model is structured.  

 

Figure 6.2: The architecture for the proposed CyclingNet 
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6.4.1 Data structure 

As inputs, the model takes two types of data, which are both are resized into 240 X 320 X 3 tensors 

of single-frame images. The first input comprises video streams typically produced by cameras 

mounted on a moving bike, which may have varying angles, fields of view, rider speeds and filtering 

processes (e.g. for stabilisation or extraction of a region of interest). The second input comprises a 

computed dense optical flow for each pixel in two consecutive frames. It is computed as follows:  

For a given pixel 𝑃(𝑥,𝑦,𝑡)that moves a (d) distance of (𝑑𝑥, 𝑑𝑦), the change in P, assuming that P does 

not change its intensity,  can be calculated as: 

𝑃(𝑥,𝑦,𝑡) = 𝑝(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡)                    (6.1) 

By dividing the right side with dt and using the Taylor approximation technique, we estimate the 

optical flow as: 

𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡 = 0                      (6.2) 

given that: 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
, 𝑓𝑦 =

𝜕𝑓

𝜕𝑦
, 𝑢 =

𝑑𝑥

𝑑𝑡
, 𝑣 =

𝑑𝑦

𝑑𝑡
 

Where (𝑓𝑥) and (𝑓𝑦) are the image gradients, (𝑓𝑡) is the gradient over time, whereas (𝑢) and (𝑣) 

values are unknown. 

To solve this equation with several unknown gradients, we used Gunner Farneback's algorithm 

(Farnebäck, 2003), in which he approximates each neighbourhood by a quadratic polynomial. 

Consequently, a new signal can be constructed based on a global displacement, in which it can be 

computed based on equating the coefficients of the yields of the quadratic polynomials.  

The outputted optical flow vectors (𝑢, 𝑣) are an array of two channels, in which it can be visualised 

in a colour image, given that its magnitude can be presented based on the value plane, and direction 

can be presented based on a Hue value of the image. 

After computing the optical flow  (𝑓𝑜′(𝑡)) for a given time (𝑡), the data of the RGB images (𝑓𝑟𝑔𝑏) are 

truncated for each video file to start with the 4th frame in the frame sequence and wrapped with the 

four timestamps of the frames of optical flows[ti, ti-1, ti-2, ti-3] in a portion of 0.5 to 0.5, respectively. 

The input (𝑥(𝑡0)) is defined as: 

𝑥(𝑡𝑖)  =  
𝑓𝑟𝑔𝑏′(𝑡𝑖)

2
 +

𝑓𝑜′(𝑡𝑖)+𝑓𝑜′(𝑡𝑖−1)+𝑓𝑜′(𝑡𝑖−2)+𝑓𝑜′(𝑡𝑖−3)

8
                          (6.3) 

There are two reasons for selecting and optimising these hyperparameters (the proportions and 

count of previous optical flow frames): Firstly, to add the time dimension to the spatial structure of 

each street-level image, and secondly, to control and reduce the information and the number of 

features and textures that are not useful for detecting near misses (i.e. the textures of people, cars, 

building, etc.). We experimented with the values of the combined ratio based on trial and error to 

optimise the overall fitness and performance of the model when detecting near misses.  
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The output data is structured and reshaped in four-dimensional tensors (timestamps, width, height, 

channels), in addition to embedding the four optical flow steps with the single-frame images. Such an 

approach means the dimension of time can be utilised and seen either in the spatial structure of the 

image (fusion with four previous steps of the optical flows) or the series of the data (the length of 

timestamps). Both approaches will be utilised and discussed thoroughly in the algorithms of 

CyclingNet in the two upcoming sections.   

6.4.2 Extracting features  

This part of the model aims to extract mainly spatial features from the single-frame images, bearing 

in mind the fused data of the optical flows of the previous four steps. The architecture of this section 

comprises three consecutive blocks of convolutional structure representing the encoder component 

of the model. Each block has different sets of structure and hyperparameters and initialised by the 

“He normal” initialisation technique to provide more efficient and faster gradient descent (He et al., 

2015b). Generally, the choices of the presented hyperparameters are made based on trials and errors 

and the most common practice for training Convolutional models. For instance, Simonyan and 

Zisserman (2015) reported that for the same depth networks, a larger kernel of convolution (3 X 3) 

performs better than a smaller one (1 X 1). A  Batch-normalization layer is a common approach for 

accelerating the training of deep networks (Ioffe and Szegedy, 2015). It is worth mentioning that the 

choice of the number of layers of the encoder is a trade-off between extracting features and the 

computational limitations for training the entire model as a single-stage model. Moreover, models 

with different hyperparameters and layer components will be trained and presented as base models 

for further evaluating the introduced methods in the results section (Section 6.7.2).    

Block one consists of two 2D convolution layers of a kernel size (24 X 5 X 5), (36 X 5 X 5) respectively, 

and a subsampling size of (2 X 2). They are activated based on a Rectified Linear Unit (ReLU). These 

two CNN layers are followed by a 2D Max-Pooling layer of pool size of (2 X 2) and a Batch-normalization 

layers of the momentum of 0.99 and epsilon of 0.001. It is feed with single-frame images with the 

embedded optical flow steps.  

Similar to block one, block two consists of two 2D Convolution layers, however, a kernel size (48 X 5 

X 5), (64 X 3 X 3) respectively, and a subsampling size of (2 X 2). They are activated based on a Rectified 

Linear Unit (ReLU). They are also followed by a 2D Max-Pooling layer of pool size of (2 X 2) and batch-

normalization layers of the momentum of 0.99 and epsilon of 0.001. 

Block three consists of a single convolution layer of a kernel size (128 X 3 X 3) subsampled with (2 X 

2) and activated by a ReLU function. It is also followed by a 2D Max-Pooling layer of pool size of (2 X 

2) and a Batch-normalization layers of the momentum of 0.99 and epsilon of 0.001. 

6.4.3 Spatial and temporal awareness 

If the algorithms of detecting near misses rely only on the outputted features of the previous section 

of the convolution structure, based on experiments, the results will be sensitive to the changes at the 

local context of the spatial structure of the fused single frames, despite the significances of the global 

context that can ensure stability and accuracy for training and inference. For this reason, designing 

the architecture of CyclingNet further to be aware of both local and global spatial and temporal 
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structure is indispensable. This temporal dependent element makes it a crucial part of detecting 

temporal features related to scenes of near misses.  

This section comprises one bidirectional Long-Short term Memory (LSTM) block, followed by a 

regulated self-attention layer. The LSTM block consists of 128 units, and a dropout regulation of size 

0.3 to avoid over the fitness of the model. However, the goal is not only considering the sequence of 

the defined timestamps but also considering the context for each timestamp. Therefore, a self-

attention mechanism is essential to ensure the balance for both global and local context when 

describing a given scene.  

Generally, a unidirectional LSTM has shown great progress in extracting features related to 

sequential data to predict future states (Goodfellow et al., 2017; LeCun et al., 2015). Unlike the 

traditional recurrent layer, LSTM can learn long-term dependencies without suffering from issues 

related to gradient vanishes. This internal recurrence, the so-called self-loop, enabled the previous 

vectors to create paths in which the gradient can move forward for a long duration without vanishes 

issues. Nevertheless, most recently, it has also been shown to improve the overall performance of the 

model when predicting even a given state without timestamps by learning not only the spatial 

structure of a given vector but also the short-term dependences among the inputted given vector as 

the time constants are outputted by the LSTM itself. Accordingly, this allows the time scale to change 

based on the input sequence, even if the LSTM units are with a fixed parameter. 

To extract long-term dependences, the self-loops of the LSTM units can be controlled by three gated 

units: 1) forget gate (𝑓𝑖
(𝑡)

), external input gate (𝑔𝑖
(𝑡)

), and an output gate (𝑞𝑖
(𝑡)

). 

First, (𝑓𝑖
(𝑡)

) can be explained for a given cell (i) and  time (t), whereas it is fitted to a scaled value 

between 0,1 and an activation unit of sigmoid function (𝜎) as:  

𝑓𝑖
(𝑡)

= 𝜎 (𝑏𝑖
𝑓 + ∑ 𝑈𝑖,𝑗

𝑓 𝑥𝑗
(𝑡)

+ ∑ 𝑊𝑖,𝑗
𝑓ℎ𝑗

(𝑡−1)
𝑗𝑗 )                    (6.4) 

given that ℎ(𝑡)represents a vector that contains the outputs of all the LSTM cells for the current 

hidden layer, 𝑥(𝑡)represents  the current input vector, 𝑊𝑓represents the recurrent weights for the 

forget gates, 𝑈𝑓 represents the input weights and last, 𝑏𝑓  represents the biases of the forget gates. 

