
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

December 2020 

Understanding the Dynamic Visual World: From Motion to Understanding the Dynamic Visual World: From Motion to 

Semantics Semantics 

Huaizu Jiang 
CICS, UMass Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Artificial Intelligence and Robotics Commons, and the Graphics and Human Computer 

Interfaces Commons 

Recommended Citation Recommended Citation 
Jiang, Huaizu, "Understanding the Dynamic Visual World: From Motion to Semantics" (2020). Doctoral 
Dissertations. 2032. 
https://scholarworks.umass.edu/dissertations_2/2032 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/2032?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2032&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


UNDERSTANDING THE DYNAMIC VISUAL WORLD:
FROM MOTION TO SEMANTICS

A Dissertation Presented

by

HUAIZU JIANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2020

College of Information and Computer Sciences



c© Copyright by Huaizu Jiang 2020

All Rights Reserved



UNDERSTANDING THE DYNAMIC VISUAL WORLD:
FROM MOTION TO SEMANTICS

A Dissertation Presented

by

HUAIZU JIANG

Approved as to style and content by:

Erik Learned-Miller, Chair

Subhransu Maji, Member

Liangliang Cao, Member

Mario Parente, Member

Deqing Sun, Member

James Allan, Chair
College of Information and Computer Sciences



DEDICATION

To my wife, Xiaoqiang Yan.



ACKNOWLEDGMENTS

I knew getting a Ph.D. would be difficult. But I didn’t expect it was so tough,

at least for the first couple of years. I published my first thesis-research paper in the

middle of my third year. My first thesis project got published after three submissions,

though one of the reviewers still gave negative comments in the third submission.

Fortunately, I have gone through it with the help and support I have received from

so many people, without which this dissertation would not have been possible.

First and foremost, I would like to thank my dear advisor, Prof. Erik Learned-

Miller, for his guidance, patience, and encouragement. Erik’s door is always open to

me. There were countless times where I knocked his door while he was working on

some other stuff and he always put aside what he was doing and devoted his energy

to my problems. Erik is a great researcher. I am always impressed by his rigorous

and original thinking as well as his insights about what important problems are in

computer vision. I often wish I knew more about math, especially statistics, when I

had discussions with Erik. His continuing long-term effort on developing algorithms

to utilize unlabeled data also led me to believe the great potential of training machines

to perceive the visual surroundings without relying on manual annotations, which we

have seen recently in both computer vision and natural language processing. Erik

is not only a great advisor in research, but also a mentor and friend personally. I

remember I had to go back to China several times during my first year when my

family was in China and made little progress on research. Erik was still patient and

believed in me. He also gave me tremendous encouragement, help, and support for

my faculty application, where he spent great effort revising my application materials.

Erik is my role model on how to advise students.

v



I knew Dr. Deqing Sun when I worked on optical flow estimation back before

staring my Ph.D. study. I was very excited to collaborate with him during my first

internship at NVIDIA. Since then, we started long-term collaboration, where Deqing

effectively served as my co-advisor. I am impressed by Deqing’s deep knowledge and

first-hand experiences in dynamic scene understanding and synthesis, especially in the

field of optical flow estimation. He gave me numerous support for my fellowship and

faculty applications, and also invited me to give a talk in a tutorial he co-organized.

He even gave me a mock interview around Christmas in 2019, which helped me survive

most of telephone interviews for faculty application. It’s my great fortunate to work

with Deqing during my Ph.D. journey.

I am grateful to my other committee members. Thanks to the collaboration

with Prof. Subhransu Maji, I had an opportunity to investigate vision-language

problems, which I am very passionate about. It’s always fun and inspiring to chat

and collaborate with Subhransu, where he often enlightened me with his sharp and

original thinking. Prof. Liangliang Cao is a great mentor, collaborator, and friend.

He gave me constructive comments about my thesis and presentation. I also thank

him for inviting me to give a talk at Google NYC. I greatly appreciate valuable

suggestions from Prof. Mario Parente on how to improve the presentation of my

Ph.D. research, which played a critical role for my faculty application.

I am proud to be part of the Computer Vision and Graphics Lab at UMass

Amherst, where I met a lot of energetic and eager young minds. I would like to

thank: Aruni RoyChowdhury, Hang Su, SouYong Jin, Jong-Chyi Su, Chenyun Wu,

Tsung-Yu Lin, Pia Bideau, Matheus Gadelha, Ashish Singh, Sreenivas Venkobarao,

Zezhou Cheng, Gopal Sharma, Yang Zhou, Zhan Xu, Difan Liu, Dmitrii Petrov,

Pratheba Selvaraju, Chetan Manjesh, Zitian Chen, Gustavo Perez, Zhaoliang Lun,

Haibin Huang, Li Yang Ku, and Mikayla Timm. Aruni has the amazing ability to

organize a team force working on a problem together. We co-authored two papers

vi



and I enjoyed our collaboration. Thank you, SouYoung, for the joy you brought to

the lab and particularly for those birthday cakes, songs, and photos. I benefited a lot

from conversation with Hang, from implementation tricks to the big picture of com-

puter vision research. I am surprised though that we haven’t officially collaborated

yet. I look forward to collaborating with you soon, Hang. Jong-Chyi, Tsung-Yu,

and Zezhou are my best buddies to play pool (billiards) with. I spent almost every

weekend of July and August of 2020 with Tsung-Yu playing pool when we interned

together at Facebook. I miss those old days with you guys. My ECCV 2018 paper,

which was my first official thesis project, was based on a Pia’s method. Thank you,

Pia, for patiently explaining to me the relationship between optical flow’s angle and

magnitude fields, camera motion, and motion segmentation. Thank you for collab-

orating with me, Chenyun and Jong-Chyi, on my first ever vision-language paper.

It is always fun and inspiring to chat with Matheus. I often learned new stuff from

him, particularly GAN and gaussian process. I collaborated with Ashish on an ex-

citing project to mine visual commonsense knowledge. I appreciate his devotion to

the project and having me as a collaborator. Thank you, Gopal, for organizing our

lab meetings. I worked with Sreenivas on video interpolation as his master project. I

hope to work with you again, Sreenivas. Thank you everyone in the Computer Vision

and Graphics Lab for those sweet memories. I miss our group lunch and group dinner.

A number of people make College of Information and Computer Sciences (CICS)

at UMass Amherst a great place to work in. I would like to thank Leeanne Leclerc,

Eileen Hamel, and Malaika Ross for their help over different milestones toward getting

my Ph.D. degree. Their great work made my life significantly easier. I’d also like to

thank Laurie Downey, whom I always counted on to register conference trips and get

reimbursement afterwards. I took the Reinforcement Learning course and later did

my Synthesis Project (equivalent to the Quialify Exam) with Prof. Philip Thomas.

Phil is one of the best teachers I met at UMass, where he can always clearly illustrate

vii



not only the details but also the very motivation behind each algorithm. I am also

grateful to the valuable suggestions from Laura Haas and James Allan for my faculty

job offer. I met a lot of friends at CICS: Yue Wang, Qingyao Ai, Keping Bi, Xiaolan

Wang, Dan Zhang, Pan Hu, Prof. Jiafeng Guo, Liu Yang, Bo Jiang, and Kun Tu.

They made my life at Amherst much more joyful.

Most of work in this dissertation is joint work with my collaborators. I thank Prof.

Greg Shakhnarovich, Prof. Michael Maire, and Dr. Gustav Larsson to collaborate

with me in the early stage of my Ph.D. study. My gratitude goes to them for their

valuable comments and suggestions as well as going through the tough reviewing

process together with me. I did two joyful internships at NVIDIA. I would like to

thank my mentors including Dr. Deqing Sun, Dr. Varun Jampani, Prof. Ming-Hsuan

Yang, and Dr. Jan Kautz, for giving me the flexibility to work on the problems that

I am passionate about. I am grateful to Zhaoyang Lv, who taught me the beauty

of utilizing geometric constraints for dynamic scene understanding. I did another

internship at Facebook AI Research (FAIR), collaborating with Dr. Xinlei Chen, Dr.

Ishan Misra, and Dr. Marcus Rohrbach. I appreciate they gave me the offer to work

on a research problem that is outside of my core research area. I learned a lot from

Dr. Xinlei Chen on how to manage large-scale experiments. I also thank Dr. Xinlei

Chen for having me on the winning entry of the VQA Challenge 2020. My sincere

gratitude particularly goes to Dr. Varun Jampani, Prof. Ming-Hsuan Yang, and Dr.

Xinlei Chen for writing reference letters for me.

I acknowledge the support from Adobe Fellowship and NVIDIA Graduate Fellow-

ship. It was amazing to receive both of them in the same year. Thank you, Adobe

and NVIDIA! Your support significantly boosted my career.

I am forever grateful to the unconditioned love and life-long support from my

parents, parents-in-law, grandparents, and younger brother. I particularly thank my

daughter, Cheng-Cheng. It’s fascinating and much more rewarding to raise a truly

viii



intelligent agent. Training our puppy, Chase, makes me believe that reinforcement

learning does make sense. Finally, thanks goes to my wife, Xiaoqiang Yan, for her

love, support, and scarifies along this tough journey. This dissertations is dedicated

to her.

ix



ABSTRACT

UNDERSTANDING THE DYNAMIC VISUAL WORLD:
FROM MOTION TO SEMANTICS

SEPTEMBER 2020

HUAIZU JIANG

B.E., XI’AN JIAOTONG UNIVERSITY

M.E., XI’AN JIAOTONG UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Erik Learned-Miller

We live in a dynamic world, which is continuously in motion. Perceiving and

interpreting the dynamic surroundings is an essential capability for an intelligent

agent. Human beings have the remarkable capability to learn from limited data, with

partial or little annotation, in sharp contrast to computational perception models that

rely on large-scale, manually labeled data. Reliance on strongly supervised models

with manually labeled data inherently prohibits us from modeling the dynamic visual

world, as manual annotations are tedious, expensive, and not scalable, especially if

we would like to solve multiple scene understanding tasks at the same time. Even

worse, in some cases, manual annotations are completely infeasible, such as the motion

vector of each pixel (i.e., optical flow) since humans cannot reliably produce these

types of labeling. In fact, living in a dynamic world, when we move around, motion

x



information, as a result of moving camera, independently moving objects, and scene

geometry, consists of abundant information, revealing the structure and complexity

of our dynamic visual world. As the famous psychologist James J. Gibson suggested,

“we must perceive in order to move, but we also must move in order to perceive”. In

this thesis, we investigate how to use the motion information contained in unlabeled

or partially labeled videos to better understand and synthesize the dynamic visual

world.

This thesis consists of three parts. In the first part, we focus on the “move to

perceive” aspect. When moving through the world, it is natural for an intelligent

agent to associate image patterns with the magnitude of their displacement over

time: as the agent moves, far away mountains don’t move much; nearby trees move a

lot. This natural relationship between the appearance of objects and their apparent

motion is a rich source of information about the relationship between the distance of

objects and their appearance in images. We present a pretext task of estimating the

relative depth of elements of a scene (i.e., ordering the pixels in an image according to

distance from the viewer) recovered from motion field of unlabeled videos. The goal of

this pretext task was to induce useful feature representations in deep Convolutional

Neural Networks (CNNs). These induced representations, using 1.1 million video

frames crawled from YouTube within one hour without any manual labeling, provide

valuable starting features for the training of neural networks for downstream tasks.

It is promising to match or even surpass what ImageNet pre-training gives us today,

which needs a huge amount of manual labeling, on tasks such as semantic image

segmentation as all of our training data comes almost for free.

In the second part, we study the “perceive to move” aspect. As we humans look

around, we do not solve a single vision task at a time. Instead, we perceive our

surroundings in a holistic manner, doing visual understanding using all visual cues

jointly. By simultaneously solving multiple tasks together, one task can influence

xi



another. In specific, we propose a neural network architecture, called SENSE, which

shares common feature representations among four closely-related tasks: optical flow

estimation, disparity estimation from stereo, occlusion detection, and semantic seg-

mentation. The key insight is that sharing features makes the network more compact

and induces better feature representations. For real-world data, however, not all an-

notations of the four tasks mentioned above are always available at the same time.

To this end, loss functions are designed to exploit interactions of different tasks and

do not need manual annotations, to better handle partially labeled data in a semi-

supervised manner, leading to superior understanding performance of the dynamic

visual world.

Understanding the motion contained in a video enables us to perceive the dynamic

visual world in a novel manner. In the third part, we present an approach, called

SuperSloMo, which synthesizes slow-motion videos from a standard frame-rate video.

Converting a plain video into a slow-motion version enables us to see memorable mo-

ments in our life that are hard to see clearly otherwise with naked eyes: a difficult

skateboard trick, a dog catching a ball, etc. Such a technique also has wide appli-

cations such as generating smooth view transition on a head-mounted virtual reality

(VR) devices, compressing videos, synthesizing videos with motion blur, etc.

xii
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CHAPTER 1

INTRODUCTION

Building intelligent systems is a long-standing grand goal for artificial intelligence

researchers. Among all the capabilities, visual perception is a core skill set that

allows such an intelligent system to perceive and interpret the visual surroundings

through cameras like what we humans do from our eyes. For example, it is essential

for an autonomous driving car to understand which part of a scene corresponds to

objects like vehicles and pedestrians on the road, how far away they are, and how fast

they move. Such basic visual perception skills enable further capabilities of a visually

intelligent agent such as interacting with the surroundings and its peers. For instance,

a visual navigation agent that looks for a TV in an apartment needs to understand

where the free space is so as to avoid bumping into a wall. Such a navigation agent

also needs to recognize objects in the apartment in order to find meaningful cues

related to the target to decide which way to go to efficiently reach the destination.

Since the historical breakthrough of deep Convolutional Neural Networks [67] in

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [116], we

have achieved significant success for visual perception research during the past decade,

thanks to large-scale manually labeled data and massive computational resources

(e.g., GPUs). Almost every sub-field of computer vision has been dominated by

deep learning models now, where the paradigm has shifted from designing hand-

crafted visual features to learning the entire visual perception model in an end-to-end

manner1. Nowadays, a visual perception model is able to recognize the species of

1In most cases, manually designing the network architecture is still necessary.
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animals contained in images, segment an image into different instances, including

even small objects like bottles, and also tell us where drivable area is from just a

single image.

All of these success, however, are heavily dependent on manually labeled data.

For example, we need to annotate millions of images to tell a visual perception model

that what images are about dogs and what others are about cats. By sharp contrast,

human beings have the remarkable capability to learn from limited data, with partial

or little annotation. Reliance on strongly supervised models with manually labeled

data inherently prohibits us from modeling the dynamic visual world, as manual

annotations are tedious, expensive, and not scalable, especially if we would like to

solve multiple scene understanding tasks at the same time. Even worse, in some cases,

manual annotations are completely infeasible, such as the motion vector of each pixel

(i.e., optical flow) since humans cannot reliably produce these types of labeling.

