142 research outputs found

    DeepGAR: Deep Graph Learning for Analogical Reasoning

    Full text link
    Analogical reasoning is the process of discovering and mapping correspondences from a target subject to a base subject. As the most well-known computational method of analogical reasoning, Structure-Mapping Theory (SMT) abstracts both target and base subjects into relational graphs and forms the cognitive process of analogical reasoning by finding a corresponding subgraph (i.e., correspondence) in the target graph that is aligned with the base graph. However, incorporating deep learning for SMT is still under-explored due to several obstacles: 1) the combinatorial complexity of searching for the correspondence in the target graph; 2) the correspondence mining is restricted by various cognitive theory-driven constraints. To address both challenges, we propose a novel framework for Analogical Reasoning (DeepGAR) that identifies the correspondence between source and target domains by assuring cognitive theory-driven constraints. Specifically, we design a geometric constraint embedding space to induce subgraph relation from node embeddings for efficient subgraph search. Furthermore, we develop novel learning and optimization strategies that could end-to-end identify correspondences that are strictly consistent with constraints driven by the cognitive theory. Extensive experiments are conducted on synthetic and real-world datasets to demonstrate the effectiveness of the proposed DeepGAR over existing methods.Comment: 22nd IEEE International Conference on Data Mining (ICDM 2022

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    BIT: Bi-Level Temporal Modeling for Efficient Supervised Action Segmentation

    Full text link
    We address the task of supervised action segmentation which aims to partition a video into non-overlapping segments, each representing a different action. Recent works apply transformers to perform temporal modeling at the frame-level, which suffer from high computational cost and cannot well capture action dependencies over long temporal horizons. To address these issues, we propose an efficient BI-level Temporal modeling (BIT) framework that learns explicit action tokens to represent action segments, in parallel performs temporal modeling on frame and action levels, while maintaining a low computational cost. Our model contains (i) a frame branch that uses convolution to learn frame-level relationships, (ii) an action branch that uses transformer to learn action-level dependencies with a small set of action tokens and (iii) cross-attentions to allow communication between the two branches. We apply and extend a set-prediction objective to allow each action token to represent one or multiple action segments, thus can avoid learning a large number of tokens over long videos with many segments. Thanks to the design of our action branch, we can also seamlessly leverage textual transcripts of videos (when available) to help action segmentation by using them to initialize the action tokens. We evaluate our model on four video datasets (two egocentric and two third-person) for action segmentation with and without transcripts, showing that BIT significantly improves the state-of-the-art accuracy with much lower computational cost (30 times faster) compared to existing transformer-based methods.Comment: 9 pages, 6 figure

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)
    • ā€¦
    corecore