Second, to update the LSTM internal state, a conditioned weight of the self-loop (𝑓𝑖
(𝑡)

) is computed 

as:  

𝑠𝑖
(𝑡)

= 𝑓𝑖
(𝑡)

𝑠𝑖
(𝑡−1)

+ 𝑔𝑖
(𝑡)

𝜎 (𝑏𝑖 + ∑ 𝑈𝑖,𝑗𝑥𝑗
(𝑡)

+ ∑ 𝑊𝑖,𝑗ℎ𝑗
(𝑡−1)

)𝑗𝑗 )                                                                         (6.5) 

given that U is the input weights, b is the bias vector, W represents the current weights into the 

LSTM cell. Similar, to (𝑓𝑖
(𝑡)

),  the external input gate (𝑔𝑖
(𝑡)

) is computed, however with it is a parameter:  

𝑔𝑖
(𝑡)

= 𝜎 (𝑏𝑖
𝑔

+ ∑ 𝑈𝑖,𝑗
𝑔

𝑥𝑗
(𝑡)

+ ∑ 𝑊𝑖,𝑗
𝑔

ℎ𝑗
(𝑡−1)

𝑗𝑗 )                   (6.6) 
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Last, the output gate (𝑞𝑖
(𝑡)

) is used to control and shut off the LSTM cell output (ℎ𝑖
(𝑡)

) with a sigmoid 

unit, in which the ℎ𝑖
(𝑡)

 is defined as:  

ℎ𝑖
(𝑡)

= tanh( 𝑠𝑖
(𝑡)

)𝑞𝑖
(𝑡)

                      (6.7) 

𝑞𝑖
(𝑡)

= 𝜎 (𝑏𝑖
𝑜 + ∑ 𝑈𝑖,𝑗

𝑜 𝑥𝑗
(𝑡)

+ ∑ 𝑊𝑖,𝑗
𝑜 ℎ𝑗

(𝑡−1)
𝑗𝑗 )                   (6.8) 

given that  𝑏𝑜 is the model biases, 𝑈𝑜  is the input weights, 𝑊𝑜is the current weight. 

Unlike unidirectional LSTM units, a bidirectional LSTM  layer allows the current hidden state to rely 

on two independent hidden states, one computed in a forward direction, named as a forward LSTM, 

and the latter is defined as a backward LSTM in the opposite direction. This allows the retaining of the 

historical information and the current ones simultaneously. This has a direct implication when 

detecting near misses, in which the predicted output for a given state is smoothed when compared to 

the previous ones without any post-prediction smoothing techniques.   

Moreover, adding a self-attention mechanism to the bi-directional LSTM units allows the model to 

learn not only from the extracted features – whether spatial or temporal ones- but also to learn from 

the relations of the input sequences of the RGB image and optical flow ones by allowing the model to 

relate the positioning of each sequence and accordingly, learns the representation of its input 

(Goodfellow et al., 2017; Vaswani et al., 2017).  Nevertheless, the model can learn which context to 

consider for a given scene to output the prediction (Xu et al., 2015). The context (𝑙𝑡) can be computed 

as: 

𝑙𝑡 = ∑ 𝑎𝑡,𝑡′𝑥𝑡′𝑡′                       (6.9) 

given that:  

ℎ𝑡,𝑡′ = tanh(𝑥𝑡
𝑇𝑊𝑡 + 𝑥𝑡′

𝑇 𝑊𝑥 + 𝑏𝑡)                  (6.10) 

𝑒𝑡,𝑡′ = 𝜎(𝑊𝑎ℎ𝑡,𝑡′ + 𝑏𝑎)                   (6.11) 

𝑎𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡)                    (6.12) 

where (ℎ𝑡,𝑡′) represents the hidden state of the previous step – in a given direction of the 

bidirectional LSTM- that is fitted to a simple forward neural model (𝑒𝑡,𝑡′),  (𝑎𝑡) is the amount of 

attention that the output at a given state should consider for the previous activation (𝜎). 

6.4.4 Model initialization 

After the LSTM block, the output is flattened and feedforward to two fully-connected layers of 

180,64 neurons respectively. Both layers are activated by a ReLU function, in which a Dropout 

mechanism is applied for both layers with a size of 0.3. The final output layer consists of a single 

neuron and is activated with a sigmoid function.  
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6.5 Evaluation metrics 

The model is penalised during training, testing and validation based on a cost function of Cross-

Entropy of error. It is defined as: 

𝐸 = − ∑ 𝑡𝑖
𝑛
𝑖 𝑙𝑜𝑔(𝑦𝑖)                                                                                                                                (6.13) 

given that 𝑡𝑖  represents the target vector, 𝑦𝑖  represents the predicted vector, and n represents 

the binary classes. 

For further assessing the model performance, we computed accuracy, precision, recall, false-

positive rate, and F1-score as explained in Chapter V – 5.3.4. 

Last, it remains a challenge to compare our results with other models due to the absence of other 

models for detecting near misses for moving cycling from the street level. We created, however, 

different architecture to draw a baseline for the performance of the proposed method and to show 

how the different architecture and hyperparameters could yield different outcomes for a given task 

with the same material types.  

6.6 Materials and data pre-processing  

To the best of our knowledge, there is no benchmark data set of video streams that focus on the 

different types of cycling near misses that is open-sourced to conduct computer vision research.  

Therefore, collecting our own dataset becomes crucial to train the model to detect near misses in 

complex environments. We collected video clips that were made available online by people on bikes 

on two websites: YouTube and road.cc. In these clips, near misses are labelled manually in the 

embedded frames by the sharers, which represent the ground truth of the model. Two aspects make 

this data a significant one for understanding near misses: First, the variation in the perceptions of near 

misses as defined by the clips sharers. This could allow the model to extract features related to the 

common trends instead of being heavily directed or biased with a small group of participants or self-

labelling. Second, the variation of equipment, camera position, context, visual, and weather 

conditions, along with the different behaviours and riding styles in these scenes, are crucial for the 

learning process of the model, generalisation, and deployment.  

After qualitatively inspecting the quality and ground truth of the embedded information of the 

selected clips, we collected a dataset of 74,477 sequential frames, and we computed their equivalents 

of optical flows frames (74,469). Of these 8,567 sequential frames belong to near miss cases (11.5% 

of the total sequential frames) which occur at sparse intervals. They represent 209 unique near misses 

of an average duration of 1.3 seconds (40.9 sequential frames). We also used an additional dataset of 

12,812 sequential frames for further testing after training and validation. This dataset comprises 81 

unique near miss events.  

These clips include complex urban settings of different visual and weather conditions and a variety 

of scene components. For example, 81.9% of the scenes in the dataset are during the daytime, 15.7% 

at night, and 2.4% at dawn/dusk time. Also, the dataset includes around 93.6% of scenes of clear 

weather, 5.9% rainy weather, and 0.5 % snowy weather. Around 2.5% of the dataset includes foggy 

scenes, 7.9% with glare, and 37.5% are scenes that include a cycling lane. 93.7% of scenes include 
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other humans, 46% includes scenes that comprise other cyclists, 67.9 % are scenes that include at 

least one car, 23% with one bus or more, and 12.6% with one truck or more.  

The clips also consist of variations of near miss types of different temporal scales (the duration of 

near miss) and various interactions with different road users. The clips, for instance, include near 

misses such as a close pass, a near left or right hook, someone pulling in or out, swerve around an 

obstruction, pedestrian steps out, and someone approaching head-on. However, there is a  lack of 

clips that include near-dooring and tailgating events.  Fig. 6.3 shows a sample of the sequential frames 

and their corresponding optical flows.  

Data augmentation techniques, introduced in Chapter V – section 5.3.3,  have also been utilised for 

this model for enhancing the training process and accuracy of the model and accounting for the class 

imbalance of safe and near miss scenes. However, we augmented the collected data by applying only 

normalisation, scaling, and horizontal flipping without applying shear to avoid any distortion to the 

overall motions of the sequential frames.  

 

 

Figure 6.3: Sample of the dataset for the RGB frames and their optical flows 
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6.7 Results 

6.7.1 CyclingNet evaluation 

 Training the model on street-level images of both safe rides and near misses took almost 2 days (42 

hours ) on a single GPU (Titan V). Fig. 6.4a -6.4b show the losses and accuracies of the training and 

testing sets respectively for the Self-attention bidirectional CNN-LSTM architecture. After 35 training 

cycles of 100 ones, the model has converged and the training has stopped to avoid over-fitness after 

no significant change on the validation loss. In table 6.1, we expand further on evaluating the 

classification of CyclingNet. The table shows a high validation in terms of precision, recall, and an F1-

score, with minimum false-positive rates.  The model shows a high validation in terms of true positive 

of the area under the curve of 0.99, 0.84 for validation and testing sets respectively. However, the gap 

between the values of the validation and testing sets can be explained due to the wide range of 

variations of near miss events, or the limitations of similar events that the model can learn and extract 

features from them for future inference.  

6.7.2 Baseline evaluation 

We experimented with adjusting the optical flow to images fusion ratio, model architecture, an 

optimisation technique, and post-prediction with the classification thresholds aiming to maximise 

temporal smoothing while reducing the global loss. We found that the global loss can be reduced even 

by a simple CNN architecture, however, the predicted values are prone to temporal instability. On the 

 

Figure 6.4: Training and evaluation of cyclingnet. 
from left to right: (A) and (B) 

Table 6.1: Classification metrics for CyclingNet 

Self-attention Bi CNN-LSTM Precision Recall False-positive rate F1-score 

Validation set 0.994 0.995 0.041 0.994 

Test set 0.842 0.927 0.418 0.883 
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contrary, after applying a CNN-LSTM architecture the temporal dependences improved whereas the 

model outputs a smoothed prediction throughout the clip. We also found that by including 

bidirectional and self-attention mechanisms in the architecture of the CNN-LSTM model, the losses at 

the local and global levels of the training and testing datasets have improved in comparison to a CNN-

LSTM model. Table 6.2 summarises the outcomes of the different studied architecture on the 

validation set, with a constant fusion ratio of 50% of the single images and optical flows. 

6.7.3 Scenes prediction 

In Fig. 6.5, we show different clips of near misses predicted by CyclingNet. The model shows high 

accuracy in predicting a wide range of complex urban scenes at different times of the day and weather 

conditions. Nevertheless, the model shows high accuracy in predicting near misses including different 

types of near misses, such as close passes, pedestrian step in, or any risky situation with different road-

users, including other people on bikes. Similarly, Fig. 6.6 shows a variety of urban scenes that has been 

detected as a safe ride.  