1.1 Motivation

We live in a dynamic world, which is continuously in motion. Living in such a

dynamic world, when we move around, motion information, as a result of a mov-

ing camera, independently moving objects, and scene geometry, consists of abundant

information, revealing the structure and complexity of our dynamic visual world. We

humans can effortless use the motion information to infer the structure of the 3D

world and even control ourselves to walk [149]. As the famous psychologist James

J. Gibson suggested, “we must perceive in order to move, but we also must move in

order to perceive” [33]. In this thesis, we investigate how to use the motion infor-

mation contained in unlabeled or partially labeled videos to reduce the reliance on

manual annotations, which leads to a more precise understanding and synthesis of

the dynamic visual world.
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Figure 1.1: Motion magnitude in the image plane is inversely proportional to an
object’s depth. (a) frame #291 of a video sequence, (b) frame #292 of the same video
sequence, and (c) magnitude of pixels’ motion vector (i.e., optical flow) between (a)
and (b), where intensity encodes the magnitude. Darker means the motion magnitude
is larger. It can be see that an object moves faster in the image plane if it is closer
to the camera.
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First of all, we examine how to train a (virtual) agent to perceive the visual sur-

roundings by wandering around. When an agent, like an animal or a robot moves, its

visual system is exposed to a shower of information. Usually, the speed with which

something moves in the image is inversely proportional to its depth. As shown in

Fig. 1.1, the point A, which is closer to the camera, moves about 50 pixels between

two consecutive video frames, while the further point B moves only about 5 pixels.

The furthest point C almost does not move at all. As an agent continues to experience

visual stimuli under its own motion, it is natural for it to form associations between

the appearance of objects and their relative motion in the image plane. For example,

an agent may learn that objects that look like mountains typically don’t move in the

image (or change appearance much) as the agent moves. Objects like nearby buildings

and bushes, however, appear to move rapidly in the image as the agent changes po-

sition relative to them. This continuous pairing of images with motion acts as a kind

of automatic supervision that could eventually allow an agent both to understand

the depth of objects and to group pixels into objects by this predicted depth. Thus,

by moving through the world, an agent may learn to obtain useful representations

to perceive static scenes, for instance, segmenting an image into different semantic

regions and also detecting objects such as pedestrians and cars.

We also study how to teach machines, such as an autonomous driving car or a

navigation robot, to understand the visual surroundings’s motion in order to move

safely. It needs to understand where objects are, such as other vehicles and pedes-

trians, how far away they are, and how fast they move. Fig. 1.2(a) shows a typical

configuration of an autonomous driving car [32], where two RGB stereo cameras and

a laser scanner are mounted on top of the car. Motion information of the scene can be

recovered from the captured videos by computing optical flow and two images taken

by the two stereo images provide depth cues via stereo disparity, both of which can be

combined to recover the 3D motion of the surroundings. Optical flow and stereo dis-
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(a)

(b)

(c)

Figure 1.2: Understanding the surroundings’ motion is critical for an autonomous
driving car. From top to bottom: (a) a typical setting of an autonomous driving car
with stereo RGB cameras and a laser scanner mounted on the top, (b)(c) colorized
ground-truth labels of optical flow and stereo disparity overlaid on top of RGB images,
respectively.

parity ground-truth labels are inherently infeasible to collect for human annotators.

As a result, laser points provided by the scanner are usually used to generate the

ground-truth annotations. Due to the capturing range of the laser scanner, however,

such annotations are usually sparse. As shown in Fig. 1.2(b) and (c), ground-truth
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labels are consistently missing in the top region of the RGB images. Even worse, for

the bottom part, only less than 20% of pixels have ground-truth labels, which poses

grand challenge for training a visual perception model. On the other hand, humans

own remarkable capability to learn from sparse data, which may stem in part from

our ability to interpret the dynamic visual world holistically. When interpreting a

scene, people simultaneously infer many properties such as depth, motion, location,

and the semantic categories of different elements. Solving one task is often helpful

in solving others; for example, a car’s motion is likely to be rigid while a person’s

movement is non-rigid. Thus, motion could provide a cue for object identification, or

conversely, knowledge of the object could help us interpret the motion.

T = 0 T = 1T = t ∈(0,1)

Figure 1.3: Given two input images at time steps T = 0 and T = 1, knowing the
motion of every pixel allows us to synthesize a video frame at an intermediate time
step T = t ∈ (0, 1) along the motion trajectory.

Finally, understanding the motion contained in a video enables us to synthesize

the dynamic visual scenes in a novel manner that is otherwise hard to clearly see by

our naked eyes. For instance, there are many moments in our lives that we might

want to record with a camera in slow- motion because they are either memorable

or otherwise hard to see clearly with our naked eyes: the first time a baby walks, a
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difficult skateboard trick, a dog catching a ball, etc. While it is possible to take 240

frame-per-second (fps) videos with a cell phone nowadays, professional high-speed

cameras are still required for higher frame rates, which is unaffordable for an un-

professional consumer. Besides, many of the moments we would like to record in a

slow-motion mode are unpredictable, and as a result, are recorded at standard frame

rates. Recording everything at high frame rates is impractical–it requires large mem-

ories and is power-intensive for mobile devices. We can resort to a visual perception

model to solve this problem. As shown in Fig. 1.3, we can synthesize intermediate

video frames along the estimated motion trajectory between two input images.

1.2 Overview of the Dissertation

There are three major parts in this thesis, corresponding to the three problems

raised in the previous section.

Move to perceive. In Chapter 3, we present a proxy (surrogate or pre-text) task

where we train a deep neural network to learn visual representations from relative

scene depth recovered from motion field of unlabeled videos. We start by training a

deep network, using fully automatic supervision, to predict relative scene depth from

single images. The relative depth training images are automatically derived from

simple videos of cars moving through a scene, using recent motion segmentation tech-

niques, and no human-provided labels. The proxy task of predicting relative depth

from a single image induces features in the network that result in large improvements

in a set of downstream tasks including semantic segmentation, joint road segmenta-

tion and car detection, and monocular (absolute) depth estimation, over a network

trained from scratch. The improvement on the semantic segmentation task is greater

than that produced by any other automatically supervised methods. Moreover, for

monocular depth estimation, our unsupervised pre-training method even outperforms

supervised pre-training with ImageNet. In addition, we demonstrate benefits from
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learning to predict (again, completely unsupervised) relative depth in the specific

videos associated with various downstream tasks (e.g., KITTI). We adapt to the

specific scenes in those tasks in an unsupervised manner to improve performance. In

summary, for semantic segmentation, we present state-of-the-art results among meth-

ods that do not use supervised pre-training, and we even exceed the performance of

super-vised ImageNet pre-trained models for monocular depth estimation, achieving

results that are comparable with state-of-the-art method

Perceive to move. We present a semi-supervised approach in Chapter 4 to estimate

3D motion of the scene (known as scene flow estimation). We introduce a compact

network for holistic scene flow estimation, called SENSE, which shares common en-

coder features among four closely-related tasks: optical flow estimation, disparity

estimation from stereo, occlusion estimation, and semantic segmentation. Our key

insight is that sharing features makes the network more compact, induces better fea-

ture representations, and can better exploit interactions among these tasks to handle

partially labeled data.With a shared encoder, we can flexibly add decoders for differ-

ent tasks during training. This modular design leads to a compact and efficient model

at inference time. Exploiting the interactions among these tasks allows us to intro-

duce distillation and self-supervised losses in addition to super-vised losses, which

can better handle partially labeled real-world data. SENSE achieves state-of-the-art

results on several optical flow benchmarks and runs as fast as networks specifically

designed for optical flow. It also compares favorably against the state of the art on

stereo and scene flow,while consuming much less memory.

Motion-based slow-motion video synthesis. In Chapter 5, we introduce an ap-

proach, called SuperSloMo, to synthesize multiple intermediate frames to generate

both spatially and temporally coherent slow-motion videos (known as video inter-

polation), as shown in Fig. 1.4. While most existing methods focus on single-frame

interpolation, we propose an end-to-end convolutional neural network for variable-
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Figure 1.4: SuperSloMo converts a plain video into slow-motion by synthe-
sizing multiple intermediate frames (two are shown here enclosed with red
color). More demo videos are available at https://youtu.be/MjViy6kyiqs and
https://tinyurl.com/vlrp8br.

9



length multi-frame video interpolation, where the motion interpretation and occlu-

sion reasoning are jointly modeled. We start by computing bi-directional optical flow

between the input images using a U-Net architecture.These flows are then linearly

combined at each time step to approximate the intermediate bi-directional optical

flows.These approximate flows, however, only work well in locally smooth regions

and produce artifacts around motion boundaries. To address this shortcoming, we

employ another U-Net to refine the approximated flow and also predict soft visibility

maps. Finally, the two input images are warped and linearly fused to form each inter-

mediate frame. By applying the visibility maps to the warped images before fusion,we

exclude the contribution of occluded pixels to the interpolated intermediate frame to

avoid artifacts. Since none of our learned network parameters are time-dependent,

our approach is able to produce as many intermediate frames as needed. To train our

network, we use 1,132 240-fps video clips, containing 300K individual video frames.

Experimental results on several datasets, predicting different numbers of interpolated

frames, demonstrate that our approach per-forms consistently better than existing

methods.

1.3 Other Work not in the Dissertation

During my doctoral training, I also studied two other major problems that are

not covered in this thesis.

First of all, together with my collaborators, we investigated object detection,

where the goal is to localize objects from different categories in a single image, such

as human faces [59]. Yet such object detectors still make mistakes even with high

confidence, which are called hard examples. Moreover, the domain gap between

training data and testing data often leads to inferior detection results. How can we

improve the object detector? Instead of manually annotating more data to re-train the

model, which is expensive and tedious, my colleagues and I used temporal consistency
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in video frames to identify those hard examples automatically in [63]. The object

detector is then fine-tuned using automatically mined hard examples. Better object

detection performance can be achieved on faces, pedestrians, and other categories,

even when the testing data is significantly different from the training data [115].

The other major problem I had chances to visit is to use natural language as a scaf-

fold to advance visual perception. Natural language, as an effective tool, is often used

to explain and describe what people perceive about the visual world. When explaining

visual scenes in terms of question-answer pairs (i.e., Visual Question Answering) and

describing a visual scene using natural language, various visual perception capabilities

are needed, such as human action recognition and object localization. Together with

my collaborators, we demonstrated that visual perception skills emerge when training

an agent to explain and describe visual scenes using natural language [126, 60].
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CHAPTER 2

A REVIEW OF OPTICAL FLOW ESTIMATION AND
BEYOND

In this chapter, we briefly review classical and latest trends of using neural net-

works for optical flow estimation, which is a building block for the entire thesis, as

well as other downstream tasks, particularly 3D scene understanding.

2.1 Optical Flow Estimation

Optical flow, as a result of the relative motion of objects and camera, captures

every single pixel’s motion in terms of movement of brightness patterns in the image

plane from one video frame to another. In specific, given a video sequence I the

optical flow (ux,y,t, vx,y,t) at the pixel (x, y) from time step t to t+ 1 is defined in such

a way that two corresponding pixels I(x, y, t) and I(x + ux,y,t, j + vx,y,t, t + 1) have

similar brightness (pixel) values. Mathematically, it means

I(x, y, t) = I(x+ ux,y,t, y + vx,y,t, t+ 1). (2.1)

It is often known as the brightness constancy assumption for optical flow estimation.

For simplicity, we omit the time step subscript for optical flow and simply use ux,y

and vx,y. We also define two extra symbols It and It+1 to denote the video frame at

the time step t and t+ 1, respectively.

Fig. 2.1 shows an illustration of estimated optical flow between two consecutive

images. Throughout this thesis, we will use colorized optical flow like the one shown
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(a) (b)

(c) (d) (e)

Figure 2.1: Optical flow estimation. (a)(b) two consecutive video frames from [76],
(c) an illustration of optical flow, where the motion vector of each pixel is represented
by an arrow, and (d) a visualization of the colorized optical flow using the color key
shown in (e), where the hue indicates motion direction and saturation corresponds to
the motion magnitude.

in Fig. 2.1(d) to visualize estimated optical flow, where the hue indicates motion

direction and saturation corresponds to the motion magnitude..

2.1.1 Classical Approaches

As defined in Eq.(2.1), optical flow estimation is an ill-posed problem, where there

are two unknown variables for each pixel but only one constraint is available, known

as the aperture problem. To solve this problem, the additional spatial smoothness

constraint is usually adopted, where it is assumed that two adjacent pixels have

similar optical flow values. To jointly optimize the brightness constancy and spatial
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smoothness objectives, an energy function is usually defined as follows [129]:

E(It, It+1,u,v) =
∑
x,y

ED(It, It+1,u,v) + λ
∑
x,y

ES(u,v), (2.2)

where u and v define the optical flow field for all pixels in It, corresponding to

the horizontal and vertical components, respectively. ED captures the brightness

consistency and ES enforces the spatial smoothness constraint. λ is a hyper-parameter

balancing such two terms. They are typically defined as

ED(It, It+1,u,v) =ρ (It(x, y)− It+1(x+ ux,y, y + vx,y)) , (2.3)

ES(u,v) =ρ(ux,y − ux+1,y) + ρ(ux,y − ux,y+1)+ (2.4)

ρ(vx,y − vx+1,y) + ρ(vx,y − vx,y+1), (2.5)

where ρ(·) is a penalty function. Such an energy function is related to the standard

pairwise Markov Random Field (MRF) defined over a 4-pixel-neighborhood.

Such an energy minimization-based approach is first studied in the seminal paper

by Horn and Schunck [41], where the penalty function is simply defined as ρ(z) = z2.

Despite its simplicity, such an “old” approach is found to work surprisingly well

in a later test-of-time-award-winning paper [129] with appropriate optimization tech-

niques. Other forms of penalty functions are also used, including the most robust con-

vex Charbonnier penalty ρ(z) =
√
z2 + ε2 [15] and the non-convex robust Lorentzian

penalty ρ(z) = log(1 + z2

2σ2 ) [11].

The energy function Eq.(2.2) is defined over all pixels in It, which is often re-

ferred to as a global approach. There also exists local approaches, where the energy

function is defined for each pixel over a small neighborhood, such as the Lucas-

Kanade approach [83]. If we do a Taylor expansion around the position (x, y, t) for

I(x+ ux,y, y + vx,y, t+ 1), we have:
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I(x+ ux,y, y + vx,y, t+ 1) = I(x, y, t) +
∂I

∂x
ux,y +

∂I

∂y
vx,y +

∂I

∂t
. (2.6)

Consider the brightness constancy assumption in Eq.(2.1), the optical flow ux,y and

vx,y should satisfy the following equation.

