280,785 research outputs found

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    A Peer-to-Peer Middleware Framework for Resilient Persistent Programming

    Get PDF
    The persistent programming systems of the 1980s offered a programming model that integrated computation and long-term storage. In these systems, reliable applications could be engineered without requiring the programmer to write translation code to manage the transfer of data to and from non-volatile storage. More importantly, it simplified the programmer's conceptual model of an application, and avoided the many coherency problems that result from multiple cached copies of the same information. Although technically innovative, persistent languages were not widely adopted, perhaps due in part to their closed-world model. Each persistent store was located on a single host, and there were no flexible mechanisms for communication or transfer of data between separate stores. Here we re-open the work on persistence and combine it with modern peer-to-peer techniques in order to provide support for orthogonal persistence in resilient and potentially long-running distributed applications. Our vision is of an infrastructure within which an application can be developed and distributed with minimal modification, whereupon the application becomes resilient to certain failure modes. If a node, or the connection to it, fails during execution of the application, the objects are re-instantiated from distributed replicas, without their reference holders being aware of the failure. Furthermore, we believe that this can be achieved within a spectrum of application programmer intervention, ranging from minimal to totally prescriptive, as desired. The same mechanisms encompass an orthogonally persistent programming model. We outline our approach to implementing this vision, and describe current progress.Comment: Submitted to EuroSys 200

    Kernel arquitecture for CAD/CAM in shipbuilding enviroments

    Get PDF
    The capabilities of complex software products such as CAD/CAM systems are strongly supported by basic information technologies related with data management, visualization, communication, geometry modeling and others related with the development process. These basic information technologies are involved in a continuous evolution process, but over recent years this evolution has been dramatic. The main reason for this has been that new hardware capabilities (including graphic cards) are available at very low cost, but also a contributing factor has been the evolution of the prices of basic software. To take advantage of these new features, the existing CAD/CAM systems must undergo a complete and drastic redesign. This process is complicated but strategic for the future evolution of a system. There are several examples in the market of how a bad decision has lead to a cul-de-sac (both technically and commercially). This paper describes what the authors consider are the basic architectural components of a kernel for a CAD/CAM system oriented to shipbuilding. The proposed solution is a combination of in-house developed frameworks together with commercial products that are accepted as standard components. The proportion of in-house frameworks within this combination of products is a key factor, especially when considering CAD/CAM systems oriented to shipbuilding. General-purpose CAD/CAM systems are mainly oriented to the mechanical CAD market. For this reason several basic products exist devoted to geometry modelling in this context. But these basic products are not well suited to deal with the very specific geometry modelling requirements of a CAD/CAM system oriented to shipbuilding. The complexity of the ship model, the different model requirements through its short and changing life cycle and the many different disciplines involved in the process are reasons for this inadequacy. Apart from these basic frameworks, specific shipbuilding frameworks are also required. This second layer is built over the basic technology components mentioned above. This paper describes in detail the technological frameworks which have been used to develop the latest FORAN version.Postprint (published version

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    London SynEx Demonstrator Site: Impact Assessment Report

    Get PDF
    The key ingredients of the SynEx-UCL software components are: 1. A comprehensive and federated electronic healthcare record that can be used to reference or to store all of the necessary healthcare information acquired from a diverse range of clinical databases and patient-held devices. 2. A directory service component to provide a core persons demographic database to search for and authenticate staff users of the system and to anchor patient identification and connection to their federated healthcare record. 3. A clinical record schema management tool (Object Dictionary Client) that enables clinicians or engineers to define and export the data sets mapping to individual feeder systems. 4. An expansible set of clinical management algorithms that provide prompts to the patient or clinician to assist in the management of patient care. CHIME has built up over a decade of experience within Europe on the requirements and information models that are needed to underpin comprehensive multiprofessional electronic healthcare records. The resulting architecture models have influenced new European standards in this area, and CHIME has designed and built prototype EHCR components based on these models. The demonstrator systems described here utilise a directory service and object-oriented engineering approach, and support the secure, mobile and distributed access to federated healthcare records via web-based services. The design and implementation of these software components has been founded on a thorough analysis of the clinical, technical and ethico-legal requirements for comprehensive EHCR systems, published through previous project deliverables and in future planned papers. The clinical demonstrator site described in this report has provided the solid basis from which to establish "proof of concept" verification of the design approach, and a valuable opportunity to install, test and evaluate the results of the component engineering undertaken during the EC funded project. Inevitably, a number of practical implementation and deployment obstacles have been overcome through this journey, each of those having contributed to the time taken to deliver the components but also to the richness of the end products. UCL is fortunate that the Whittington Hospital, and the department of cardiovascular medicine in particular, is committed to a long-term vision built around this work. That vision, outlined within this report, is shared by the Camden and Islington Health Authority and by many other purchaser and provider organisations in the area, and by a number of industrial parties. They are collectively determined to support the Demonstrator Site as an ongoing project well beyond the life of the EC SynEx Project. This report, although a final report as far as the EC project is concerned, is really a description of the first phase in establishing a centre of healthcare excellence. New EC Fifth Framework project funding has already been approved to enable new and innovative technology solutions to be added to the work already established in north London
    corecore