6.8 CyclingNet as the state-of-the-art method for detecting cycling near misses 

Understanding safety as a clue from the overall scene and interaction of different road users remains 

a challenge. In this chapter, we introduced CyclingNet as a novel method for detecting cycling near 

misses from video streams of moving bicycles in a complex urban setting. The model has shown strong 

performance in detecting near misses, regardless of the complexity of the scene, time of the day, 

weather, visual conditions, or the placement of the camera on the bike. Due to the absence of other 

models or benchmark datasets for the stated purpose, it remains a challenge to compare our results 

to other models, besides the ones we developed as base models. This, however, makes The CyclingNet 

model a vital and indispensable model for the field of road safety and more specifically, for detecting 

near misses. Accordingly, this makes it good practice for generalisation, deployment, and transfer 

learning to detect near misses for other road-users or other safety-related domains. 

 

Table 6.2:  Baseline assessment of CyclingNet 

Architecture comparison Validation Accuracy Validation Loss 

CNN (Block 1-3) 86.5 % 0.73 

CNN-LSTM 97% 0.15 

Self-attention CNN-LSTM 96 % 0.20 

Self-attention Bi CNN-LSTM 98.9 % 0.06 
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Figure 6.5: Examples of predicted cycling near misses by cyclingNet 
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Figure 6.6: Examples of predicted cycling safe rides by cyclingNet 
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6.9 Model limitations and future work 

The model shows a strong performance in the task of identifying near miss frames. However, there 

are still some limitations that need to be addressed in future work. Firstly, the model is currently 

applied on a frame by frame basis. In a practical sense, it would be useful to extract near miss scenes 

in their entirety in order to automatically label events from user-generated data. This could be 

accomplished by further developing the model to accurately extract the start and end of an event. 

These events could then be corroborated by the bike user, e.g. by sending them the clip and asking 

‘was this a near miss’. This approach would also enable the model to learn from experience as it 

receives a greater set of near miss scenes. Secondly, the model has been trained to identify near-miss 

events in general but does not currently discriminate between near-miss types. Introducing a new 

model to classify the different types of near misses after detection would allow a better understanding 

of the frequency of the different types of near misses and the different risk factors associated with 

them. For example, a close-pass is likely to have a different set of risk factors to a vehicle turning left 

at an intersection. Thirdly, the model has been trained using video data from online sources for which 

there is no information of the cyclist’s characteristics (gender, age, experience level etc.). However, 

near misses are subjective and do depend on these characteristics. For example, an event that a new 

cyclist considers being a near-miss may not be considered as such by a more experienced cyclist. 

Furthermore, it is not known whether there are implicit biases in the population of users who upload 

near-misses to video sharing sites. Social media data has been shown to be biased in many cases and 

this may affect the range of near misses used to train the model. These issues can be addressed 

through the naturalistic approach described in chapter III, whereby a representative group of 

participants use instrumented bikes to collect data on near misses, which can then be linked to their 

personal characteristics. As the model receives near miss scenes of greater diversity, its generalisation 

performance will improve. Finally, applying similar models to detect safety measures and near misses 

for other road users such as pedestrians and car drivers would allow tailored-made policies or 

guidelines for the interaction of the different road-users according to the specific type of near misses 

for a given road-user. 

6.10 Summary  

Within the progress of the field of Artificial intelligence, specifically, the domain of deep learning 

and computer vision, different deep computer vision models have been developed to recognise a wide 

spectrum of human actions, activities, or their body poses in complex settings of untrimmed video 

streams.  

The problem of detecting cycling near misses from video streams of moving bicycles in real-world 

settings has not been previously addressed in the literature. In this chapter, we utilised the advances 

in computer vision and deep learning to detect such events in a near real-time fashion. We introduced 

the CyclingNet model, a new deep computer vision for detecting cycling near misses from video 

streams of moving bicycles in complex urban environments. The model is structured as a single stream 

and trained in an end-to-end fashion, exploiting both single RGB frames, and optical flow data. After 

training the model using data of both near misses and safe rides, the results show strong performance 

on both training and validation data sets.  
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The model is intended to be used for generating information that can draw significant conclusions 

regarding cycling behaviour in cities and elsewhere, which could help planners and policy-makers to 

better understand the requirement of safety measures when designing infrastructure or drawing 

policies. As for future work, the model can be pipelined with other state-of-the-art classifiers and 

object detectors simultaneously to understand the causality of near misses based on factors related 

to interactions of road users, the built and the natural environments.
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7 
CAUSAL 

INFERENCE 
  

7.1 Overview 

 his chapter analyses and quantifies the different risk factors of near misses and describes their 

contributions to the occurrence of near misses. It addresses ‘why’ near misses happen based on 

the set of risk factors extracted in the previous chapters. It covers four aspects: 1) descriptive 

analysis of near misses and safe ride scenes, 2) the statistical significance of the different risk factors, 3) 

the cause and effect of the different variables, and last 4) the causality of the different variables in 

cycling near misses. First, the descriptive analysis presents the data distribution and variable 

description, and the analysis of the data using non-parametric methods relying on correlation and t-

test methods. The second section of this chapter addresses the impacts of the different risk factors on 

the occurrence of near misses using linear regression as a base model. The third section addresses the 

issue of class imbalance of the dependent variable. Last, the fourth section addresses the Granger 

causality in the data, highlighting which factors Granger-cause near misses, or in other words, which 

factors precede near misses and could assist in forecasting such events in near-real-time. This capability 

could be used in an early warning system for people on bikes. 
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7.2 The overall framework map 
This chapter describes the final phase of the overall methodology introduced in Chapter IV.. Fig. 7.1 

shows a thumbnail of the overall methodology, highlighting the study area covered in this chapter. 

Besides the stated goals, in the overview section (7.1), the objective of this chapter is to extract the 

statistical weights of the different risk factors that contribute to near misses and utilise these weights 

for the framework stringency index introduced in Chapter IV. 

The structure of this chapter is based on inductive reasoning or as consecutive steps in which the 

hypothesis, methodology and finding for each section is presented individually to build a foundation 

for the subsequent sections.  

7.3 Materials  

The dataset used in this chapter is a subset of the data set used for training, testing and validating 

the CyclingNet model introduced in Chapter VI. It consists of 46,567 sequential frames extracted from 

video streams of cycling in different built environments, weather and visual conditions. The reason for 

only including a subset of the dataset is to balance the classes of the different variables of the data, 

including the observations that are relevant for statistical analysis, which was not necessary to train 

the deep models in previous chapters. Further data pre-processing techniques (such as random 

sampling, data transformations, etc.) will be described in the upcoming sections where relevant. There 

 

Figure 7.1: Keymap of the overall methodology covered in this chapter 
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are two purposes for using this subset: 1) Statistical analysis and quantifying the causes and the effects 

of the risk factors, 2) assessing the performance of the overall methodology, rather than the individual 

methods as explained in the overall methodology chapter (Chapter IV). The labels of this dataset are 

generated via the different deep models introduced in the previous chapters (Chapter V and VI). To 

ensure the validity of the results, the generated labels have been manually examined to correct errors. 

This was accomplished using visual inspection in batches. Accordingly, all presented data points 

represent the actual classes in the video streams.    

Table 7.1 shows the 17 selected variables in the dataset used in this chapter, including their type and 

a brief description of the variable. Categorical variables have been transformed into dummy variables. 

For instance, one of the outputs of the WeatherNet model is a categorical variable of three conditions 

(clear, rain, and snow) and each one has been transformed to a binary variable of value 1 when a given 

condition exists and zero otherwise.  Besides the dummy variables, the selected variables comprise six 

integer numerical variables describing the counts of the different road users in a given scene, from a 

person, bicycle, car to bus, motorbike and truck.   

Table 7.1: CyclingNet layer structure and hyperparameters 

ID Variable name Variable type Variable description 

1 Glare Binary  A value of one represents the presence of glare, and a value of zero 

represents otherwise. 

2 Fog Binary A value of one represents the presence of fog, and a value of zero 

represents otherwise. 

3 Cycle_lane Binary A value of one represents the presence of a cycle lane, and a value of zero 

represents otherwise. 

4 Person numerical A continuous integer value that represents the counts of people in a given 

data point 

5 Bicycle numerical A continuous integer value that represents the counts of bicycles in a given 

data point 

6 Car numerical A continuous integer value that represents the counts of cars in a given 

data point 

7 Bus numerical A continuous integer value that represents the counts of buses in a given 

data point 

8 Motorbike numerical A continuous integer value that represents the counts of motorbikes in a 

given data point 

9 Truck numerical A continuous integer value that represents the counts of trucks in a given 

data point 

10 Near_miss Binary A value of one represents the presence of a near miss, and a value of zero 

represents otherwise. 
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11 Nightime Binary A value of one represents the presence of nighttime, and a value of zero 

represents otherwise. 

12 Daytime Binary A value of one represents the presence of Daytime, and a value of zero 

represents otherwise. 

13 Dawn_dusk time Binary A value of one represents the presence of Dawn or dusk time, and a value 

of zero represents otherwise. 

14 clear Binary A value of one represents the presence of clear weather, and a value of 

zero represents otherwise. 

15 rain Binary A value of one represents the presence of rainy weather, and a value of 

zero represents otherwise. 

16 snow Binary A value of one represents the presence of snowy weather, and a value of 

zero represents otherwise. 

17 Wet_surface Binary A value of one represents the presence of a wet surface, and a value of 

zero represents otherwise. 