∂I

∂x
ux,y +

∂I

∂y
vx,y +

∂I

∂t
= 0. (2.7)

Again, there are no sufficient constraints to solve two variables from a single equation.

Similar to Horn and Schunck [41], Lucas and Kanade [83] assume the motion is

constant within a local neighborhood [x − k, y − k] × [x + k, y + k] in It around the

position (x, y), whre k is the radius of the neighborhood. In specific, we have



∂I
∂x
|(x−k,y−k) ∂I

∂x
|(x−k,y−k)

∂I
∂x
|(x−k+1,y−k)

∂I
∂x
|(x−k+1,y−k)

...
...

∂I
∂x
|(x+k,y+k) ∂I

∂x
|(x+k,y+k)


 ux,y

vx,y

 = −



∂I
∂t
|(x−k,y−k)

∂I
∂t
|(x−k+1,y−k)

...

∂I
∂t
|(x+k,y+k)


. (2.8)

Such a linear system can be solved if its system matrix (the first matrix in the left

side) is invertible, which is not always true however. For a particular spatial position

in a homogeneous region, the spatial image gradients (i.e., ∂I
∂x

and ∂I
∂y

) are small. As

a result, the smaller eigenvalue of the system matrix may be close to 0 and there is

not a reliable estimation of optical flow.

Such a global approach, Horn and Schunck [41], and a local one, Lucas and

Kanade [83], have their own advantages and limitations. On the one hand, the global

approach [41] provides dense optical flow values for every single pixel. But it does

not offer confidence value for the quality of the estimated optical flow. It is also more

subject to noise [15]. On the other hand, the local approach only provides optical flow

values at sparse locations. An interpolation is usually required to obtain the dense

15



optical flow field. In [15], such global and local spatial constraints are integrated in a

single energy function to be robust to noise as [83] and yet provide dense optical flow

field similar to [41], combining the best of two approaches.

As a fundamental problem in visual perception, optical flow estimation has at-

tracted a lot of research attention. Variants of [41] and [83] have been proposed to

address their limitations, especially for the former one. Optical flow estimation es-

sentially is about finding pixel correspondences between two images, which is another

long-studied classical problem in computer vision, particularly using feature descrip-

tors extracted at sparse locations, such as SIFT [82] and its successive variants. One

of the effort is to provide more constraints in the energy function for optical flow es-

timation by adding high-quality descriptor-based matches between two images, such

as LDOF (large-displacement optical flow) [14]. Feature descriptors are designed in

essence to be robust to factors such as lighting change, rotation, etc. These high-

quality sparse matches are able to more accurately capture large-displacement mo-

tion and serve as seeds to generate dense optical flow fields by minimizing the energy

function.

In a similar effort, SIFT flow [77] is proposed to provide dense correspondences

between two images, which are not necessarily two consecutive video frames, based on

the matching of pixel-wise SIFT descriptors. SIFT flow is not particularly designed

for optical flow estimation, although it is based on a similar energy function for

optical flow estimation. While SIFT flow is able to capture semantic correspondences

between two general images, such as heads of two different dogs or wheels of a bicycle

and a motorcycle, it does not perform well for optical flow estimation in particular.

The optimization of the energy function is usually performed in an iterative man-

ner, where it usually converges to a local minimum. Initialization plays a critical

role in the optimization. Instead of adding sparse matches as a term in the energy

function for optical flow estimation, an interpolation approach is proposed in [109] to
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propagate sparse correspondences to other positions that have no correspondences,

where an edge-aware distance metric (i.e., geodesic distance) are used to fit a local

affine model at each pixel based on nearby sparse matches.

Correspondences found by generic feature descriptors like SIFT [82] may not be

correct matches for optical flow. After all, matches found based the similarities of

SIFT descriptors over the entire image are two positions that have similar local

brightness contrast statistics. To overcome this issue, dense correspondence fields

are constructed in [4], where a hierarchical correspondence search strategy is uti-

lized. Forward-backward correspondence consistency verification is further used to

filter outlier matching, leading to more accurate matching. The estimated dense cor-

respondences are then used as an initialization for minimizing an energy function to

get the final optical flow estimation as in [109].

Matching accuracy of hand-crafted feature descriptors, such as SIFT [82], usually

suffers from factors like lighting change, motion blur, rotation, etc. Inspired by the

success of deep neural networks for other computer vision problems, a 6-layer convo-

lutional neural network is proposed in [110] to find accurate correspondences between

two consecutive video frames. In contrast to a typical neural network, where param-

eters are learned from the training date, filters in the matching network [110] are

patches from the first image. It essentially captures the correlation between patches

from two video frames to measure their similarity score, which we shall see in next

section is widely used in state-of-the-art neural network-based optical flow estimation

approaches.

All aforementioned approaches rely on manually designed data terms ED and

spatial terms ES in the energy function. Sun et al. [128] propose to learn their statis-

tics directly from the data with a probabilistic model. In such a data-driven model,

high-order constancy statistics may be mined from data, not just the brightness con-

stancy. Additionally, the spatial smoothness term is also learned from data based
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on the image intensity structure (spatial gradients). This supervised learning model

still heavily relies on the form of energy function proposed by Horn and Schunck [41]

in early 1980s. We shall see in next section that state-of-the-art supervised learn-

ing approaches using deep convolutional neural networks (CNNs) learn to estimate

optical flow field from the data by purely minimizing the error between model predic-

tions and the ground-truth annotations, where the brightness constancy and spatial

smoothness are implicitly enforced.

2.1.2 Neural Approaches

Unlike the classical energy minimization-based approaches, including the learning-

based on [128], supervised deep learning models aim to directly minimize a loss func-

tion

l(θ) =
∑
x,y

ρ (w(x, y), ŵ(x, y; θ)) , (2.9)

where w = (u,v) represents the ground-truth annotations of the optical flow field

and ŵ is the estimated optical flow as output of a deep neural network, which is

parameterized by θ. The goal of training a deep neural network is to obtain opti-

mal parameters θ∗ such that the empirical loss value over the entire training set is

minimized:

θ∗ = min
θ

1

N

N−1∑
i=0

li(θ). (2.10)

Here li is the loss value over the i-th training sample and N is the total number of

all training samples. The optimization is usually performed in an end-to-end manner

using a variant of the stochastic gradient descent optimizer, such as momentum-SGD,

Adam [66], etc.
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Figure 2.2: Illustration of the encoder-decoder network structure widely used for
optical flow estimation. The feature representation of two input images are obtained
using the same encoder, which are then fed into a decoder to compute the optical
flow.

Training data-hungry deep neural networks for optical flow requires a huge amount

of data with ground-truth annotations, which are almost infeasible to collect for

real-world data. As a result, researchers usually use synthetic data for training,

where optical flow annotations come for free when the scene is rendered. To date,

the most often used synthetic data are FlyingChairs [26] and FlyingThings3D [90],

which contain 22,872 and 39,280 images for training, respectively. It is worth noting

that FlyingThings3D provides other form of annotations to train models for stereo

disparity and scene flow estimations.

FlowNet [26] is the first attempt to train deep networks for optical flow estimation.

There are two variants: FlowNetS and FlowNetC, both of which have an encoder-

decoder structure, as shown in Fig. 2.2. The same encoder is used to computer

feature representations for the input images, which are then fed into the decoder to

compute optical flow. FlowNetS simply concatenates the feature representations of

the two images and let the decoder to learn how to compute optical flow. In contrast,

FlowNetC borrows the idea of computing matches between feature presentations (or

images), which is widely used in classical approaches, as we have seen in the previous
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section. Denote the feature vectors of two input images at locations i and j as hi and

hj, respectively. FlowNetC computes the matching cost as follows.

c(hi,hj) =
1

D
hTi hj, (2.11)

where D is the dimension of a feature vector. Usually for a fixed position i in the

first image’s feature map, a set of candidates j in the second image within a local

neighborhood are considered to compute the matching cost, forming a so-called cost

volume, which is now widely used in state-of-the-art neural approaches.

As a first attempt, neither FlowNetS nor FlowNetC achieves satisfactory accuracy

for optical flow estimation. To further improve the accuracy, FlowNet2 [48] concate-

nates FlowNetS and FlowNetC variants in a cascade manner, where the optical flow

estimation is progressively refined. For the first time, a deep neural network approach

reports better or on-par results with classicial well-engineered approaches. For qual-

itative results, FlowNet2 is able to capture the motion of thin structures, producing

sharp motion boundaries, thanks to the refinement network.

Although FlowNet and FlowNet2 achieve reasonably good accuracy for optical

flow estimation, they have 32M and 162M parameters, respectively, costing a lot of

GPU memory for inference. A much more compact SpyNet [104] is proposed. It

borrows the idea of computing optical flow in a coarse-to-fine manner by using a

pyramid structure that is extensively used in classical approaches. In specific, an

image pyramid is constructed through downsampling, where in the coarsest level, an

optical flow is estimated by feeding concatenated images as input to a network. For a

finer level, such an optical flow is upsampled and a residual optical flow is estimated

to obtain more accurate estimation. SpyNet achieves comparable accuracy to classical

approaches as well as the FlowNet variants, yet has merely 1.2M parameters, yielding

a compact model.
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PWC-Net [131] extends the pyramid structure used in SpyNet. It uses multi-scale

feature representations that naturally come from the encoder because of downsam-

pling operations. Therefore, instead of finding correspondences between two images,

PWC-Net does so on two feature maps. Moreover, optical flow estimation for a coarse

pyramid level is used to warp feature representations of the second image on a finer

level when computing the cost volume, so that it only needs to search for corre-

spondences in relatively small neighborhood, resulting in small computation burden.

PWC-Net not only performs better than FlowNet2 but also is more compact, con-

taining only 8.75M parameters. A similar architecture is concurrently studied in

LiteFlowNet [45].

Denote the dimension of a feature vector xi as C ×H ×W 1, where H and W are

the spatial height and width, respectively. Denote the range of the local neighborhood

of search for correspondences in the horizontal and vertical directions as U and V ,

respectively. The dimension of cost volume used in PWC-Net is (1×U×V )×H×W ,

where the matching cost over the local neighborhood is flattened, yielding a 3D feature

map so that 2D convolutions are applied on top of it to estimate optical flow. However,

the flatten operation destroys the topology of the local neighborhood. VCN [158] is

proposed to avoid the flatten operation. Furthermore, it computes the matching

cost at very single feature channel, leading to a cost volume with a dimension of

C × U × V × H ×W . As a results, 4D convolutions are needed to process such a

5D feature map, which lacks native support in most of deep learning frameworks.

Instead, a 4D convolution is converted to two 3D convolutions. VCN achieves better

accuracy for optical flow estimation than PWC-Net mainly because of such 5D cost

volumes.

1We omit the batch dimension here for simplicity.
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Both PWC-Net [131] and VCN [158] have to maintain a cost volume that computes

matching cost in a relatively small neighborhood (e.g., in a 9×9 region) in order to get

an efficient model. Searching in a local neighborhood, however, prohibits the model

from capturing very large displacement. To address this issue, a cost volume between

every single pair of positions between two feature maps are used in RAFT [135]. A

recurrent module is then employed to estimate optical flow residuals, where only a

small portion of the cost volume around the current estimated correspondences is

used. RAFT significantly reduces the error of optical flow estimation on standard

benchmarks while still maintaining reasonable efficiency.

2.1.3 Discussions

In previous sections, we briefly review both classical and recent neural approaches

for optical flow estimation. Now let’s take a look at the progress of the entire com-

munity. Do we move toward the right direction? What do neural approaches bring

us when the entire community shifted from classical energy minimization-based ap-

proaches to deep neural networks with supervision purely from the data?

In Fig. 2.3, we show the end-point-error (EPE) of different methods versus their

published years on the MPI Sintel test set (final pass) [17]. We can clearly see that

the EPE keeps going down by 65.8% from the year of 2010 (classic++ [129]) to 2020

(RAFT [135]2). Initially, when the community shifted to deep neural network-based

approaches in the year of 2015, neural approaches do not perform as well as classical

well-engineered ones. In 2018, PWC-Net [131], for the first time, shows that neural

approaches can achieve lower EPE than classical approaches. Both VCN and RAFT

keep pushing the EPE downward.

2By using more training data and more than two images as input, the EPE can go down to 2.86,
a 71.3% reduction compared with classic++ [129].
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Figure 2.3: End-point-error (EPE) of different optical flow estimation methods versus
their published years on the MPI Sintel test set (final pass) [17].

In addition to the significant reduction of error metrics, neural approaches run

substantially faster than classical approaches. Because of the nature of neural net-

works, which are essentially about matrix (or tensor) multiplication and addition,

neural approaches can be easily parallelized, utilizing the massive computation units

in modern GPUs. It takes about 800s for classic++ [129] to compute optical flow

between two images while RAFT [135] only needs 0.3s on a mid-end GTX 1080ti

GPU3, which is nearly 2,700 times faster in terms of number of frames to process per

second (FPS).

As a fundamental task in computer vision, optical flow estimation is usually part

of an entire pipeline for other downstream tasks, such as action recognition, video

3It can can be further accelerated using a higher-end GPU and other techniques such as mixed-
precision, quantization, pruning, etc.
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Figure 2.4: End-point-error (EPE) of different optical flow estimation methods versus
their inference speed in terms of number of frames to process per second (FPS). At
the same time, the size of the circle indicates the number of parameters for each
method (larger means more parameters).

editing, 3D scene understanding, etc. Therefore, a lightweight yet well-perform ap-

proach is required. In Fig. 2.4, we show the EPE versus the inference speed in terms

of number of frames to process per second (FPS) for each method, as well as their

parameters. In the early stage of neural approaches, the improvement of accuracy

mainly comes from more parameters, for example, from FlowNetS to FlowNet2 that

has several cascades of concatenated FlowNetC and FlowNetS for refinement. PWC-

Net shows that by using techniques, including pyramid and warping, that are widely

used in classical approaches, a deep neural network does not have to have a huge

number of parameters in order to perform well. Maintaining a balance of efficiency

and effectiveness of a deep neural network for optical flow estimation will be the main

trend for optical flow estimation.
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Does the success of neural approaches render classical ones useless nowadays? Do

we still need to consider the brightness constancy and spatial smootheness constraints

used in classical approaches? For the first question, injecting prior or inductive bias,

like what PWC-Net does (for example, pyramid and warping operations), often leads

to an optical flow estimation model that not only achieves lower error rate than simply

treating neural networks as a blackbox but also requires fewer parameters to more

effectively utilize the existing training data.

For the second question, supervised optical flow estimation approaches purely

learn from training data, where the brightness constancy and spatial smoothness

constraints are implicitly enforced in the annotations of training data. Unsupervised

optical flow estimation approaches [107, 91, 53] still relies on brightness constancy

and spatial smoothness assumptions to compute the loss as supervision to update

neural networks’ parameters.

2.2 From Optical Flow to 3D Scene Understanding

Optical flow is a projection of 3D motion of the scene onto the image plane,

which is a joint function of scene depth, camera motion, moving objects, and the

camera’s intrinsic parameters. For illustration, let’s take a look at the perspective

projection model of a camera, as shown in Fig. 2.5. A coordinate system is centered

at the origin O, where the optical center of a camera is located at. Another local

coordinates system is attached to the image plane, which is f away from the optical

center of the camera. f is an intrinsic parameter of the camera, known as focal length.

Suppose there is a point P = (XP , YP , ZP ) in the 3D world, which is projected onto

the image plane at point q = (xq, yq). According to the geometric constraints, we

have
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Figure 2.5: An illustration of the perspective projection model. The optical center
of a camera is located at the origin O. There are two coordinate systems in the 3D
world and the 2D image plane. The image plane is f away from the optical center of
camera, which is an intrinsic parameter of the camera. A point P in the 3D world is
projected onto the image plane at point q.

xq = f
XP

ZP
, yq = f

YP
ZP

. (2.12)

As explained in [16], if we take derivatives with respect to the time step t, we will

have

x′q =
X ′P
ZP
− XPZ

′
P

Z2
P

, (2.13)

y′q =
Y ′P
ZP
− YPZ

′
P

Z2
P

, (2.14)

where we omit the constant f for simplicity. (x′q, y
′
q) capture the pixel q’s motion in

the image plane, which is optical flow as we have seen in the previous section. So we

have
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uq = x′q, vq = y′q. (2.15)

(X ′P , Y
′
P , Z

′
P ) are the motion of the point P in the 3D world. Assume the scene

is relatively static to the camera and the motion is purely caused by the relative

movement of the camera, which consists of two factors: a translation and a rotation.

Denote P ’s position by rP = (XP , YP , ZP )T , its motion by VP = (X ′P , Y
′
P , Z

′
P )T , the

camera motion’s translational component by T, and its rotational component (i.e.,

the angular velocity) by ω. We have

VP = −T− ω × rP , (2.16)

where × is the cross product between two vectors. If we define the components of T

and ω along the X, Y, Z axes as

T = (U, V,W )T , ω = (A,B,C)T , (2.17)

and substitute them into Eq.(2.16), we have

X ′P = −U −BZP + CYP , (2.18)

Y ′P = −V − CXP + AZP , (2.19)

Z ′P = −W − AYP +BXP . (2.20)

According to Eq.(2.14), we have

uq =

(
− U

ZP
−B + Cyq

)
− xq

(
−W
ZP
− Ayq +Bxq

)
, (2.21)

vq =

(
− V

ZP
− Cxq + A

)
− yq

(
−W
ZP
− Ayq +Bxq

)
. (2.22)
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These two equations can be re-written as

uq = utrq + uroq , vq = vtrq + vroq , (2.23)

where (utrq , v
tr
q ) denotes the translational component of the optical flow and (uroq , v

ro
q )

the rotational component. In specific,

utrq =
−U + xqW

ZP
, vtrq =

−V + yqW

ZP
, (2.24)

uroq = Axqyq −B(x2q + 1) + Cyq, vroq = A(y2q + 1)−Bxqyq − Cxq. (2.25)

We can clearly see that optical flow, a pixel’s motion in the image plane, is essentially

about the projection of the relative motion of the scene and the camera, which is

jointly defined by the scene structure (depth ZP ) and the camera’s motion V =

(U, V,W )T and ω = (A,B,C)T . It is assumed, however, in the derivations so far that

the scene is static. For an independently moving object, such a relationship does not

hold. Therefore, to accurately model the scene’s motion, we need to know optical

flow, scene structure, and camera motion, and where the static and moving parts of

the scene are (known as motion segmentation). For the rest of this section, we will

briefly review recent research on 3D scene understanding using optical flow.

Motion Segmentation. Inspired this derivation based on the perspective projec-

tion [16], a motion segmentation algorithm is proposed in [9], where pre-computed

optical flow is used as input to estimate the translational and rotational components

of the camera motion. The angle and magnitude fields of optical flow is then inte-

grated into a probabilistic model to segment moving objects by assigning each pixel

to its most likely motion model in a Bayesian fashion. Optical flow is often used as

input for recent neural network-based approaches [138, 139], where motion segmenta-

tion is modeled a binary segmentation problem to be learned in an end-to-end manner

using annotations of moving objects. In recent work [20], an instance segmentation
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Figure 2.6: A typical configuration for scene flow estimation. Four images are avail-
able as input that are taken by two stereo cameras at two consecutive time steps. For
math symbols, a subscript denotes the time step and a superscript indicates whether
the image is taken by the left or the right camera. The goal is to infer the 3D motion
of every pixel in the reference image (bottom left).

approach is proposed, which has two branches, corresponding to RGB images and op-

tical flow as input, respectively. Such two branches are progressively trained toward

segmenting class-agnostic moving instances.

3D Motion Estimation. Estimating 3D motion of a scene is critical in some sce-

narios. For example, for an autonomous driving car or a navigation robot in an

apartment, it is essential to know how far away other obstacles and objects are away

and how fast they move. Fig. 2.6 demonstrates a typical configuration for scene flow

estimation using two stereo cameras, where four images are available as input that

are taken at two consecutive time steps. For scene flow estimation, optical flow is

an essential input. In [92], an energy function based on a discrete-continuous Con-

ditional Random Field (CRF) is proposed. Each object in the scene is represented

by its optical flow, stereo disparity, and rigid motion in 3D. By minimizing the en-

ergy function, the estimated scene flow should be consistent with such evidence, where

smoothness constraints are also considered in the energy function. In recent work [87],
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it extends such an energy function by jointly considering optical flow, stereo dispar-

ity, and instance segmentation, taking advantages of great progress of all these three

fields thanks to deep learning models. Moreover, a Gaussian-Newton optimization

approach is adopted, which can be easily parallelized on GPUs, leading to not only

more accurate scene flow estimation, but also significantly faster processing speed.

Joint Optical Flow Estimation and Scene Segmentation. Scene understanding

tasks are usually closely related. Solving multiple tasks jointly often leads to more

accurate scene understanding than solving each of separately. Specifically, estimating

motion of a dynamic scene involves not only merely brightness pattern matching, but

also understanding of the scene including object co-occurrences, intuitive physics,

etc. For instance, we know a tennis ball may incur a large displacement after it is

hit to a racket. Furthermore, there could be other tennis balls in the background.

Understanding which tennis ball is the correct correspondent could depend upon a

knowledge of the physics of tennis.

In [120], semantic image segmentation, where each pixel is assigned to one of se-

mantic categories, such as tree, road, etc, and optical flow estimation are studied at

the same time. Based on the segmentation of the scene, different motion models are

constructed for different scenes. For example, motion of the road area is modeled

with homographies and independently moving objects’ motion is considered as an

affine model plus deviations. Such different motion models are then integrated into a

layer model, where each layer corresponds to a region in the image segmentation, to

compose the scene’s optical flow estimation. Such semantic optical flow estimation

leads to more accurate motion estimation than relying on motion of brightness pat-

terns. In [153], motion segmentation (termed as rigidity estimation) and optical flow

estimation are jointly investigated. In static scenes, camera motion and scene struc-

ture (depth) that are estimated using multiple frames using a structure-from-motion
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(SfM) algorithm are used to compute optical flow. While in moving regions, results

of using an existing optical flow estimation are used.

Unsupervised Scene Understanding. Since there are strong constraints between

different scene understanding tasks, can we train a model to solve them without

using any manual annotations, purely using their interactions as supervision signal? A

unsupervised learning approach using deep convolutional neural networks is proposed

in [161] to estimate depth, optical flow, and camera pose for unlabeled monocular

videos. The supervision comes from the photometric reconstruction error (based on

the brightness constancy assumption) by projecting a video frame to its neighboring

ones. In [105], four tasks, including depth prediction, optical flow estimation, camera

motion estimation, and motion segmentation are solved at the same time. They

are integrated into a common framework, where the segmentation of static scene

and independently moving objects are simultaneously reasoned. The optimization

is performed in an iterative manner, similar to the expectation-maximization (EM)

algorithm.
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CHAPTER 3

SELF-SUPERVISED RELATIVE DEPTH LEARNING FOR
URBAN SCENE UNDERSTANDING

3.1 Overview

How does a newborn agent learn about the world? When an animal (or robot)

moves, its visual system is exposed to a shower of information. Usually, the speed

with which something moves in the image is inversely proportional to its depth.1 As

an agent continues to experience visual stimuli under its own motion, it is natural for

it to form associations between the appearance of objects and their relative motion

in the image. For example, an agent may learn that objects that look like mountains

typically don’t move in the image (or change appearance much) as the agent moves.

Objects like nearby buildings and bushes, however, appear to move rapidly in the

image as the agent changes position relative to them. This continuous pairing of

images with motion acts as a kind of automatic supervision that could eventually

allow an agent both to understand the depth of objects and to group pixels into

objects by this predicted depth. Thus, by moving through the world, an agent may

learn to predict properties (such as depth) of static scenes.

A flurry of recent work has shown that proxy tasks (also known as pretext or sur-

rogate tasks) such as colorization [71, 165], jigsaw puzzles [98], and others [147, 1,

100, 94, 101, 29, 99, 72], can induce features in a neural network that provide strong

pre-training for subsequent tasks. In this chapter, we introduce a new proxy task:

estimation of relative depth from a single image. We show that a network that has

been pre-trained, without human supervision, to predict relative scene depth pro-

vides a powerful starting point from which to fine-tune models for a variety of urban
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(a) (b) (c) (d) (e)

Figure 3.1: Sample frames from collected videos and their corresponding relative
depth maps, where brightness encodes relative depth (the brighter the farther). From
top to bottom: input image, relative depth image computed using Eq.(3.3), and
predicted (relative) depth maps using our trained VGG16 FCN8s [122, 121]. There is
often a black blob around the center of the image, a singularity in depth estimation
caused by the focus of expansion. (a)(b)(c): images from the CityDriving dataset,
(d): images from the KITTI dataset, and (e): images from the CityScapes dataset.

scene understanding tasks. Not only does this automatically supervised starting point

outperform all other proxy task pre-training methods. For monocular depth under-

standing, it even performs better than the heavily supervised ImageNet pre-training,

yielding results that are comparable with state-of-the-art methods.

To estimate relative scene depths without human supervision, we use a recent mo-

tion segmentation technique [9] to estimate relative depth from geometric constraints

between a scene’s motion field and the camera motion. We apply it to simple, pub-

licly available YouTube videos taken from moving cars. Since this technique estimates

depth up to an unknown scale factor, we compute relative depth of the scene during

the pre-training phase, where each pixel’s value is in the range of [0, 1] denoting its

depth percentile over the entire image.1

Unlike work that analyzes video paired with additional information about di-

rection of motion [56], our agent learns from “raw egomotion” video recorded from

cars moving through the world. Unlike methods that require videos of moving ob-

1Later, we will fine-tune networks to produce absolute depths.
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jects [100], we neither depend on, nor are disrupted by, moving objects in the video.

Once we have relative depth estimates for these video images, we train a deep network

to predict the relative depth of each pixel from a single image, i.e., to predict the rel-

ative depth without the benefit of motion. One might expect such a network to learn

that an image patch that looks like a house and spans 20 pixels of an image (about

100 meters away) is significantly farther away than a pedestrian that spans 100 image

pixels (perhaps 10 meters away). Figure 3.1 illustrates this prediction task and shows

sample results obtained using a standard convolutional neural network (CNN) in this

setting. For example, in the leftmost image of Fig. 3.1, an otherwise unremarkable

traffic-light pole is clearly highlighted by its relative depth profile, which stands out

from the background. Our hypothesis is that to excel at relative depth estimation,

the CNN will benefit by learning to recognize such structures.

The goal of our work is to show that pre-training a network to do relative depth

prediction is a powerful proxy task for learning visual representations. In particular,

we show that a network pre-trained for relative depth prediction (from automatically

generated training data) improves training for downstream tasks including semantic

segmentation, joint semantic reasoning of road segmentation and car detection, and

monocular (absolute) depth estimation. We obtain significant performance gains on

urban scene understanding benchmarks such as KITTI [32, 31] and CityScapes [19],

compared to training a segmentation model from scratch. Compared to nine other

proxy tasks for pre-training, our proxy task consistently provides the highest gains

when used for pre-training. In fact, our performance on semantic segmentation and

joint semantic reasoning tasks comes close to that of equivalent architectures pre-

trained with ImageNet [21], a massive labeled dataset. Finally, for the monocular

(absolute) depth estimation, our pre-trained model achieves better performance than

an ImageNet pre-trained model, using both VGG16 [122] and ResNet50 [37] architec-

tures.
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As a final application, we show how our proxy task can be used for domain adap-

tation. One might assume that the more similar the domain of unlabeled visual data

used for the proxy task (here, three urban scene understanding tasks) is to the do-

main in which the eventual semantic task is defined (here, semantic segmentation),

the better the representation learned by pre-training. This observation allows us to

go beyond simple pre-training, and effectively provide a domain adaptation mecha-

nism. By adapting (fine-tuning) a relative depth prediction model to targets obtained

from unlabeled data in a novel domain (say, driving in a new city) we can improve

the underlying representation, priming it for better performance on a semantic task

(e.g., segmentation) trained with a small labeled dataset from this new domain. In

experiments, we show that pre-training on unlabeled videos from a target city, absent

any labeled data from that city, consistently improves all urban scene understanding

tasks.

In total, our work advances two pathways for integrating unlabeled data with

visual learning.

• We propose a novel proxy task for self-supervised learning of visual representa-

tions; it is based on learning to predict relative depth, inferred from unlabeled

videos. This unsupervised pre-training leads to better results over all other

proxy tasks on the semantic segmentation task, and even outperforms super-

vised ImageNet pre-training for absolute depth estimation.

• We show that our task can be used to drive domain adaptation. Experiments

demonstrate its utility in scene understanding tasks for street scenes in a novel

city. Our adapted model achieves results that are competitive with state-of-

the-art methods (including those that use large supervised pre-training) on the

KITTI depth estimation benchmark.
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Such methods of extracting knowledge from unlabeled data are likely to be increas-

ingly important as computer vision scales to real-world applications; here massive

dataset size can outpace herculean annotation efforts.