7.4 Descriptive analysis 

Table 7.2: Variables Descriptive Statistics 
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glare 46567 0 1 0.18 0 0 0 0.384 0.148 

fog 46567 0 1 0.03 0 0 0 0.176 0.031 

cycle_lane 46567 0 1 0.40 0 0 1 0.490 0.240 

person 46567 0 20 2.77 1 2 4 2.445 5.978 

bicycle 46567 0 7 0.61 0 0 1 0.912 0.832 

car 46567 0 11 1.16 0 1 2 1.330 1.768 

bus 46567 0 4 0.18 0 0 0 0.442 0.195 

motorbike 46567 0 3 0.06 0 0 0 0.260 0.068 

truck 46567 0 4 0.17 0 0 0 0.422 0.178 

near_miss 46567 0 1 0.28 0 0 0 0.450 0.203 

nighttime 46567 0 1 0.35 1 1 0 0.478 0.228 

daytime 46567 0 1 0.60 0 0 1 0.489 0.239 

dawn_dusk 46567 0 1 0.04 0 0 0 0.203 0.041 

clear 46567 0 1 0.77 1 1 1 0.418 0.174 
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Table 7.2 shows sample size, minimum, maximum, mean, standard deviation and variance values for 

each variable. One crucial finding of this table is the distribution of people in the data points. For 

instance, the person counts in the data points vary from 0-20, with an average of approximately three 

persons in a given scene. However, the person counts represent the highest variance in comparison to 

other variables of the value of 5.9, indicating that the data points are far spread from the mean values 

when it comes to person counts in comparison to the other variables.   

rain 46567 0 1 0.22 0 0 0 0.414 0.171 

snow 46567 0 1 0.01 0 0 0 0.076 0.006 

wet_surface 46567 0 1 0.06 0 0 0 0.245 0.060 

 

Figure 7.2: Histograms of the variables in the dataset 
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7.4.1 Data distribution  

To understand their distributions, fig. 7.2 shows the histograms of the individual variables. A class 

imbalance can be seen in the distribution of variables such as glare, fog, motorbike, dawn/dusk time, 

snow weather, and wet surface, which requires further statistical treatments to account for the 

skewed and imbalanced data before conducting any statistical models (Freedman, 2008; Riley et al., 

2013).  

7.4.2 Correlation between variables 

Before running a regression model it is important to check for multicollinearity, which occurs when 

one or more of the independent variables can be predicted by some combination of the other 

independent variables. Multicollinearity can cause unstable regression coefficients, limiting the ability 

to draw conclusions from the model. We have used the Product Moment Correlation Coefficient 

(PMCC) to highlight the linear correlation in the data set. The PMCC measures the correlation between 

 

Figure 7.3: The results of the PMCC 
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two variables in the range [-1,1], where 1 represents a perfect positive correlation, -1 perfect negative 

correlation and 0 no correlation. For further explanation of the PMCC, see (Frey, 2018).  

Fig. 7.3 shows the PMCC between each pair of variables. It indicates a different positive and negative 

correlation, in which some of them can be considered as new findings, whereas others can be seen as 

a logical and expected outcome. For instance, daytime is inversely correlated with night-time, and clear 

weather is inversely correlated with rain weather, which is logical and expected.  Similarly, the 

presence of people is positively correlated with daytime, clear weather, and the presence of bicycles.  

The presence of glare is positively correlated with night-time, rain and fog. While glare is usually 

associated with sunny conditions, the detected glare in this dataset is due to headlights in darker 

conditions such as rain and fog. Wet ground is positively correlated with rain, snow, and night-time.  

On the other hand, a crucial finding is that near misses are positively correlated with rain but 

uncorrelated with daytime.  Furthermore, while there is a positive correlation between the presence 

of a cycling lane and the presence of people and bicycles, there is an absence of correlation between 

the presence of a cycling lane and the occurrence of near misses.  It may seem counter-intuitive that 

dawn/dusk and daytime are not perfectly negatively correlated, so it is worth mentioning that this is 

because there are three mutually exclusive classes (Dawn/dusk-time, day-time, and night-time).  

7.4.3 t-test method  

As a step forward to further investigate the collinearity in the data set among the different variables, 

we used a t-test to highlight the significant differences between the near miss and safe scenes in terms 

of the selected variable. The t-test method is used to compare the means of the continuous variables 

for both groups; safe and near misses. When the p-value is less than 0.05, the null hypothesis can be 

rejected and the results of selected variables can be deemed statistically significant. It can be used to 

differentiate between safe and near miss scenes. For further explanation regarding t-test analysis, see 

Hoffman (2015); Smalheiser (2017). 

Table 7.3 shows the statistically significant results of the t-test method for five significant 

independent variables, in which the near_miss variable is treated as a dependent variable.  The results 

show that the occurrence of near misses is statistically significant with the counts of cars, buses, and 

motorbikes with positive coefficient values and statistical significance with the counts of people and 

bicycles with negative coefficient values. 

  
Table 7.3:  The  significant results of the t-test method  

Variable F-Statistics P-value 

Car 15.497 0.000 
Person -32.137 0.000 
Bus 12.192 0.000 
Bicycle -33.540 0.000 
Motorbike 2.529 0.011 
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7.5 The Impacts of risk factors in cycling near misses  

7.5.1 Assumptions 

Here we focus on understanding directly the role of the different independent variables in the 

occurrence of near misses statistically in non-controlled experiments. This step can be perceived as a 

base model for the upcoming sections where we investigate further the role of selected variables after 

showing a general statistically significant association with the occurrence of near misses.  

Fig. 7.4 shows a directed graph of all variables (factors and covariates) towards the dependent 

variables of near misses. It highlights the hypothesis for modelling the association between the 

dependent and independent variables. It shows the basic assumption that each variable has a direct 

association with near misses.  

 

Figure 7.4: The base model assumption 

7.5.2 Base model: Logistic regression model 

To test the previous hypothesis and assumptions, a Logistic regression model is conducted to analyse 

the collinearity of the near_miss variable, as a dependent variable, with the other variables as 

independent variables, without any confounder assumptions nor a controlled variable. This model can 

be seen as a base model for further controlled studies in the following sections. For further explanation 

regarding logistic models and utility functions, see Ben-Akiva et al. (1997); Schroeder (2010).   

The utility function of the near_miss category i in the occurrence of j is computed as: 

𝑣𝑖𝑗 = 𝜀 + ∑ 𝑏𝑘𝑥𝑖𝑗𝑘𝑘∈𝑇                                                                                                       (7.1) 

where 𝑥𝑖𝑗𝑘 represents the attribute k for point j on near miss occurrence of i,  𝑏𝑘 is a coefficient in the 

utility function, 𝑇 represents the set of attributes, 𝜀 represents the stochastic part of the utility 

function. 
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The coefficient of the model is computed by estimating the maximum likelihood, whereas the 

stochastic part 𝜀 is computed by assuming it as a double exponential distribution.  The logarithm of 

the likelihood of the model of the actual occurrence of near misses can be expressed as:  

𝐿𝑜𝑔 𝐿 = ∑ ∑ 𝑌𝑖𝑗  𝑙𝑛𝐽
𝑗=1

𝑁
𝑖=1  𝑃𝑖(𝑌 = 𝑗/𝑥, 𝛽),  

where 𝑃𝑖(𝑌 = 𝑗/𝑥, 𝛽) =  
exp (𝑣𝑖𝑗(𝑥𝑖𝑗,𝑏))

∑ exp ((𝑣𝑖ℎ(𝑥𝑖ℎ,𝑏))
𝑗
ℎ=1

                   (7.2) 

where 𝑌 is the binary dependent variable, X represents the independent variables,  𝑣𝑖𝑗 is the utility 

function for the jth alternative of ith choice (computed in equation 7.1), 𝑁 represents the occasion of 

choices, 𝑗 represents the number of alternatives, 𝑃𝑖 represents the predicted probability of the 

occasion of i occurrence of a near miss, 𝛽 represents the parameter vector of the model. 

7.5.3 Results 

Table 7.5: The results of the logistic regression model (Base model) 

Variablesa Coefficient (B) 
Standard 
error Wald p-value Exp(B) 

95% Confidence 
Interval for Exp(B) 

Lower 
Bound 

Upper 
Bound 

Intercept 1.099 0.108 102.961 0.000       

person 0.075 0.005 202.635 0.000 1.078 1.067 1.090 

bicycle 0.210 0.014 220.335 0.000 1.234 1.200 1.269 

car 0.089 0.009 106.746 0.000 1.093 1.075 1.112 

bus -0.097 0.023 17.295 0.000 0.907 0.867 0.950 

motorbike 0.355 0.047 57.194 0.000 1.426 1.301 1.563 

truck 0.015 0.026 0.327 0.567 1.015 0.965 1.068 

[time=Dawn/dusk-
time] 

-0.360 0.050 51.637 0.000 0.698 0.632 0.770 

[time=Day-time] -0.088 0.026 11.318 0.001 0.916 0.870 0.964 

[time=Night-time] 0b             

[glare=0] -0.080 0.028 8.030 0.005 0.923 0.874 0.976 

[glare=1] 0b             

[weather=Clear 
weather] 

-0.144 0.084 2.979 0.084 0.866 0.735 1.020 

[weather=Rainy 
weather] 

-0.301 0.085 12.633 0.000 0.740 0.627 0.874 

Table 7.4:  The summary of the logistic regression model (Base model) 

Dependent Variable:    Near_miss          R-squared 0.023 
Method:           Least Squares      Adj. R-squared:     0.023 
No. Observations:  46567              Chi-Square 1089.246 
Df Residuals:      46552             Log-Likelihood:     -20987.042 
  BIC:                21148.271   AIC:                21017.042 
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[weather=Snowy 
weather] 

0b             

[fog=0] -0.278 0.061 20.562 0.000 0.757 0.672 0.854 

[fog=1] 0b             
[cycle_lane=0] -0.019 0.022 0.776 0.378 0.981 0.940 1.024 
[cycle_lane=1] 0b             
[wet_surface=0] 0.024 0.043 0.313 0.576 1.024 0.942 1.113 
[wet_surface=1] 0b             
aThe reference category for the independent variable (near misses) is 1. 
bThis parameter is not included in the model. 
 