3.2 Related Work

Self-supervised learning. The idea of formulating supervised prediction tasks

on unlabeled data has been leveraged for both images and videos. The idea, often

called self-supervision, is most typically realized by removing part of the input and

then training a network to predict it. This can take the form of deleting a spatial

region and trying to inpaint it [101], draining an image of color and trying to colorize

it [70, 165, 71], or removing the final frame in a sequence and trying to hallucinate

it [106, 125, 89, 144, 157, 81]. Generative Adversarial Networks, used for inpainting

and several future frame prediction methods, can also be used to generate realistic-

looking samples from scratch. This has found secondary utility for unsupervised

representation learning [103, 124, 25]. Another strategy is to extract patches and try

to predict their spatial or temporal relationship. In images, this has been done for

pairs of patches [22] or for 3-by-3 jigsaw puzzles [98]. In videos, it can be done by

predicting the temporal ordering of frames [94, 72]. The correlation of frames in video

is also a rich source of self-supervised learning signals. The assumption that close-by

frames are more similar than far apart frames can be used to train embeddings on

pairs [95, 51, 57] or triplets [147] of frames. A related idea that the representation

of interesting objects should change slowly through time dates back to Slow Feature

Analysis [152].

The works most closely related to ours may be [56, 1, 100], which aim to learn use-

ful visual representations from unlabeled videos as well. Jayaraman & Grauman [56]

learn a representation equivariant to ego-motion transformations, using ideas from

metric learning. Agrawal et al. [1] concurrently developed a similar method that
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uses the ego-motion directly as the prediction target as opposed to as input to an

equivariant transformation. Both of these works assume knowledge of the agent’s

own motor actions, which limits their evaluation in sample size due to lack of pub-

licly available data. In our work, the ego-motion is inferred through optical flow,

which means we can leverage large sources of crowd-sourced data, such as YouTube

videos. Pathak et al. [100] use optical flow and a graph-based algorithm to produce

unsupervised segmentation maps. A network is then trained to approximate these

maps, driving representation learning. The reliance on moving objects, as opposed to

a moving agent, could make it harder to collect good data. Using a method based on

ego-motion, the agent can promote its own representation, learning simply by moving,

instead of having to find objects that move.

There is also work on using multi-modal sensory input as a source of supervision.

Owens et al. [99] predict statistics of ambient sounds in videos. Beyond studying a

single source of self-supervision, combining multiple self-supervision sources is increas-

ingly popular. In [23], a set of self-supervision tasks are integrated via a multi-task

setting. Wang et al. [148] propose to combine instance-level as well as category-level

self-supervision. Both [23, 148] achieve better performance than a single model.

Unsupervised learning of monocular depth estimation. A single-image depth

predictor can be trained from raw stereo images, by warping the right image with a

depth map predicted from the left and training it to reconstruct the left image [30, 35].

This idea was extended in recent work to support fully self-supervised training on

regular video, by predicting both depth and camera pose difference for pairs of nearby

frames [169, 141].

Although [169, 141] are closely related to our work in the sense of unsupervised

(or self-supervised) learning of depth and ego-motion from unlabeled videos, our

work differs from them in two ways. First, neither of these two works emphasizes

more general-purpose feature learning. Second, neither of them demonstrates their
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scalability to large-scale YouTube videos. [169] requires intrinsic camera parameters

that are not available for most YouTube videos; our approach relies on optical flow

only. [141] only reports experimental results on standard benchmark datasets, whose

scale is an order of magnitude smaller than videos we use. It is unclear whether

the heuristics (e.g., the manually set camera intrinsic parameters, number of motion

clusters) are robust to YouTube videos in the wild.

3.3 Inducing features by learning to estimate relative depth

As a proxy task, our goal is to induce a feature representation f(I) of an RGB

image I(x, y) by predicting its depth image z(x, y), where the representation f(I)

could be transferred to other downstream tasks (e.g., semantic segmentation) with

fine-tuning. In section 3.3.1, we introduce technical details of gathering images and

corresponding depth maps. In section 3.3.2, we provide details of training CNNs to

learn the feature representation f(I).

3.3.1 Self-Supervised Relative Depth

As described above, we automatically produce depth images for video frames by

analyzing the motion of pre-existing videos. In our experiments, we used three sets

of videos: YouTube videos, videos from the KITTI database [32, 31], and videos from

the CityScapes database [19]. The YouTube videos consist of 135 videos taken from

moving cars in major U.S. cities.2 We call this dataset CityDriving. The stability of

the camera in these videos makes them relatively easy for the depth estimation proce-

dure. Some of the videos are extremely long, lasting several hours. The CityDriving

dataset features a large number of man-made structures, pedestrians and cars. Fol-

lowing [73], we only keep two consecutive frames if they have moderate motion (i.e.,

neither too slow nor too fast). To eliminate near duplicate frames, two consecutive

2They are crawled from a YouTube playlist, taking less than an hour.
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depth maps must be at least 2 frames apart. We keep only the first one of two con-

secutive frames and the computed depth image. In total, we gathered 1.1M pairs

of RGB images and their corresponding depth maps, where the typical resolution is

640× 360. Similarly, we collect 30K and 24K pairs of RGB images and their relative

depth maps for CityScapes and KITTI, respectively.

Denote the instantaneous coordinates of a point P in the environment by (X, Y, Z)T ,

and the translational velocity of the camera in the environment by (U, V,W )T . Let the

motion field component (idealized optical flow) of the point P (in the image plane) be

(u, v), corresponding to the horizontal and vertical image motion, respectively. The

motion field can be written as the sum of translation and rotation components3

u = ut + ur, v = vt + vr, (3.1)

where the subscript t and r denote translation and rotation, respectively. According

to the geometry of perspective projection [40], the following equations hold if the

motion of the camera is purely translational,

ut =
−U + xW

Z
, vt =

−V + yW

Z
, (3.2)

where x and y are the coordinates of the point P in the image plane (the origin is at

the image center).

Note that the depth Z can be estimated from either one of these equations. How-

ever, the estimate can be unstable if either ut or vt is small. To obtain a more robust

estimate of Z, we square the two equations above and add them:

Z =

√
(−U + xW )2 + (−V + yW )2

u2t + v2t
. (3.3)

3Any motion in the image is due to the relative motion of a world point and the camera. This
addresses motion of the object, the camera, or both.
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Figure 3.2: Samples of image pairs and computed translational optical flow that we
use to recover the relative depth. From left to right: first images, second images,
translational optical flow between input two images, and relative depth of the first
images.

Because we can only recover (U, V,W )T up to scale (see below), we can only compute

the depth map of an image up to scale. To induce feature representations, we use

depth orderings of pixels in an image. We compute the relative depth z ∈ [0, 1] of the

pixel P as its depth percentile (divided by 100) across all estimated depth values for

the image. Since these percentiles are invariant to the velocity’s unknown scale, we

do not need to recover the absolute scale of velocity. Examples of these automatically

obtained depth maps are given in Figure 3.1 and Figure 3.2.

To compute the optical flow, we use the state-of-the-art unsupervised method [42].

It first computes sparse pixel matchings between two video frames. It then interpo-

lates to get dense pixelwise optical flow fields from sparse matchings, where we replace

the supervised edge detector [24] with its unsupervised version [73]. Based on the

optical flow, we use the method proposed in [9] to recover the image motion of each

pixel due to translational motion only (ut, vt), and also, the global camera motion

(U, V,W )T up to an unknown scale factor. Specifically, the rotation of the camera

can be estimated by finding the rotation such that the remaining motion, by removing

the rotational component from the motion field, can be well-explained by angle fields,
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which are the angle part of the motion field. This procedure produces a translational

optical flow field (ut, vt), and a set of regions in the image corresponding to the back-

ground and different object motions, along with the motion directions (U, V,W ) of

those regions. We refer readers to [9] for more technical details.

In summary, to obtain the depth map of each frame from a video, we:

• compute the optical flow (u, v) between a pair of frames [42];

• estimate the translational component (ut, vt) of the optical flow and the direction

of camera translation (U, V,W ) from the optical flow, using the method of [9];

• estimate the scene depth Z using Eq. 3.3, up to an unknown scale factor, from

the translational component of the optical flow and the camera direction esti-

mate and convert it to relative depth z ∈ [0, 1].

3.3.2 Predicting Relative Depth From a Single Image

While a CNN for predicting depth from a single image is a core component of

our system, we are primarily interested in relative depth prediction as a proxy task,

rather than an end in itself. We therefore select standard CNN architectures and focus

on quantifying the power of the depth task for pre-training and domain adaptation,

compared to using the same networks with labeled data. Specifically, we work with

variants of the standard AlexNet [67], VGG16 [122], and ResNet50 [37] architectures.

Given an RGB image I, we need pixelwise predictions in the form of a depth image

z, so we modify both AlexNet, VGG16, and ResNet50 to produce outputs with the

same spatial resolution as the input image. In particular, we consider Fully Convolu-

tional Networks (FCNs) [121] and an encoder-decoder with skip connections [35, 169].

Detailed discussions can be found in the experiment section.

Since the relative depth (i.e., the depth percentile) is estimated over the entire

image, it is essential to feed the entire image to the CNN to make a prediction.
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For CityDriving and KITTI, we simply resize the input image to 224 × 416 and

352× 1212. For CityScapes, we discard the bottom 20% portion or so of each video

frame containing mainly the hood of a car, which remains static over all videos and

makes the relative depth estimation inaccurate (recall our relative depth estimation

is mainly based on motion information). The cropped input image is then resized to

384× 992. During training, we employ horizontal flipping and color jittering for data

augmentation. Since relative depth serves as a proxy, rather than an end task, even

though the relative depth estimation is not always correct, the network is able to

tolerate some degree of noise as shown in [100]; we can then repurpose the network’s

learned representation.

In all experiments, we use L1 loss for each pixel when training for depth prediction,

i.e., we train networks to regress the relative depth values. All AlexNet, VGG16, and

ResNet50 variants are trained for 30 epochs using the Adam optimizer [66] with

momentum of β1 = 0.9, β2 = 0.999, and weight decay of 0.0005. The learning rate is

0.0001 and is held constant during the pre-training stage.

3.4 Experiments

We consider three urban scene understanding tasks: semantic segmentation, joint

semantic reasoning consisting of road segmentation and object detection [136], and

monocular absolute depth estimation.

3.4.1 Semantic Segmentation

We consider three datasets commonly used for evaluating semantic segmentation.

Their main characteristics are summarized below:

KITTI [113]: 100 training images, 46 testing images, spatial dimensions of 370×1226,

11 classes.
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Table 3.1: Comparisons of mean IoU scores of AlexNet FCN32s for semantic
segmentation using different self-supervised models. CS=CityScapes, K=KITTI,
CV=CamVid.

pre-training method supervision source CS K CV

supervised ImageNet labels 48.1 46.2 57.4

none - 40.7 39.6 44.0

tracking [147] motion 41.9 42.1 50.5
moving [1] ego-motion 41.3 40.9 49.7
watch-move [100] motion seg. 41.5 40.8 51.7
frame-order [94] motion 41.5 39.7 49.6
context [101] appearance 39.7 - 37.8
object-centric [29] appearance 39.6 39.1 48.0
colorization [70, 71] appearance (color) 42.9 35.8 53.2
cross-channel [166] misc. 36.8 40.8 46.3
audio [99] video soundtrack 39.6 40.7 51.5

Ours depth 45.4 42.6 53.4

CamVid [13, 12]: 367 training images, 101 validation images, 233 testing images,

spatial dimensions of 720× 960, 11 classes.

CityScapes [19]: 2975 training images, 500 validation images, 1525 testing im-

ages, spatial dimensions of 1024×2048, 19 classes. We conduct experiments on images

at half resolution.

The first two datasets are much too small to provide sufficient data for “from

scratch” training of a deep model; CityScapes is larger, but we show below that

all three datasets benefit from pre-training. We use the curated annotations of the

CamVid dataset released by [68]. As a classical CNN-based model for semantic seg-

mentation, we report results of different variants of the Fully Convolutional Network

(FCN) [121].

We compare our results to those obtained with other self-supervision strategies

surveyed in Section 3.2. Since only AlexNet pre-trained models are available for most

of the previous self-supervised methods, we also train an AlexNet. During training,
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the inputs are random crops of 352×352 for KITTI and 704×704 for CamVid. Each

FCN32s using different pre-training models is trained for 600 epochs with a batch size

of 16 using 4 GPUs. For CityScapes, the inputs to the network are random crops of

512×512. Each FCN32s is trained for 400 epochs with a batch size of 16. In addition

to the random crops, random horizontal flips and color jittering are also performed.

The CNNs at this stage (learning segmentation) are trained or fine-tuned using the

Adam optimizer, where weight decay is 0.0005. For the learning rate, we use 0.0001

and decrease it by a factor of 10 at the 400th epoch (300th epoch for CityScapes).

Quantitative comparisons can be found in Table 3.1.4 Our pre-trained model per-

forms significantly better than the model learned from scratch on all three datasets,

validating the effectiveness of our pre-training. Moreover, we obtain new state-

of-the-art results on all three urban scene segmentation datasets among methods

that use self-supervised pre-training. In particular, our model outperforms all other

self-supervised models with motion cues (the first four self-supervised models in Ta-

ble 3.1).

3.4.2 Ablation Studies

We perform ablation studies using VGG16 FCN32s on the semantic segmentation

datasets. Specifically, we study the following aspects.

Number of pre-training images. Figure 3.3(a) demonstrates that the performance

of our depth pre-trained model scales linearly with the log of the number of pre-

training images on CamVid, which is similar to the conclusion of [100].

On KITTI, our pre-trained model initially has a big performance boost when the

number of pre-training images increases from 1K to 10K. With enough data (more

4We were unable to get meaningful results with [101] on KITTI and with [56] on all three
segmentation datasets.
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Figure 3.3: Ablation studies of performance by (a) varying number of pre-training im-
ages on KITTI and CamVid, (b) varying number of fine-tuning images of CityScapes.

Table 3.2: Mean IoU scores of semantic segmentation using different architectures on
different datasets. CD=CityDriving, CS=CityScapes, CV=CamVid, and K=KITTI.

pre-training
FCN32s FCN16s FCN8s

CS CV K CS CV K CS CV K

ImageNet 58.7 63.7 51.5 62.9 65.9 55.3 63.4 67.0 56.4
scratch 45.4 41.0 32.4 51.3 44.1 33.1 51.6 44.3 34.2

Ours CD 55.0 57.8 45.6 57.6 59.0 47.7 59.8 60.3 48.6
Ours CD+K 56.0 58.5 46.0 56.9 58.8 48.2 58.9 60.1 49.0
Ours CD+CS 56.2 58.5 47.4 58.5 58.8 47.8 60.5 59.9 49.6

than 10K), the performance also scales linearly with the log of the number of pre-

training images.

Number of fine-tuning images. Figure 3.3(b) shows that every model (ImageNet,

scratch, our depth pre-trained model) benefits from more fine-tuning data on the

CityScapes dataset. For both ImageNet and our depth pre-trained models, it suggests

that more fine-tuning data is also beneficial for transferring the previously learned

representations to a new task.