 

Table 7.4 summarises the statistics of the Logistic regression models, highlighting the dependent 

variable, computation method of least square, the total number of observations used in the model, in 

addition to the R-squared which represents a low value of 0.023. This shows a limitation in the strength 

and fitness of the proposed model.  

In general, the model shows statistically significant results for different independent variables in 

which the sign of the coefficient (B-value) and the statistical significance level of the P-value varies (See 

Table 7.5). All risk factors are statistically significant except for four variables: 1) Truck counts, 2) Clear 

weather, 3) the presence of a cycle lane and the condition of the road surface.   

7.6 Balancing near miss and safe ride cases 

7.6.1 Random sampling 

The number of the frames of near misses is 13,145, whereas the number of safe case frames is 

33,422. To provide a better representation for the dependant variable, a new experiment is conducted 

to tackle class imbalance in the dependent variable. This has been conducted by selecting a random 

sample of size 13,145 from the safe case frames (33,422 cases). A second logistic regression model is 

produced and the result is compared with the base model. (See Fig. 7.5). 

7.6.2 Results 

Table 7.6 summarises the statistics of the Logistic regression model that is used for the new 

experiment. The model shows a slight improvement in model fitness compared to the base model, 

with an R-squared of 0.027. The same independent variables are identified as statistically significant 

 

Figure 7.5: Random sampling technique  for class imbalance in near_miss variable 
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as the base model, with slight changes in the variable coefficients and standard errors. Unlike the base 

model, this model shows a statistically insignificant intercept. Table 7.7 shows the coefficients of all 

variables and their statistical significance with the occurrence of near misses in presence of a cycle 

lane.   

Table 7.7: The results of the logistic regression model  Balanced classes of near misses) 

Variablesa Coefficient (B) 
Standard 
error Wald p-value Exp(B) 

95% Confidence 
Interval for Exp(B) 

Lower 
Bound 

Upper 
Bound 

Intercept 0.164 0.129 1.613 0.204    
person 0.074 0.006 139.597 0.000 1.076 1.063 1.090 
bicycle 0.201 0.016 153.051 0.000 1.223 1.184 1.262 
car 0.089 0.010 73.561 0.000 1.093 1.071 1.115 
bus -0.100 0.029 11.928 0.001 0.905 0.855 0.958 
motorbike 0.368 0.054 46.338 0.000 1.445 1.300 1.607 
truck 0.034 0.031 1.196 0.274 1.035 0.973 1.100 
[time=Dawn/dusk-
time] 

-0.417 0.063 43.899 0.000 0.659 0.583 0.746 

[time=Day-time] -0.120 0.032 14.394 0.000 0.887 0.834 0.944 
[time=Night-time] 0b       
[glare=0] -0.099 0.034 8.418 0.004 0.906 0.848 0.968 
[glare=1] 0b       
[weather=Clear 
weather] 

-0.117 0.098 1.433 0.231 0.889 0.734 1.078 

[weather=Rainy 
weather] 

-0.281 0.099 7.994 0.005 0.755 0.622 0.917 

[weather=Snowy 
weather] 

0b       

[fog=0] -0.241 0.073 10.812 0.001 0.786 0.681 0.907 
[fog=1] 0b       
[cycle_lane=0] -0.044 0.026 2.790 0.095 0.957 0.909 1.008 

[cycle_lane=1] 0b       

[wet_surface=0] 0.027 0.052 0.275 0.600 1.028 0.928 1.138 

[wet_surface=1] 0b 0.129 1.613     

aThe reference category for the independent variable (near misses) is 1. 
bThis parameter is not included in the model. 

Table 7.6: The summary of the logistic regression model (Balanced classes of near misses) 

Dependent Variable:    Near_miss    R-squared 0.027 

Method:           Least Squares      Adj. R-squared:     0.027 

No. Observations: 26290    Chi-Square 725.606 

Df Residuals:     26290   Log-Likelihood:     -15671.736 

  BIC:                15824.390   AIC:                15701.736 
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7.7 Granger causality of risk factors 

7.7.1  Assumptions 

Understanding the temporal causal structure of a given dataset is essential for interventions and 

decision-making for real-world applications (Bahadori and Liu, 2012). For a given risk factor to cause a 

near miss, it has to precede its occurrence. If the time lag between the risk factor being observed and 

the near-miss occurring can be modelled, then it has the potential to be used in an early warning 

system.  Fig. 7.6 shows the assumption of temporal causality, highlighting the scope that defines 

causality. To test for granger-causality, the figure shows that the tested variable must be in a sequential 

form and there is a defined lag between the selected variable and a near miss for causality to be 

significant.  

 

Figure 7.6: Temporal causality assumption 

7.7.2  Methodology 

To test the aforementioned assumption, the Granger causality method is employed (Bahadori and 

Liu, 2012; White and Lu, 2010). Granger causality is a statistical approach used to determine whether 

a given time series could be useful in predicting another one. The main hypothesis is that if a time-

series X1 Granger-causes a time-series X2, then the past values of X1 should contain information that 

assists in predicting X2. To avoid the post hoc fallacy1, Granger causality aims only to find predictive 

causality, whereas true causality is rather a philosophical argument.  

Given that the variables are extracted from sequential frames, each variable can be seen as a time 

series and this approach can be useful to determine whether any risk factor Granger-causes near 

misses based on the time lag between the occurrence of a near miss, and the preceding existence of a 

given risk factor. To compute Granger causality, the variables have been transformed to stationary 

 
1 Given that an event (x) is  followed by an event (y), event (x) must have caused event (y). 
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series, ensuring that the data distribution (mean, variance, and autocorrelation) of the variables do 

not change over time.  

7.7.3  Results 

To compute Granger causality for the different independent variables (16 variables), different 

experiments have been conducted for selecting a lag value. We experimented with values in the range 

of 1 to 120. This selection is made based on: 1) trial and error and; 2) the nature of the data set used, 

in which 30 data points represent one second.  

The results show statistically significant outcomes for three independent variables (car, person, and 

glare), which means that the count of cars, persons or the occurrence of glare Granger-causes near 

misses for different lag intervals. In other words, these variables could be useful for forecasting the 

occurrence of cycling near misses.  

Table 7.8 shows the result of the Granger causality for these three variables. Firstly, regarding the 

car variable, the results show significant Chi-squared and F-test values at a p-value less than 0.05 for a 

lag value that is 17 or lower (below 0.5 second). Besides the significant causality, this could also indicate 

the short-term effect or the rapid effect of the presence of a car in Granger-causing the occurrence of 

near misses. Secondly, regarding the person variable, similar to the car variable, the results show a 

statistically significant chi-squared test and f-test for various lags of p-value below 0.05. However, 

unlike the car variable, the causal effect of the person variable has a long-term effect in which the lag 

values range from 18 to 42 (approx. 1.5 seconds). Lastly, regarding the glare variable, similar to the 

two aforementioned variables, the occurrence of glare shows a statistically significant chi-squared test 

and f-test at different lags. Unlike these two aforementioned variables, however, the causal effect of 

glare on the occurrence of near misses remains significant both short-term (0.5 seconds) and long term 

(2 seconds). This could indicate how crucial the existence of glare is to the occurrence of cycling near 

misses. 

Table 7.8: The significant results of the Granger causality 

Variable Lag F-test Chi-squared test P-value 

Car 5 2.5048   12.5269 0.0283   

7 2.4416   17.0964 0.0168   

8 2.2060   17.6547 0.0240   

9 1.9930   17.9443 0.0359   

14 1.8116   25.3778 0.0312   

15 1.6962 25.4597 0.0443   

16 1.7422 27.8947 0.0328   
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17 1.6529   28.1212 0.0438   

Person 18  1.6205 29.1928 0.0464 

25 2.1248 53.1480 0.0009 

42 1.4345 60.3207 0.0337 

Glare 26 1.5611 41.0922 0.0342 

60 1.4308 85.9895 0.0160 

7.8 Limitations 

This chapter presented new approaches and outcomes for understanding the contributions of risk 

factors such as the counts of road users, visual, weather or surface conditions to the occurrence of 

cycling near misses. However, there are still limitations that need to be addressed in future work when 

it comes to assessing the cause and effect of the stated subject. First, data representation and 

distribution: Finding observation points that represent various types of events and conditions in the 

scope of the stated subject remains a critical issue for understanding and generalising the measured 

causes and effects. In this vein, for future studies, a naturalistic study needs to be carried out to include 

a representative sample of data that belongs to different types of near misses, and different visual, 

weather, and physical conditions. Second, addressing the behavioural aspects (as discussed in Chapter 

III) represents another limitation. Similar to addressing the issue of representative data in terms of 

scene types and conditions, the representation of strata that belongs to different socioeconomic 

structures needs to be considered. Last, even though the dataset presented in this chapter is large (N= 

46,567), more data can be generated from more video streams. However, the process of generating 

this data via the deep models presented in the previous chapters (Chapter V and VI) remains 

computationally intensive.  As for future work, more GPUs need to be considered.  

7.9 Summary  

 In this chapter, we introduced different statistical approaches to understand the contributions of 

the risk factors to the occurrence of cycling near misses based on the observations generated by the 

deep models introduced in the previous methodological chapters. Firstly, the chapter analysed the 

data descriptively, highlighting the distribution of the selected 17 variables used in this chapter. 