3.4.3 Domain Adaptation by Pre-Training

In the experiments described above, the two stages (pre-training on self-supervised

depth prediction, followed by supervised training for segmentation) rely on data that
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Figure 3.4: Qualitative semantic segmentation results on CityScapes. From top to
bottom: input images, predictions of FCN8s with no pre-training, our FCN8s pre-
trained on CityDriving, our FCN8s pre-trained on CityDriving adapted to CityScapes,
ImageNet FCN8s, and ground-truth annotations. The difference between the 2nd
and 3rd rows shows a clear benefit of pre-training with relative depth prediction. The
difference between 3rd rows and 4th rows shows the benefit our unsupervised domain
adaptation using pre-training.

come from significantly different domains. The self-supervised learning uses videos

obtained from moving through North American cities. In contrast, none of the tar-

get dataset images were collected in the same geographic locations. For instance,

CityScapes includes data from driving in German cities. Thus, in addition to a shift

in task, the fine-tuning of the network for segmentation must also deal with a domain

shift in the input.

CityScapes [19] and KITTI [32] make available video sequences that give temporal

context to every image in the dataset. None of these extra frames are labeled, but we
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can leverage them in the following way. Before training the network on segmentation,

we fine-tune it, using the same self-supervised relative depth prediction task described

in Section 3.3.1, on these videos. Our intuition is that this may induce some of

the modifications in the network that reflect the changing distribution of the input.

Then, we proceed as before to train the fine-tuned representation on the semantic

segmentation data. Specifically, we fine-tune different FCNs variants based on VGG16

sequentially, i.e., from FCN32s to FCN16s, and finally to FCN8s. For FCN32s, the

training procedure is identical to AlexNet FCN32s described earlier. FCN16s and

FCN8s are trained for the same number of epochs as FCN32s, where the learning

rate is set to 0.00002 and 0.00001, respectively, and kept constant during training.

The effectiveness of our unsupervised domain adaptation for semantic segmenta-

tion can be found in Table 3.2. The last two rows of demonstrate that such fine-

tuning can consistently improve the performance of a self-supervised model over all

FCN variants on both CityScapes and KITTI, validating its effectiveness as a domain

adaptation approach. Interestingly, we can see that while fine-tuning is helpful for

FCN32s on CamVid initially, it does not help much for FCN16s and FCN8s. Perhaps

this is due to the domain gap between CamVid and CityScapes/KITTI. Qualitative

semantic segmentation results can be found in Fig. 3.4.

3.4.4 Joint Semantic Reasoning

Joint semantic reasoning is important for urban scene understanding, especially

with respect to tasks such as autonomous driving [136]. We investigate the effective-

ness of our pre-trained model and the unsupervised strategy of domain adaptation

using the MultiNet architecture [136] for joint road segmentation and car detection.5

MultiNet consists of a single encoder, using the VGG16 as backbone, and two sibling

5We use the author’s released code https://github.com/MarvinTeichmann/MultiNet. As the
scene classification data is not publicly available, we only study road segmentation and car detection
here.
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Table 3.3: Results of joint semantic reasoning, including road segmentation and car
detection.

pre-training
Road Segmentation Car Detection (AP)
F1 AP Easy Medium Hard

ImageNet 96.33 92.26 95.59 86.43 72.28
scratch 93.78 91.37 89.37 79.93 66.02

Ours CD 94.74 92.13 92.84 84.73 69.47
Ours CD+K 95.66 92.14 94.31 85.72 70.50

decoders for each task. For road segmentation, the decoder contains three upsam-

pling layers, forming an FCN8s. The car detection decoder directly regresses the

coordinates of objects. Following [136], the entire network is jointly trained using the

Adam optimizer, using a learning rate of 0.00005 and weight decay of 0.0005 for 200K

steps. We refer readers to [136] for more technical details.

We replace the ImageNet-trained VGG16 network with a randomly initialized one

and our own VGG16 pre-trained on CityDriving using relative depth. For the road

segmentation task, there are 241 training and 48 validation images. For car detection,

there are 7K training images 481 validation images. Detailed comparisons on the

validation set can be found in Table 3.3. We use the F1 measure and Average Precision

(AP) scores for road segmentation evaluation and AP scores for car detection. AP

scores for different car categories are reported separately. We can clearly see that

our pre-trained model (Ours CD) consistently outperforms the randomly initialized

model (scratch in Table 3.3). Furthermore, by using the domain adaptation strategy

via fine-tuning on the KITTI raw videos (Ours CD+K), we can further close the gap

between an ImageNet pre-trained model. Remarkably, after fine-tuning, the F1 score

of road segmentation and AP scores for easy and medium categories of our pre-trained

model are pretty close to the ImageNet counterpart’s. (See last row of Table 3.3.)
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3.4.5 Monocular Absolute Depth Estimation

For the monocular absolute depth estimation, we adopt the U-Net architecture [112]

similar to [35, 169], which consists of a fully convolutional encoder and another fully

convolutional decoder with skip connections. In order to use an ImageNet pre-trained

model, we replace the encoder with the VGG16 and ResNet50 architectures. We use

the training and validation set of [35], containing 22.6K and 888 images, respectively.

We evaluate our model on the Eigen split [27, 35], consisting of 697 images, where

ground-truth absolute depth values are captured using LiDAR at sparse pixels. Un-

like [35], which uses stereo image pairs as supervision to train the network, or [169],

which uses neighboring video frames as supervision to train the network (yet camera

intrinsic parameters are required), we use the absolute sparse LiDAR depth values

to fine-tune our network. The entire network (either VGG16 or ResNet50 version) is

trained for 300 epochs using the Adam optimizer with a weight decay of 0.0005. The

initial learning rate is 0.0001 and decreased by factor of 10 at the 200th epoch.

Detailed comparisons can be found in Table 3.4. We can observe that our pre-

trained models consistently outperforms ImageNet counterparts, as well as randomly

initialized models, using either VGG16 or ResNet50 architectures. It is worth noting,

however, that converting relative depth to absolute depth is non-trivial. Computing

relative depth (i.e., percentile from absolute depth) is a non-linear mapping. The

inverse transformation from relative depth to absolute depth is not unique. Follow-

ing [169], we multiply our relative depth by a factor as the ratio between relative depth

and absolute depth, we get pretty bad results (RMSE of 11.08 vs 4.903), showing this

task is non-trivial.

Moreover, pre-training as domain adaptation also improves the performance of

our pre-trained model. After fine-tuning our pre-trained model using KITTI’s raw

videos (Ours CD+K), our ResNet50 model achieves better results than most of the
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Table 3.4: Monocular depth estimation on the KITTI dataset using the split
of Eigen et al. [27] (range of 0-80m). For model details, Arch.=Architecture,
A=AlexNet, V=VGG16, and R=ResNet50. For training data, Class.=classification,
I=ImageNet, CD=CityDriving, K=KITTI, CS=CityScapes. pp indicates test-time
augmentation by horizontally flipping the input image.

Method Arch.
Training Data Error Metrics Accuracy Metrics

Class. Stereo Video GT Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

[27] A I - - K 0.203 1.548 6.307 0.282 0.702 0.890 0.958
[78] A I - - K 0.202 1.614 6.523 0.275 0.678 0.895 0.965

[35]+pp R - CS+K - - 0.114 0.898 4.935 0.206 0.861 0.949 0.976
[169] V - - CS+K - 0.198 1.836 6.565 0.275 0.718 0.901 0.960
[69] R I K - K 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Ours V I - - K 0.157 1.115 5.546 0.233 0.768 0.922 0.974
Ours V - - - K 0.163 1.241 5.649 0.238 0.765 0.918 0.970
Ours V - - CD K 0.154 1.117 5.499 0.228 0.775 0.928 0.976
Ours V - - CD+K K 0.148 1.056 5.317 0.221 0.791 0.932 0.977

Ours R I - - K 0.128 0.933 5.073 0.203 0.827 0.945 0.980
Ours R - - - K 0.131 0.937 5.032 0.203 0.827 0.946 0.981
Ours R - - CD K 0.128 0.901 4.898 0.198 0.834 0.948 0.983
Ours R - - CD+K K 0.125 0.881 4.903 0.195 0.840 0.951 0.983

previous methods [27, 78, 35, 169]. The results are also on par with the state-of-the-

art method [69].

3.5 Conclusions and Discussions

We have proposed a new proxy task for self-supervised learning of visual rep-

resentations. It requires only access to unlabeled videos taken by a moving camera.

Representations are learned by optimizing prediction of relative depth, recovered from

estimated motion flow, from individual (single) frames. We show this task to be a

powerful proxy task, which is competitive with recently proposed alternatives as a

means of pre-training representations on unlabeled data. We also demonstrate a novel

application of such pre-training, aimed at domain adaptation. When given videos

taken by cars driven in cities, self-supervised pre-training primes the downstream ur-
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ban scene understanding networks, leading to improved accuracy after fine-tuning on

a small amount of manually labeled data.

Our work offers novel insights about one of the most important questions in vision

today: how can we leverage unlabeled data, and in particular massive amounts of

unlabeled video, to improve recognition systems. While a comprehensive picture of

self-supervision methods and the role they play in this pursuit is yet to emerge, our

results suggest that learning to predict relative depth is an important piece of this

picture.

While the gap of the performance between self-supervised methods and their Ima-

geNet counterparts is quickly shrinking, none of current self-supervised methods per-

forms better than ImageNet pre-trained models on tasks involving semantics (e.g.,

semantic segmentation and object detection). This makes pre-training on ImageNet

still practically critical for many computer vision tasks. Despite this fact, this does

not mean self-supervised methods are unimportant or unnecessary. The value of self-

supervised methods lies in the fact that the training data can easily be scaled up

without tedious and expensive human effort.

On other tasks, better performance of self-supervised methods than ImageNet

counterparts has been achieved, including our monocular depth estimation and sur-

face normal prediction [148]. Moreover, it has been shown that combining different

self-supervised methods can lead to better performance [23, 148]. All of these make

it very promising that representations learned using self-supervised methods may

surpass what ImageNet provides us today.
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CHAPTER 4

SENSE: A SHARED ENCODER FOR SCENE FLOW
ESTIMATION

4.1 Overview

Scene flow estimation aims at recovering the 3D structure (disparity) and mo-

tion of a scene from image sequences captured by two or more cameras [140]. It

generalizes the classical problems of optical flow estimation for monocular image se-

quences and disparity prediction for stereo image pairs. There has been steady and

impressive progress on scene flow estimation, as evidenced by results on the KITTI

benchmark [92]. State-of-the-art scene flow methods outperform the best disparity

(stereo) and optical flow methods by a significant margin, demonstrating the benefit

of additional information in the stereo video sequences. However, the top-performing

scene flow methods [8, 143] are based on the energy minimization framework [41]

and are thus computationally expensive for real-time applications, such as 3D motion

capture [28] and autonomous driving [52].

Recently, a flurry of convolutional neural network (CNN)-based methods have

been developed for the sub-problems of stereo and optical flow. These methods

achieve state-of-the-art performance and run in real-time. However, while stereo

and flow are closely-related, the top-performing networks for stereo and flow adopt

significantly different architectures. Further, existing networks for scene flow stack

sub-networks for stereo and optical flow together [90, 49], which does not fully exploit

the structure of the two tightly-coupled problems.

As both stereo and flow rely on pixel features to establish correspondences, will

the same features work for these two or more related tasks? To answer this question,
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(a) Image 1 of left camera (b) Image 2 of left camera

(c) Optical flow (d) Occlusions for flow

(e) Disparity (f) Occlusions for disparity

(g) Segmentation of (a) (h) Segmentation of (b)

Figure 4.1: Given stereo videos, we train compact networks for several holistic scene
understanding problems by sharing features.
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we take a modular approach and build a Shared Encoder Network for Scene-flow

Estimation (SENSE). Specifically, we share a feature encoder among four closely-

related tasks: optical flow, stereo, occlusion, and semantic segmentation. Sharing

features makes the network compact and also leads to better feature representation

via multi-task learning.

The interactions among closely-related tasks further constrain the network train-

ing, ameliorating the issue of sparse ground-truth annotations for scene flow estima-

tion. Unlike many other vision tasks, it is inherently difficult to collect ground-truth

optical flow and stereo for real-world data. Training data-hungry deep CNNs often

relies on synthetic data [17, 26, 90], which lacks the fine details and diversity ubiqui-

tous in the real world. To narrow the domain gap, fine-tuning on real-world data is

necessary, but the scarcity of annotated real-world data has been a serious bottleneck

for learning CNN models for scene flow.

To address the data scarcity issue, we introduce a semi-supervised loss for SENSE

by adding distillation and self-supervised loss terms to the supervised losses. First, no

existing dataset provides ground truth annotations for all the four tasks we address.

For example, the KITTI benchmark has no ground truth annotations for occlusion

and semantic segmentation.1 Thus, we train separate models for tasks with missing

ground truth annotations using other annotated data, and use the pre-trained models

to “supervise” our network on the real data via a distillation loss [39]. Second, we

use self-supervision loss terms that encourage corresponding visible pixels to have

similar pixel values and semantic classes, according to either optical flow or stereo.

The self-supervision loss terms tightly couple the four tasks together and are critical

for improvement in regions without ground truth, such as sky regions.

1Segmentation is only available for left images of KITTI 2015 [2].
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Experiments on both synthetic and real-world benchmark datasets demonstrate

that SENSE achieves state-of-the-art results for optical flow, while maintaining the

same run-time efficiency as specialized networks for flow. It also compares favorably

against state of the art on disparity and scene flow estimation, while having a much

smaller memory footprint. Ablation studies confirm the utility of our design choices,

and show that our proposed distillation and self-supervised loss terms help mitigate

issues with partially labeled data.

To summarize, we make the following contributions:

• We introduce a modular network design for holistic scene understanding, called

SENSE, to integrate optical flow, stereo, occlusion, and semantic segmentation.

• SENSE shares an encoder among these four tasks, which makes networks com-

pact and also induces better feature representation via multi-task learning.

• SENSE can better handle partially labeled data by exploiting interactions among

tasks in a semi-supervised approach; it leads to qualitatively better results in

regions without ground-truth annotations.

• SENSE achieves state-of-the-art flow results while running as fast as specialized

flow networks. It compares favorably against state of the art on stereo and

scene flow, while consuming much less memory.

4.2 Related Work

A comprehensive survey of holistic scene understanding is beyond our scope and

we review the most relevant work.

Energy minimization for scene flow estimation. Scene flow was first introduced

by Vedula et al. [140] as the dense 3D motion of all points in an observed scene from

several calibrated cameras. Several classical methods adopt energy minimization

approaches, such as joint recovery of flow and stereo [44] and decoupled inference
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of stereo and flow for efficiency [150]. Compared with optical flow and stereo, the

solution space of scene flow is of higher dimension and thus more challenging. Vogel et

al. [142] reduce the solution space by assuming a scene flow of piecewise rigid moving

planes over superpixels. Their work first tackles scene flow from a holistic perspective

and outperforms contemporary stereo and optical flow methods by a large margin on

the KITTI benchmark [32].

Joint scene understanding. Motion and segmentation are chicken-and-egg prob-

lems: knowing one simplifies the other. While the layered approach has long been

regarded as an elegant solution to these two problems [145], existing solutions tend

to get stuck in local minima [130]. In the motion segmentation literature, most meth-

ods start from an estimate of optical flow as input, and segment the scene by jointly

estimating (either implicitly or explicitly) camera motion, object motion, and scene

appearance, e.g. [10, 137]. Lv et al. [86] show that motion can be segmented directly

from two images, without first calculating optical flow. Taylor et al. [134] demonstrate

that occlusion can also be a useful cue.

Exploiting advances in semantic segmentation, Sevilla et al. [120] show that se-

mantic information is good enough to initialize the layered segmentation and thereby

improves optical flow. Bai et al. [3] use instance-level segmentation to deal with a

small number of traffic participants. Hur and Roth [46] jointly estimate optical flow

and temporally consistent semantic segmentation and obtain gains on both tasks.

The object scene flow algorithm [92] segments a scene into independently moving

regions and enforces superpixels within each region to have similar 3D motion. The

“objects” in their model are assumed to be planar and initialized via bottom-up mo-

tion estimation. Behl et al. [8], Ren et al. [108], and Ma et al. [87] all show that

instance segmentation helps scene flow estimation in the autonomous setting. While

assuming a rigid motion for each individual instance works well for cars, this assump-
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tion tends to fail in general scenes, such as Sintel, on which our holistic approach

achieves state-of-the-art performance.

The top-performing energy-based approaches are too computationally expensive

for real-time applications. Here we present a compact CNN model to holistically

reason about geometry (disparity), motion (flow), and semantics, which runs much

faster than energy-based approaches.

End-to-end learning of optical flow and disparity. Recently CNN based meth-

ods have made significant progress on optical flow and disparity, two sub-problems

of scene flow estimation. Dosovitskiy et al. [26] first introduce two CNN models,

FlowNetS and FlowNetC, for optical flow and bring about a paradigm shift to optical

flow and disparity estimation. Ilg et al. [48] propose several technical improvements,

such as dataset scheduling and stacking basic models into a big one, i.e., FlowNet2.

FlowNet2 has near real-time performance and obtains competitive results against

hand-designed methods. Ilg et al. [49] stack networks for flow, disparity together for

the joint task of scene flow estimation. However, there is no information sharing be-

tween the networks for flow and disparity. Ranjan and Black [104] introduce a spatial

pyramid network that performs on par with FlowNetC but has more than 100 times

fewer parameters, due to the use of two classical principles: pyramids and warping.

Sun et al. [131] develop a compact yet effective network, called PWC-Net, which

makes frequent use of three principles to construct the network: pyramids of learn-

able features, warping operations, and cost volume processing. PWC-Net obtains

state-of-the-art performance on two major optical flow benchmarks.

The FlowNet work also inspired new CNN models for stereo estimation [65, 18,

159]. Kendall et al. [65] concatenate features to construct the cost volume, followed

by 3D convolutions. The 3D convolution becomes commonly-used for stereo but is

computationally expensive in speed and memory. Chang and Chen [18] introduce a

pyramid pooling module to exploit context information for establishing correspon-
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Figure 4.2: Illustration of network design. Dashed arrows indicate shared weights. We
have a single encoder for all input images and all different tasks and keep different
decoders for different tasks. On the right, from top to bottom are: optical flow,
forward occlusion mask, semantic segmentation, disparity, and disparity occlusion.
The PPM (Pyramid Pooling Module) is not helpful for optical flow estimation. But
thanks to the modular network design, we can flexibly configure the network.

dences in ambiguous regions. Yang et al. [159] incorporate semantic cues to tackle

textureless regions. Yin et al.cast optical flow and disparity estimations as proba-

bilistic distribution matching problems [160] to provide uncertainty estimation. They

do not exploit the shared encoder of the two tasks as we do.

Existing scene flow networks [49, 87, 90] stack independent networks for disparity

and flow together. We are interested in exploiting the interactions among multiple re-

lated tasks to design a compact and effective network for holistic scene understanding.

Our holistic scene flow network performs favorably against state of the art while being

faster for inference and consuming less memory. In particular, we show the benefit of

sharing the feature encoder between different tasks, such as flow and disparity.

Self-supervised learning from videos. Supervised learning often uses synthetic

data, as it is hard to obtain ground truth optical flow and disparity for real-world

videos. Recently self-supervised learning methods have been proposed to learn scene

flow by minimizing the data matching cost [171] or interpolation errors [61, 79].
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However, the self-supervised methods have not yet achieved the performance of their

supervised counterparts.

4.3 Semi-Supervised Scene Flow Estimation

We follow the problem setup of the KITTI scene flow benchmark [92], as illustrated

in Fig. 4.2. The inputs are two stereo image pairs over time
(
I1,l, I2,l, I1,r, I2,r

)
, where

the first number in the superscript indicates the time step and the second symbol

denotes the left or right camera. To save space, we will omit the superscript if the

context is clear. We want to estimate optical flow F1,l from the first left image to the

second left image and disparity D1,l and D2,l from the left image to the right image

at the first and second frames, respectively. We also consider occlusion between two

consecutive frames O1,l
F and between the two sets of stereo images O1,l

D and O2,l
D , as

well as semantic segmentation for the reference (first left) image, i.e., S1,l. These extra

outputs introduce interactions between different tasks to impose more constraints in

the network training. Further, we hypothesize that sharing features among these

closely-related tasks induces better feature representations.

We will first introduce our modular network design in Section 4.3.1, which shares

an encoder among different tasks and supports flexible configurations during training.

We will then explain our semi-supervised loss function in Section 4.3.2, which enables

learning with partially labeled data.

4.3.1 Modular Network Design

To enable feature sharing among different tasks and allow flexible configurations

during training, we design the network in a modular way. Specifically, we build our

network on top of PWC-Net [131], a compact network for optical flow estimation.

PWC-Net consists of an encoder and a decoder, where the encoder takes the input

images and extracts features at different hierarchies of the network. The decoder
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is specially designed with domain knowledge of optical flow. The encoder-decoder

structure allows us to design a network in a modular way, with a single shared encoder

and several decoders for different tasks.

Shared encoder. The original encoder of PWC-Net, however, is not well-suited to

multiple tasks because of its small capacity. More than 80% of the parameters of

PWC-Net are concentrated in the decoder, which uses DenseNet [43] blocks at each

pyramid level. The encoder consists of plain convolutional layers and uses fewer than

20% of the parameters. While sufficient for optical flow, the encoder does not work

well enough for disparity estimation. To make the encoder versatile for different tasks,

we make the following modifications. First, we reduce the number of feature pyramid

levels from 6 to 5, which reduces the number of parameters by nearly 50%. It also

allows us to borrow the widely-used 5-level ResNet-like encoder architecture [18, 37],

which has been proven to be effective in a variety of vision tasks. Specifically, we

replace plain CNN layers with residual blocks [37] and add Batch Normalization

layers [50] in both encoder and decoder. With these modifications, the new model

has slightly fewer parameters but gives better disparity estimation results and also

better flow (Table 4.1).

Decoder for disparity. Next we explain how to adapt PWC-Net to disparity estima-

tion between two stereo images. Disparity is a special case of optical flow computation,

with correspondences lying on a horizontal line. As a result, we need only to build a

1D cost volume for disparity, while the decoder of the original PWC-Net constructs

a 2D cost volume for optical flow. Specifically, for optical flow, a feature at p=(x, y)

in the first feature map is compared to features at q ∈ [x−k, x+k]×[y−k, y+k] in the

warped second feature map. For disparity, we need only to search for correspondences

by comparing p in the left feature map to q ∈ [x−k, x+k]×y in the warped right

feature map. We use k=4 for both optical flow and disparity estimations. Across the
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feature pyramids, our decoder for disparity adopts the same warping and refinement

process as PWC-Net.

To further improve disparity estimation accuracy, we investigate more design

choices. First, we use the Pyramid Pooling Module (PPM) [168] to aggregate the

learned features of input images across multiple levels. Second, the decoder outputs

a disparity map one fourth the size of the input resolution, which tends to have

blurred disparity boundaries. As a remedy, we add a simple hourglass module widely

used in disparity estimation [18]. It takes a twice upsampled disparity, a feature map

of the first image, and a warped feature map of the second image to predict a residual

disparity that is added to the upsampled disparity. Both the PPM and hourglass

modifications lead to significant improvements in disparity estimation. They are not

helpful for optical flow estimation though, indicating that the original PWC-Net is

well designed for optical flow. The modular design allows us to flexibly configure

networks that work for different tasks, as shown in Fig. 4.2.

Decoder for segmentation. To introduce more constraints to network training,

we also consider semantic segmentation. It encourages the encoder to learn some

semantic information, which may help optical flow and disparity estimations. For

semantic segmentation decoder, we use the UPerNet [154] for its simplicity.

Occlusion estimation. For occlusion predictions, we add sibling branches to optical

flow or disparity decoders to perform pixel-wise binary classification, where 1 means

fully occluded. Adding such extra modules enables holistic scene understanding that

helps us to induce better feature representations in the shared encoder and use extra

supervision signals for network training to deal with partially labeled data, which is

discussed in Section 4.3.2. Critically, for scene flow estimation, the shared encoder

results in a more compact and efficient model. For optical flow and disparity esti-

mations, we can combine modules as needed during training, with no influence on
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the inference time. For scene flow estimation, extra modules can be used optionally,

depending on configuration. See explanations in Section 4.4.2.

4.3.2 Semi-Supervised Loss

No fully labeled datasets are available to directly train our holistic scene flow

network. For example, KITTI has no ground-truth occlusion masks. Even for opti-

cal flow and disparity ground-truths, only around 19% of pixels of the KITTI data

have annotations due to the difficulty in data capturing. The synthetic SceneFlow

dataset [90] has no ground truth for semantic segmentation. To address these is-

sues, we introduce our semi-supervised loss functions, which consist of supervised,

distillation, and self-supervised loss terms.

Supervised loss. When corresponding ground-truth annotations are available, we

define our supervised loss as

Lsp = (LF + LOF
) + (LD + LOD

) , (4.1)

where LF and LOF
are loss terms for estimating optical flow and its corresponding oc-

clusion. LD and LOD
are the loss terms for estimating disparity and its corresponding

occlusion. LF is defined across multiple pyramid levels as

LF =

NF∑
i=1

ωi
∑
p

ρ
(
Fi(p), F̂i(p)

)
, (4.2)

where ωi denotes optical flow and disparity weights at pyramid level i, NF is the num-

ber of pyramid levels, and ρ(·, ·) is a loss function measuring the similarity between

the ground-truth Fi(p) and estimated optical flow F̂i(p) at pixel p. Disparity and oc-

clusion loss functions, LD, LOF
, and LOD

are defined in a similar way. We use L2 and

smooth l1 [34, 18] loss for optical flow and disparity estimations, respectively. For

the occlusions, we use binary cross entropy loss when ground-truth annotations are
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Left input image Pre-trained seg. Pre-trained occ.

Supervised loss + segmentation loss + occlusion loss

Disparity error map (blue lower error, red higher error)

Enlarged view of error map for the car (best viewed in color)

Figure 4.3: Effects of adding distillation losses for semantic segmentation (middle)
and occlusion (right) to the supervised loss.
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Figure 4.4: Illustration of effectiveness of self-supervised loss. From top to bottom:
input images, disparity estimations without using self-supervised loss, and disparity
estimations with using self-supervised loss. We can see self-supervised loss helps
greatly reduce artifacts in the sky region.

available (e.g., on FlyingThings3D [90]). For semantic segmentation, only ground-

truth annotations of the left images are available for KITTI2015. We empirically

found using distillation loss only introduced below yields better accuracy.

Distillation loss. For occlusion estimation and semantic segmentation tasks, ground-

truth annotations are not always available. They are important, however, during

network training. For instance, on KITTI, supervised loss can only be computed on

sparsely annotated pixels. Adding extra supervision for occlusion estimation is help-

ful for the network to extrapolate optical flow and disparity estimations to regions

where ground-truth annotations are missing, yielding visually appealing results.

We find the occlusion estimations provided by a pre-trained model on synthetic

data are reasonably good, as shown in Fig. 4.3. As a soft supervision, we encourage the

occlusion estimations of the network during training do not deviate much from what

it learned in the pre-training stage. Therefore, we simply use the estimations of a pre-
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trained network as pseudo ground-truth and smooth l1 loss function during training,

computed in multiple pyramid levels as LF and LD. Adding extra supervision using

distillation loss for occlusion is helpful for reducing artifacts in disparity estimation,

as shown in Fig. 4.3.

For semantic segmentation, we use the distillation loss formulation proposed in [39].

Specifically, semantic segmentation distillation loss LSd
for a single pixel p (omitted

here for simplicity) is defined as

LSd
= T

C∑
i=1

ỹi log ŷi, ỹi =
exp−zi/T∑
k exp−zk/T

, (4.3)

where C is the number of segmentation categories. zi and ỹi come from a more

powerful teacher segmentation model, where zi is the output for the i-th category right

before the softmax layer, also known as logit. ỹi is “softened” posterior probability

for the i-th category, controlled by the hyper-parameter T [39]. We empirically found

T = 1 works well on a validation set. ŷi is the estimated posterior probability of our

model. The distillation is aggregated over all pixels in training images.

Self-supervised loss. To further constrain the network training, we also define self-

supervised loss. Optical flow and disparity are defined as correspondence between

two input images. We can therefore compare two corresponding pixels defined by

either optical flow or disparity as supervision for network training.

The most straightforward metric is to compare values between two corresponding

pixels that are visible in both frames, known as photometric consistency. In a single

pyramid level, it is defined as LPC =

‖Il−g(Ir,Dl)‖1�ŌD+‖I1−g(I2,F1)‖1�ŌF , (4.4)

where g(·, ·) is the differentiable warping function, Ō = 1−O, � denotes element-

wise multiplication followed by summation, and we omit some superscripts when the
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context is clear. This loss term reasons about occlusion by modulating the consistency

loss using the occlusion map and tightly couples occlusion with optical flow and stereo.

As photometric consistency is not robust to lighting changes, we further introduce

semantic consistency, encouraging two corresponding pixels to have similar semantic

segmentation posterior probability. Specifically, this semantic consistency is defined

as LSC =

‖ỹl−g(ỹr,Dl)‖1�ŌD+‖ỹ1−g(ỹ2,F1)‖1�ŌF , (4.5)

where ỹ denotes a posterior probability image coming from the teacher segmenta-

tion network used in Eq.(4.3). Unlike raw pixel values, the segmentation posterior

probability is more robust to lighting changes.