Secondly, the chapter investigated the impacts of the different risk factors on the occurrence of near 

misses using a logistic regression model as a first step and base for further investigations of the 

underlying collinearly in the data set. Third, as a step further after introducing the base model, we 

conducted a new model that takes into consideration the class imbalance of the dependent variable. 

Lastly, the chapter addressed the temporal causality in the data set relying on Granger causality 

methods. After applying different experiments for the different independent variables at different lags, 

the results show statistically significant results for three variables (car, person, and glare) which 

granger-cause near misses and could be useful for forecasting near misses at different temporal lags. 
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8 

DISCUSSION  
AND APPLICATIONS 

  

8.1 Overview 

his chapter represents the results of the overall framework and discusses them in the context 

of the current state-of-the-art. It also shows from a broader perspective how the introduced 

methods can be used in other applications in cities. Moreover, it discusses the findings 

thoroughly and shows the limitations and the potential future research work. The chapter also draws 

recommendations for practice and policy-making towards reaching AI-generated urban policies. Last, 

it discusses two vital applications (URBAN-i Box, and URBAN-i Cloud) to deploy and implement the 

research outcomes in the real world.  

T 
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8.2 Framework Stringency Index (SI) 

Even though each model presented in this research is validated individually, we introduced a 

Framework Stringency Index (SI) in chapter 4 to further evaluate the performance of the individual 

models for the given task of analysing cycling near misses. What makes this index unique is that it does 

not only include the performance of each model but it also takes into account its importance in 

understanding cycling near misses in terms of the weighting of the variables it generates the 

regression models introduced in chapter VII.  

Table 8.1 shows the combined results of the individual models accumulated from the previous 

chapters. These results represent the average precision of each model and their absolute and 

normalised statistical weights. After computing SI based on the presented models’ results, the overall 

performance of the pipeline achieved a SI of 0.81. The closer the SI value to 1, the more accurate the 

framework is in detecting the different risk factors in accordance with the different precisions of the 

deep models and the weight of a given factor on the occurrence of near misses. Based on the results 

of the normalised weights, it is worth mentioning that the SI index is highly influenced by the 

precisions of scenes that belong to clear and rainy weather and those that include people and bikes. 

Nevertheless, it is less influenced by the precision of scenes that include trucks, glare, and wet 

surfaces.  

8.3 What makes the overall framework (URBAN-i) the state-of-the-art for 

understanding urban dynamics? 

There is no doubt that advances in computer science in general, or geo-computational methods have 

led to several advances in geography and the understanding of urban systems (Arribas-Bel and Reades, 

2018). While it is vital to understand the overall urban systems of cities from satellite images, seeing 

cities from the street view adds more dimensions of information and complexity. Capturing these 

Table 8.1: The summary of the results of the introduced models 

Deep models Risk factors 
Average 
precision1 

Absolute 
statistical weight2 

Normalised 
weight3 

Model1- NightNet nightime 0.885 0.268 0.101 

 daytime     0.885 0.120 0.045 

 dawn_dusk   0.885 0.417 0.157 

Model2- GlareNet Glare 0.883 0.099 0.037 

Model3- PrecipitationNet(b) clear       0.959 0.117 0.044 

 rain        0.959 0.281 0.106 

 snow        0.959 0.199 0.075 

Model4-FogNet Fog 0.862 0.241 0.091 

Model5-SlipNet Wet surface 0.918 0.241 0.091 

Model6- Object_detection person      0.75 0.074 0.028 

 bicycle     0.79 0.201 0.076 

 car         0.81 0.089 0.034 

 bus         0.77 0.100 0.038 

 motorbike   0.81 0.368 0.139 

 truck       0.77 0.034 0.013 
1The average precision calculated for each model on the test sets introduced in chapter V. 
2The absolute value of the statistical weight of the second logistic regression model computed based on the coefficient (B) 
statistics, introduced in chapter VII. 
3The normalised version of the statistical weight introduced in the previous column.  
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rapid urban changes in day-to-day life through images offers more opportunities to tackle urban 

dynamics towards a better understanding of cities. In the previous chapters, we introduced different 

methods to understand critical events such as cycling near misses and their risk factors, which we refer 

to here, as URBAN-i. The URBAN-i can be utilised as a base for generating urban data for multi-purpose 

urban and transport-related studies. The framework can capture information related to 

environmental, visual, and built environment conditions coupled with the spatiotemporal context. 

 The innovation can be seen in detecting critical events and understanding their causes. Also, by 

applying the same algorithms to active cameras in cities, the model can enable real-time capturing of 

data. Last, the same methodology can be applied to tackle and classify different urban issues from 

urban scenes. Coupled with remote sensing image classification methods, the proposed URBAN-i 

framework can reveal deeper insights into the dynamics of cities. 

Putting all the algorithms of the URBAN-i model together, Fig. 8.1 shows different examples of 

sequential frames of cycling in London with different scene conditions, including the presence of a 

cycling lane, or the occurrence of near misses. The figure also shows how information can be extracted 

from urban scene images to a database that can be used for various urban research and data 

visualisation purposes. This database, in addition to the aforementioned factors, shows the planning 

status of a scene, in addition to the depth of road users. This will enable urban modellers and 

researchers to collect and analyse their data sets based on the needs of their research.  

8.4 Ancillary methods and input sensors for sensing the environment 

By following the methods introduced in the previous chapter, and in addition to the deep models 

introduced, several additional models can be computed to assist and complement the perception of 

the surroundings of a given scene. For example, a model can be trained to classify scenes based on 

the image location: (i.e. indoor, outdoor, or in the transportation mode scenes). Also, a model can be 

trained to classify the scene by the pose in which the image or the video streams are captured (i.e. 

street level, or aerial view). And last, a model can be trained to classify scenes regarding the traffic 

conditions (i.e. heavy, medium or low, or no traffic).    

In general, the field of machine learning is constantly evolving and methods develop rapidly, which 

necessitates future adaptation and adoption of new techniques to achieve better performance on a 

given task. It is crucial, therefore, to develop an overall methodology of a pipeline of deep models that 

allows future adaptation to either new methods or refined existing methods with minimal resources. 

Accordingly, the overall methodology is developed to adapt to new models that could refine the 

introduced ones, or introduce new input sensors for different types of data. For instance, adding a 

LiDAR unit could augment the video streams, after data fusion, with the estimated depth.  

8.5 Covid-19 pandemic and the increase in the number of people on bikes 

Whether temporarily or permanently, it has been debated that there is an increase in the number 

of people on bikes with different profiles and social characteristics (DfT, 2020). There is no doubt that 

this increase in cycling would have direct benefits for health and the environment. With this increase, 

however, cycling infrastructure needs further preparation to host the increased numbers and more 

safety-related measures need to be considered. Accordingly, automating the detection of near misses 

could lead to the design of new safety policies for cycling in cities, to understand the capacity of the 
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current cycling infrastructure for safe use, and to understand the tipping point for the increase in the 

number of near misses based on the interaction with other people on bikes.  

8.6 Moving from prediction to decision-making to policy  

After addressing the limitations of the stated models, the superior performance of modern 

computer vision algorithms is in little doubt. However, the extent to which model outputs can be used 

for automated and optimised policy and decision making remains an important research frontier. Big 

data, of which image data is a subset, is increasingly having an impact on decision and policymaking, 

whether explicitly or not. Government authorities rely on algorithmic outputs to inform their decisions 

daily. The practical, ethical and societal implications of this are still unclear and (Duarte and Álvarez, 

2019) note the lack of synchronicity between the potential societal impact of AI technologies and our 

cultural discussions around them.  

 Alongside other sources of big data, images and video play a particularly important role in this effort 

because they capture the action and interaction of humans within their environment. This provides 

the opportunity to understand a range of issues, such as how the structure of the built environment 

affects pedestrian safety, or how street lighting influences crime. These issues are inextricably linked, 

and urban planning and policymaking must take a holistic view of them to avoid disadvantaging certain 

groups.  

8.6.1 Enabling Technologies 

Two enabling technologies will be important in this area. Firstly, multi-agent reinforcement learning 

will enable more realistic human agents to be simulated in more realistic urban environments. The 

behaviour of these agents can be learned and validated using images and videos data. Such models 

could support or supersede traditional land use and transport planning approaches, as well as 

optimise the performance of urban systems such as transportation. So far, this research shows 

evidence on how to extract agents and environmental conditions from street-level images. This gives 

the first milestones for building a virtual environment -based on realistic settings- to simulate the 

behaviours of urban multi-agents. 

The second technology is GANs. It is not inconceivable that GANs, fed with images of a city, whether 

at a street view or aerial, could eventually be trained to design effective urban environments. In the 

same way that GANs can generate synthetic human faces that are indistinguishable from real faces 

(Karras et al., 2019), they could be used to plan new cities or neighbourhoods that perform like existing 

cities. This is certainly a long way off, but advancements in AI will enable predictions that are beyond 

what humans or social groups may achieve, or even conceive of  (Duarte and Álvarez, 2019). The 

outcomes of the introduced framework would allow generative models to synthesise data conditioned 

based on multiple predictions of the introduced framework. For example, generating an image with 

clear weather when rainy and foggy weather is detected to enhance visibility.   

8.6.2 Cameras with embedded AI in cities for real-time insights 

The implementation of computer vision model pipelines in (near) real-time is a crucial issue for 

urban analytics and the Internet of Things (IoT) systems. This deployment at the edge in urban 

contexts can show a direct impact on the current research for developing urban theories and policies. 

For example, cameras with embedded AI may alert police or transport control rooms of incidents, 
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which they can verify and respond to. This type of system should be managed in a coordinated fashion 

so that the needs of various authorities can be met, which requires the integration of the different 

layers of the city.  However, while this approach will enable fast decision making and response, it falls 

short of being a fully intelligent and automated system able to implement or generate policy. 

8.6.3 Policy for AI and by AI 

After the deployment of AI in cities based on accepted norms and ethics, their deployment in cities 

will also lead to the generation of adaptive urban policies by AI. AI has the potential to generate 

dynamic and place-based policies. However, challenges remain in the innovation and fusion of 

different domains of knowledge to reach this critical step where the machine not only predicts and 

makes decisions but generates short- and long-term plans. Most importantly, it is a mixture of the 

tackled deep learning and computer vision research in urban settings with Natural Language 

Processing (NLP) research and reinforcement learning. By merging these different knowledge domains 

and integrating models that are capable of addressing multiple tasks in cities, theories and more 

flexible place-oriented policies can be generated for cities and knowledge can be transferred from one 

city to another.  

8.6.4 Conceptual framework towards AI-generated policy and decision making 

Fig. 8.2 shows a conceptual framework and a recommended process for achieving the two crucial 

steps outlined in sections 6.2 and 6.3, and how they can be reached from the current perspective of 

deep computer vision research.  It shows the overall system for policy-makers and developers showing 

the important aspect of this process and the domains that are still under-developed and require 

further integration with urban analytics research. This thesis has addressed the top part of the 

diagram, resulting in cameras with embedded AI that will be described in section 8.8. The bottom part 

of the diagram will be the focus of future work. 

 

Figure 8.7: AI-generated urban policy conceptual framework 



 
 
CHAPTER VIII - DISCUSSION AND APPLICATIONS                                                                      MOHAMED IBRAHIM 

 

119 
 

8.7 Ethics of AI 

Before the framework in Fig. 8.2 can be fully realised and trusted, it will be important to address the 

ethics of AI and ensure that our reliance on AI algorithms for decision making doesn’t have unintended 

consequences. Understanding the comprehensive impact of AI on our daily lives remains a crucial 

subject of ongoing debate (Hagendorff, 2020; McLaren, 2003). It is still unanswered how we can 

provide an objective assessment to ensure the safety and fairness of AI when it comes to operation in 

cities while protecting the privacy and security of individuals. Subjectively, algorithms, in general, are 

not biased, however, when they are built by humans, different types of biases can be inherited 

whether intentionally due to misconduct, or unintentionally due to systematic errors and data 

misrepresentation. There are no doubts that the former is an issue that needs to be avoided by 

following the best practice and norms for creating a ground truth and developing algorithms that 

ensure fairness to those who are affected by it. For example, this research is funded by the Road Safety 

Trust and has been carried out from the perspective of improving cycling safety. Despite all measures 

being taken to ensure fairness in the research design, the thesis still examines risk factors for incidents 

from the perspective of a single group of road users. Furthermore, as stated in section 6.9, the data 

used are from a self-selected group of contributors to video sharing sites. If action is taken to reduce 

the presence of risk factors for people on bikes using this data, it may inadvertently increase risk or 

have other negative consequences for other groups of road users. Therefore, it is vitally important to 

continue to work towards systems that take a holistic view of the city and its interconnected 

components in order to prevent these unintended consequences. 

In terms of algorithmic bias, this is a crucial issue that requires thorough analysis and assessment to 

be pinpointed and resolved due to the complexity of AI algorithms. Accordingly, a wide range of 

research has tackled biases in AI by focusing on understanding the rationale of machine behaviour, 

instead of how models are created by developers (Rahwan et al., 2019). On the other hand, noticeable 

progress has been made in domains such as explainable AI (Holzinger et al., 2018; Lundberg et al., 

2020; Yang et al., 2021), where models are unpacked to assess their performance and highlight the 

weights of the individual hyperparameters of a given model when a prediction decision is made.  

8.8 Research applications 

This section introduces the implementation of URBAN-i for practical use in cities. The URBAN-i 

system is currently being used within the Road Safety Trust funded 100 Cyclists Project. URBAN-i is a 

suite of bespoke computer vision algorithms, based on this thesis, for detecting critical events and 

understanding their causes. As it watches, it learns how city systems interact to produce risk, proving 

actionable insights. The suite of URBAN-i comprises a camera with embedded AI (URBAN-i Box2) and 

a cloud-based system (URBAN-i Cloud) which both share the vision system. However, the URBAN-i Box 

comprises four other sub-systems (voice, environmental, communication, and data storage and 

encryption systems) that simultaneously function and interact with one another. 

8.8.1 Application 1: URBAN-i Box 

Generally, when critical events occur in cities, rapid detection and response are of utmost 

importance. However, critical events often result from the interaction between different systems that 

can be interdependent and complex. As has been established in this thesis, the occurrence of a traffic 

 
2 URBAN-i Box is a tangible prototype that has been tested and used in real-world settings. 
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incident could be due to a multitude of factors such as the weather, built or natural environment, or 

road users interactions. Current sensors are task-based (i.e. CCTV, traffic cameras, pollution sensors, 

help points) and output data that need processing and integration by experts before they can provide 

information for decision-making.  

URBAN-i is operationalised through a camera with embedded AI that generates synchronized data. 

When a person is riding a bike and has a near miss, URBAN-i Box sees the whole scene, from how 

he/she was cycling to what the weather was like and the conditions of the road surface to work out 

the most likely contributing factors. The core elements of URBAN-i Box are the computer vision 

algorithms that are presented in this research and the sensor design. 

The vision subsystem is the primary system and all other sub-systems either assist, complement, or 

verify its outcomes. It is divided into six phases, each one tackling different vision tasks: 1) Sensing 

location types and poses, 2) Sensing and detecting the conditions of the environment (including 

weather, visual, green spaces, deterioration, etc.), 3) detecting and tracking objects, 4) detecting 

instant actions (accidents, near misses, stabbing, etc.), 5) depth estimation and transformation into a 

top-view, and last, 6) causal inference. These phases are integrated and built as an end-to-end pipeline 

with a single input of video streams. The framework has four outputs: 1) critical event detection (in 

this case,  near misses), 2) a list of detected risk factors and objects, 4)  objects and their depths on a 

top-view image, and last 4) causal inference for the detected factors when critical events are detected.   

The voice and environmental sub-systems are based on different input sensors (mic, air quality, 

pressure, temperature sensors) that are processed by Artificial Neural Networks to classify their inputs 

and if values are higher than designated thresholds warnings can be sent after an adjoined assessment 

of the vision system. The communication sub-system handles the user’s authentication, inputs and 

interfacing between the sensor and the user. Finally, the storage and encryption sub-system handles 

how data is stored, accessed, and secured.  

To achieve the sub-systems, the URBAN-i comprises 10 main hardware components, which are:  

• An 8 MB camera with a wide-view and high-resolution (1296 X 972) calibrated sensor for video 

streaming while capturing single images with time and location reference. The camera 

algorithms rely on different AI models to detect different objects, classify scenes, and recognise 

instant actions. 

• A Light Detection And Ranging (LiDAR) sensor that uses the direct flight time to measure the 

reflected light to a distance of up 12 metres for both indoor and outdoor. The sensor is calibrated 

to detect safe and unsafe distances for transport modes. 

• An environmental sensor that integrates data related to temperature, humidity, pressure and 

gas sensing for air quality. The sensor is calibrated to automatically determine the concentration 

of particles of Carbon monoxide, Nitrogen dioxide, and Alcohol in indoor and outdoor scenes. 

• A low powered screen to provide vital information to users such as Disk capacity, battery level, 

multi-sensor readings, and button interaction. 

• A wide range of colour lights to be utilised for user interface and notification for the different 

tasks and scenarios. 
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• A GPS sensor with up to 10 updates per second. It consists of 66 channels. RTC battery, and built-

in antenna that can capture data from multi satellites.  

• An ultra-high-range luminosity sensor that relies on both infrared and full spectrum diodes to 

measure light temperature and intensity. It also detects different hand gestures that allow users 

to interface with the URBAN-i box.  

• An inertia measurement unit (IMU) sensor of 9 axes is used to provide precise data regarding 

acceleration, heading and gyroscope. The sensor algorithms comprise AI models to understand 

different actions in cities to add further features to the camera functions. 

• A Li-po chargeable battery of 3800 mAh capacity is used to provide a long time for streaming up 

to 4 and half hours in a single charge. 

• A custom-designed holder that allows a flexible and easy mounting of the box in different types 

of surface and transport modes. 

Fig. 8.3 shows the design of the URBAN-i Box, highlighting the organisations of the aforementioned 

components.  

 

Figure 8.8: The model and specifications of the URBAN-i Box 
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8.8.2 Application 2: URBAN-i Cloud    

Another application of the introduced methods is a prototype cloud-based system for computation 

on user-defined data sets. Unlike the URBAN-i Box, the cloud-based system only comprises the 

computer vision system for detecting critical events in addition to understanding their causes. 

However, the system can be developed further to include other tools and methods. Fig. 8.4 shows the 

main user interface of the URBAN-i Cloud. On uploading a video stream or an image, the model can 

also compute on the cloud and post the prediction results to the users.  

8.9 Limitations and future work 
While the introduced framework shows novelty in analysing a wide range of the conditions of a 

given scene that belong to near misses or safe rides, the model limitation appears in analysing scene 

conditions that are mixed between several conditions in the same scene (i.e. a mixture of a wet and 

dry surface). In future work, a potential way to develop the model further is by using semantic 

segmentation and scene parsing. This pixel-level segmentation would allow the model to provide 

multiple categorizations and localisation of the surface conditions for a single image. Accordingly, this 

 

 

Figure 8.9: The user interface of URBAN-i Cloud  
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will enhance the accuracy of the model when detecting complex scenes in the real world. However, it 

would increase the inference time needed to compute the entire framework.  

Second, besides the accuracy of the utilised model for object detection, the counts of objects within 

a given scene are still limited by the field of view of the camera used to generate images. This may 

produce an under-representation of the actual road-users in a given region of interest which falls 

outside the camera’s field of view. For instance, for a common camera with a field of view of 65 

degrees, objects that are in the same line as the cyclist may not be seen in a given frame, despite their 

appearance in future image frames. This limitation, however, can be avoided in future research by 

introducing a 360-degree camera, or at least a 180-degree camera that covers the entire frontal view 

while cycling. In doing so, a better representation of road users can be extracted.  

On the other hand, the framework precision in detecting and classifying urban scenes depends on 

several factors. First, the individual accuracy of each pre-trained CNN model is a key factor. Each one 

can be modified to achieve better accuracy and results with larger training datasets, higher 

computational power, and deeper networks.  However, the goal of this research is to show evidence 

that the complexity of urban issues such as detecting near misses and their risk factors can be tackled 

by deep learning and computer vision with less burden on the researcher and using data that are 

available and accessible by everyone anywhere in the globe, without the means of expensive sensors.  

8.10 Summary 

  In this chapter, we discussed the overall framework or URBAN-i as a new computer vision tool that 

can be utilised for various purposes of modelling the dynamics of urban areas, which has been used 

in this research to detect and analyse cycling near misses and their causes. We have shown the 

possibility of extracting information from cities and tackling critical events by using urban images. 

Accordingly, this tool exemplifies the application of AI and deep learning in understanding city 

dynamics and development.  The outcomes of the thesis have been operationalised through two 

applications; the URBAN-i Box, and the URBAN-i Cloud, which directly contributes to the 

advancements in the methods of urban modelling to better understand cities. In the future, we expect 

devices with embedded AI such as the URBAN-i box to form part of an ecosystem of AI-generated 

policy, but this requires further research and development, both in terms of the AI algorithms and the 

ethics and regulation around their use.
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9 

SUMMARY  
AND CONCLUSION 

 

t is evident that cycling is a growing mode of transportation in many cities. Whether for 

commuting or leisure, its advantages regarding public health and the reduction of environmental 

pollution have influenced planners and policy-makers to invest in its infrastructure in cities. 

However, the modal share of cycling among other transport modes remains low in many cities. Cycling 

is still perceived as a dangerous transport mode, not only because of the occurrence of incidents but 

also due to the frequent exposure to events that may not necessarily end up by a collision or so-called 

near misses.  In this research, it is defined as a situation in which a person on a bike was required to 

act to avoid a crash, such as braking, speeding, swerving or stopping. This fear of getting hit or falling 

while cycling limits the modal share of cycling among other transport modes. 

In this research, we aimed to identify when, where, and why cycling near-misses take place in cities 

to provide a safer environment for people on bikes. Due to the interdisciplinary nature of the 

addressed topic, the research includes an investigation on the different factors related to the 

conditions of the built and natural environments and road user interactions that may cause potential 

near mises.  Accordingly, this research introduced novel methods, not only to detect and analyse near 

misses in complex urban scenes but also to analyse cities and advance the methods used for urban 

modelling. In a broad sense, the research aimed to map some of the agents of cities (pedestrian, 

transport modes, and environmental conditions) in order to understand their interactions at a given 

time and space with the respect to the complexity of the urban settings. The novelty of the proposed 

framework, or URBAN-i, lies in the application of computer vision and deep learning to understanding 

the conditions of the built environment and interaction among the different road-users in cities that 

leads to critical events such as near misses.  

In practice, when critical events occur in cities, rapid detection and response are of utmost 

importance. However, critical events often result from the interaction between different systems that 

are often interdependent and complex. When a cycling near miss occurs, it could be because of the 

weather, built or natural environment, or road users interactions. Only by taking a holistic view can 

we develop a system to detect and understand these events and their causes. Current sensors are 

I 
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task-based (i.e. CCTV, traffic cameras, pollution sensors, help points) that output data that need 

processing and integration by experts before they can provide information for decision-making.  

The introduced overall framework (URBAN-i) is a suite of computer vision algorithms that can be 

utilised for detecting critical events and understanding their causes. As it watches, it learns how city 

systems interact to produce risk, proving actionable insights. Accordingly, when a person is riding a 

bike and has a near miss, URBAN-i sees the whole scene, from how he/she was cycling to what the 

weather was like and the conditions of the road surface to work out the most likely contributing 

factors.  

The research aimed to answer one crucial question of how can we tackle different scenarios of the 

interaction between people and transportation, bearing in mind the conditions and the dynamics of 

the built environment? However, to cover the different dimensions of this question, we have 

subdivided it into sub-questions, these are: 

1. How can we identify and predict urban systems that may influence near misses in cities?  

2. To what extent can machine vision be used to understand the nuances of physical and non-

physical elements from images/ videos? 

3. To what extent can machine vision detect environmental conditions and visibility related 

factors from urban scenes? 

4. To what extent can the machine recognise a safe or a near miss scene from the overall 

interactions of road users in complex scenes? 

5. When and where do cycling near-misses take place in cities? 

6. Which factors are more likely to cause cycling near misses?  

Different types of computer vision methods are introduced to address the multi-faced nature of the 

aforementioned questions. In general, the logic behind selecting a given method is based on two main 

reasons; 1) to address the individual sub-question, and 2) to contribute to the bigger picture of the 

research topic. The research methodology consisted of five sections that respond to the research 

objectives and goals. The research provided several novel methods relying on deep learning and 

computer vision such as URBAN-i, WeatherNet, and CyclingNet. The URBAN-i model is a multipurpose 

model that can be used for various tasks related to urban modelling. After training several deep 

models to understand the nuances of various urban scenes we obtained a validation accuracy to prove 

that even the qualitative urban conditions in cities can be classified and detected relying on computer 

vision. The current version of the model can be used for mapping the occurrence of transport modes, 

pedestrian and planning status of urban scenes in cities, in addition to detecting and analysing the 

causes of cycling near misses. Nevertheless, the model can be developed further to be used for 

modelling the dynamics of traffic congestion, crowd, or crime detection. Therefore, better decisions 

can be taken by policy-makers and planners to optimise resources and improve the living conditions 

in the urban world. The introduced framework is fully coded in Python programming to be used as a 

tool to capture and understand urban dynamics in different corners of the globe.  
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After addressing the limitations of the stated models, the superior performance of modern 

computer vision algorithms is in little doubt. However, the extent to which model outputs can be used 

for automated and optimised policy and decision making remains an important research frontier. Big 

data, of which image data is a subset, is increasingly having an impact on decision and policymaking, 

whether explicitly or not. Alongside other sources of big data, images and video streams play a 

particularly important role in this effort because they capture the action and interaction of humans 

within their environment. This provides the opportunity to understand a range of issues, such as how 

the structure of the built environment affects pedestrian safety, or how street lighting influences 

crime. These issues are inextricably linked, and urban planning and policymaking must take a holistic 

view of them to avoid disadvantaging certain groups.  

The implementation of computer vision model pipelines in (near) real-time is a crucial issue for 

urban analytics and the Internet of Things (IoT) systems. This deployment at the edge in urban 

contexts can show a direct impact of the current research for developing urban theories and policies. 

For example, cameras with embedded AI may alert police or transport control rooms of incidents, 

which they can verify and respond to. This type of system should be managed in a coordinated fashion 

so that the needs of various authorities can be met, which requires the integration of the different 

layers of the city.  Accordingly, the introduced methods can be implemented and operationalised in 

cameras. In this research, we showed how URBAN-i can be implemented through a camera with 

embedded AI, the URBAN-i Box, that generates synchronized data or implemented in a cloud-based 

service, or so-called URBAN-i Cloud. 

In a nutshell, this study contributes to science with theoretical and empirical foundations. Put all 

together, the research aims to provide human-centred evidence that may enable policy-makers and 

planners to provide a safer built-up environment for cycling in London, or elsewhere.
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APPENDIX 

Training details of the introduced models 

 

Base Model, WeatherNet and SlipNet: After applying the architecture for each model, we followed 

the standard procedures for training classification tasks based on the models described in Chapter II. 

The output layer is based on the number of outputs for each model. It is activated based on a sigmoid 

function for binary outputs or softmax function for non-binary outputs. The model is trained using a 

back-propagation of error algorithm to update the weights of the neurons of a batch size of 32, with 

a momentum of 0.9 and a learning rate of 0.01. It is compiled based on the optimization algorithm of 

stochastic gradient descent, relying on ‘adam’ optimizer (Kingma and Ba, 2015). The base model is 

trained, without freezing any layers’ weights, by three epochs; each consists of 9000 steps for training 

and 2000 steps for validation. All models within the ensemble of WeatherNet and SlipNet are trained 

for 100 epochs after freezing all layers of ResNet50, except for the fully-connected layers. The accuracy 

of the model is based on the cost function of the Cross-Entropy error.   

SSD Object detection model:  After implementing the introduced architecture, the model has been 

trained using stochastic gradient descent with an initial learning rate of 0.001 that decays after the 

first 320k iterations. Further implementation details can be found by W. Liu et al. (2016).  

CyclingNet:  After implemented the introduced architecture, the final output layer consists of a 

single neuron and is activated with a sigmoid function. The final model is compiled with stochastic 

gradient descent, relying on ‘adam’ optimiser, with a momentum of 0.9 and a learning rate of 0.001.  

The model is set to be trained for maximum training cycles (epochs) of 100, with an early stopping 

technique, monitoring the change in loss with a patience value of 20 epochs. The same 

hyperparameters were applied to all other base models introduced in Chapter VI. 

 

 

 