Finally, we consider the structural similarity loss

LSS =γD
(
1−SS(Il, Il ⊗OD + g(Ir,Dl)⊗ ŌD)

)
+

γF
(
1−SS(I1, I1 ⊗OF + g(I2,F1)⊗ ŌF )

)
, (4.6)

where ⊗ indicates element-wise multiplications only. SS(·, ·) is a differentiable func-

tion that outputs a single scalar value to measure the structural similarity between

two input images [167]. Note that for occluded pixels in the warped image, their

values are replaced with values of pixels at the same position in the left/first image.

There exist trivial solutions for minimizing Eq.(4.4) and Eq.(4.5) by setting OD

and OF to all ones. We thus add regularization terms

LREG = βD
∑
p

OD(p) + βF
∑
p

OF (p), (4.7)

Although the self-supervised photometric and structural similarity loss terms have

been studied in previous work [55, 35], our definition differs from theirs in that we
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model occlusions. On one hand, we avoid defining loss terms in the occluded regions.

On the other hand, these self-supervised terms provide modulation for the occlusion

estimation as well. Thus, our networks tightly couple these four closely-related tasks

together.

Our final semi-supervised loss consists of supervised, distillation, and self-supervised

loss terms. More details can be found in the supplementary material.

4.3.3 Rigidity-based Warped Disparity Refinement for Scene Flow Esti-

mation

Determine rigidity area. Given the estimated semantic segmentation labels of

the first left frame S1,l, we select pixels as static rigid regions by removing pixels

which have a semantic label of vehicle, pedestrian, cyclist, or sky. This step gives

a conservative selection of static regions with points not at infinity. The output is

a binary mask B with the label 1 indicating static rigid region. Since the semantic

segmentation can be inaccurate at object boundary, we further perform an erosion

operation with a size of 10 on the static rigid region mask B.

Estimate rigid flow induced by camera motion. Given the estimated flow F1

and disparity D1 of the left frame, we calculate the ego-motion flow induced by the

rigid camera motion by minimizing the weighted errors between predicted rigid flow

F1
R and optical flow F1 in the background region pixels x ∈ R2:

arg min
ξ

rT (ξ; x)Wr(ξ; x) (4.8)

r(ξ; x) = F1(x)− F1
R(ξ; x) (4.9)

F1
R(ξ; x) =W(ξ; x,D1(x))− x (4.10)

where x ∈ R2 denotes the pixels in 2D image space which are within the rigid

areas B. W(ξ; x,D1) is the warping function which transforms the pixels x and
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its corresponding disparity D1(x) with an estimated transform ξ ∈ SE(3). W is a

diagonal weight matrix that depends on residuals using Huber weight function.

We solve equation 4.8 as an iteratively reweighted least-square problem using

Gauss-Newton update:

δξ = (JTWJ)−1JTWr (4.11)

ξ = ξ ◦ δξ (4.12)

where ◦ indicates the right composition of ξ ∈ SE(3). J is the Jacobian matrix of

∂F1
R(ξ)/∂ξ.

Suppose K is the intrinsic matrix for a pin-hole camera without distortion, which

can be parameterized as (fx, fy, cx, cy) with fx, fy as its focal length and cx, cy as its

offset along the two axes. The baseline of the stereo pair is b. We define the 3D point

p = (px, py, pz) as p = (fxb/D
1(x))K−1x. Through chain-rule, we can derive the

analytical form of the Jacobian matrix J. To simplify the computation, we use the

inverse depth parameterization p = (pu/pd, pv/pd, 1/pd) in which x = (pu, pv) ∈ R2 is

the pixel of coordinate of x and pd is the inverse depth as pd = D1(x)/(fxb). Thus,

we obtain the Jacobian matrix at a pixel x as:

 −pupvfx (1 + p2u)fx −pvfx pdfx 0 −pupdfx

−(1 + p2v)fy pupvfy pufy 0 pdfy −pupdfy

 (4.13)

We perform the Gauss-Newton update if the absolute residual error is bigger than

10−6 with a maximum of 20 iterations. All operations are implemented in Pytorch

and executed in GPU. The running time of the total optimization varies between

0.03s and 0.2s, according to the number of iterations. In average, the optimization

step takes 0.1s for KITTI image of resolution 375x1242.
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The final optical flow F is an element-wise linear composition of F1 and F1
R as:

F = (1−B)⊗ F1 + B⊗ F1
R (4.14)

where ⊗ indicates element-wise multiplications.

Estimate warped second frame rigid disparity. Given the estimated optimal

ξ?, we define the disparity D1→2
W,R of the second frame warped from the first frame

following the optimal rigid transform ξ?:

D1→2
W,R =W1→2

D (ξ?; D1) (4.15)

where W1→2
D (·) defines the disparity channel output from the warping function W(·)

through a forward warping. Given the forward optical flow F1, the warped disparity

of the second frame can be computed through an inverse warping W2→1
D as:

D2→1
W =W2→1

D (F1,D2) (4.16)

We find that the disparity through forward warping D1→2
W,R gives more accurate

disparity in static region and can better handle occlusions. The final warped disparity

D2
W is a element-wise linear composition of D2→1

W and D1→2
W,R as:

D2
W = (1−B)⊗D2→1

W + B⊗D1→2
W,R (4.17)

Note that both warping function cannot deal with out-of-boundary pixels due

to two-view occlusion. This can be resolved by the additional refinement network

detailed in the following section.
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4.4 Experiments

4.4.1 Implementation Details

We perform pre-training on the synthetic SceneFlow dataset and fine-tuning on

Sintel and KITTI, respectively.

Synthetic SceneFlow Dataset. We use the subset of FlyingThings3D used in [49],

Monkaa, and Driving for pre-training. We remove images whose maximum optical

flow magnitude is greater than 500. We end up using 128,753 samples for training.

Supervised training is performed for the pre-training with ground-truth annota-

tions of optical flow, disparity, and their associated occlusions. The loss function is

defined as

Lsp = (LF + LOF
) + 0.25× (LD + LOD

) . (4.18)

For Monkaa and Driving, since only optical flow and disparity annotations are avail-

able, we only set LOD
and LOF

to 0 for training data sampled from Monkaa and

Driving.

During training, we use color jittering, including randomly changing gamma value,

changing brightness, changing contrast, and adding Gaussian noise, for both optical

flow and disparity training. Additionally, we use random crops and vertical flips

for stereo training images. The crop size is 256 × 512. For optical flow training

images, we perform extensive data augmentations including random crop, translation,

rotation, zooming, squeezing, and horizontal and vertical flip, where the crop size is

384×640. The network is trained for 100 epochs with a batch size of 8 using the Adam

optimizer [66]. We use synchronized Batch Normalization [154] to ensure there are

enough training samples for estimating Batch Normalization layers’ statistics when

using multiple GPUs. The initial learning rate is 0.001 and decreased by factor of 10

after 70 epochs.
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Sintel. We fine-tune the pre-trained model on Sintel. Sintel training data provides

optical flow, disparity, and their corresponding occlusion annotations. We therefore

use the same loss function as used for the pre-training.

During training, we apply the same color jittering used for pre-training. Similarly

we use random crops and vertical flips for stereo training images with crop size of 384×

768. For optical flow training images, we perform extensive data augmentations as

well including random crop, translation, rotation, zooming, squeezing, and horizontal

and vertical flip, where the crop size is 384× 768.

Synchronized Batch Normalization is used with batch size of 8. The model is

first trained for 500 epochs using the Adam optimizer with an initial learning rate of

0.0005, which is decreased by factor of 2 after every 100 epochs. The weight decay is

0.0004. After 500-epoch training is finished, we keep fine-tuning the model for another

500 epochs using Adam with an initial learning rate of 0.0002, which is decreased by

factor of 2 after every 100 epochs. The weight decay remains 0.0004.

KITTI. On KITTI (including KITTI2012 and KITTI2015), we use both supervised

loss and semi-supervised loss. The final loss is defined as

L = LF + LD︸ ︷︷ ︸
supervised loss

+αO
(
LOFd

+ LODd

)
+ αSd

LSd︸ ︷︷ ︸
distillation loss

+αPCLPC + αSCLSC + LSS + LREG︸ ︷︷ ︸
self-supervised loss

,

(4.19)

where LOFd
and LODd

are distillation loss for optical flow occlusion and disparity oc-

clusion, respectively. They are defined as smooth L1 loss between the pseudo ground-

truth (i.e., estimations from a model pre-trained on synthetic SceneFlow dataset)

and estimations from the model being trained. On the validation set, we empirically

found αO = 0.05, αSd
= 1, αPC = 0.5, αSC = 0.5 work well. For the SSIM loss, we

use γD = 0.005 × CH × CW and γF = 0.01 × CH × CW
2, where CH and CW are

2In our definition of SSIM loss, the function SS(·, ·) gives a single scalar value.

71



Table 4.1: Average EPE results on MPI Sintel optical flow dataset. “-ft” means fine-
tuning on the MPI Sintel training set and the numbers in parentheses are results on
the data the methods have been fine-tuned on.

Methods
Training Test Time

Clean Final Clean Final (s)
FlowFields [4] - - 3.75 5.81 28.0
MRFlow [153] 1.83 3.59 2.53 5.38 480
FlowFieldsCNN [5] - - 3.78 5.36 23.0
DCFlow [155] - - 3.54 5.12 8.60

SpyNet-ft [104] (3.17) (4.32) 6.64 8.36 0.16
FlowNet2 [48] 2.02 3.14 3.96 6.02 0.12
FlowNet2-ft [48] (1.45) (2.01) 4.16 5.74 0.12
LiteFlowNet [45] (1.64) (2.23) 4.86 6.09 0.09
PWC-Net [131] 2.55 3.93 - - 0.03
PWC-Net-ft [131] (1.70) (2.21) 3.86 5.13 0.03
FlowNet3 [49] 2.08 3.94 3.61 6.03 0.07
FlowNet3-ft [49] (1.47) (2.12) 4.35 5.67 0.07

SENSE 1.91 3.78 - - 0.03
SENSE-ft (1.54) (2.05) 3.60 4.86 0.03

crop height and width, respectively. For the regularization term, we empirically set

βF = βD = 0.5.

During training, we use similar color jittering used in pre-training but with a

probability of 0.5. Similarly we use random crops and vertical flips for stereo training

images with crop size of 320 × 768. For optical flow training images, we perform

extensive data augmentations as well including random crop, translation, rotation,

zooming, squeezing, and horizontal and vertical flip, where the crop size is 320× 768.

Synchronized Batch Normalization is used with batch size of 8. The model is

fine-tuned for 1,500 epochs using the Adam optimizer with an initial learning rate of

0.001, which is decreased by factor of 2 at epochs of 400, 800, 1,000, 1200, and 1,400.

The weight decay is 0.0004. Another round of fine-tuning is followed with an initial

learning rate of 0.0002, which is decreased by factor of 2 at epochs of 400, 600, 800,

and 900.
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Table 4.2: Results on the KITTI optical flow dataset. “-ft” means fine-tuning on the
KITTI training set and the numbers in the parenthesis are results on the data the
methods have been fine-tuned on.

Methods
KITTI 2012 KITTI 2015

AEPE AEPE Fl-Noc AEPE Fl-all Fl-all
train test test train train test

FlowFields [4] - - - - - 19.80%
MRFlow [153] - - - - 14.09 % 12.19 %
DCFlow [155] - - - - 15.09 % 14.83 %
SDF [3] - 2.3 3.80% - - 11.01 %
MirrorFlow [47] - 2.6 4.38% - 9.93% 10.29%

SpyNet-ft [104] (4.13) 4.7 12.31% - - 35.07%
FlowNet2 [48] 4.09 - - 10.06 30.37% -
FlowNet2-ft [48] (1.28) 1.8 4.82% (2.30) (8.61%) 10.41 %
LiteFlowNet [45] (1.26) 1.7 - (2.16) (8.16%) 10.24 %
PWC-Net [131] 4.14 - - 10.35 33.67% -
PWC-Net-ft [131] (1.45) 1.7 4.22% (2.16) (9.80%) 9.60%
FlowNet3 [49] 3:69 - - 9.33 - -
FlowNet3-ft [49] (1.19) - 3.45% (1.79) - 8.60%

SENSE 2.55 - - 6.23 23.29% -
SENSE-ft (1.14) 1.5 3.00% (2.01) (9.20%) 8.38%
SENSE-ft+semi (1.18) 1.5 3.03% (2.05) (9.69%) 8.16%

Training semantic segmentation. We jointly train all parts of the entire network,

including pre-trained encoder and decoders for optical flow and disparity, as well as a

randomly initialized segmentation decoder. We empirically found using a randomly

initialized segmentation decoder yields better performance.

For the segmentation distillation loss and semantic consistency loss computation,

we first train the teacher segmentation model. We use the ResNet101-UPerNet [154]

pre-trained on CityScapes [19] using its training set with fine annotations only, which

achieves 75.4% IoU on the validation set. We fine-tune the model on KITTI 2015 [2],

where the segmentation annotations, consistent with CityScapes’ annotation style,

for the left images are provided.
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Table 4.3: Results on KITTI stereo datasets (test set).

Methods
KITTI 2012 KITTI 2015

TimeAll Non-Occ All Non-Occ

Out-All Out-Noc D1-fg D1-all D1-fg D1-all (s)

Content-CNN [84] 3.07 4.29 8.58 4.54 7.44 4.00 1.0
DispNetC [90] - - 4.41 4.34 3.72 4.05 0.06
MC-CNN [163] 2.43 3.63 8.88 3.89 7.64 3.33 67
PBCP [119] 2.36 3.45 8.74 3.61 7.71 3.17 68
Displets v2 [36] 2.37 3.09 5.56 3.43 4.95 3.09 265

GC-Net [65] 1.77 2.30 6.16 2.87 5.58 2.61 0.9
PSMNet [18] 1.49 1.89 4.62 2.32 4.31 2.14 0.41
SegStereo [159] 1.68 2.03 3.70 2.08 4.07 2.25 0.6
FlowNet3 [49] 1.82 - - 2.19 - - 0.07

SENSE 1.77 2.18 3.13 2.33 2.79 2.13 0.06
SENSE+semi 1.73 2.16 3.01 2.22 2.76 2.05 0.06

4.4.2 Main Results

Optical flow results. Table 4.1 shows the results for optical flow estimation on the

MPI Sintel benchmark dataset. Our approach outperforms CNN-based approaches

without or with fine-tuning. On the more photorealistic (final) pass of the test set,

which involves more rendering details such as lighting change, shadow, motion blur,

etc, our approach outperforms both CNN-based and traditional hand-designed ap-

proaches by a large margin.

Table 4.2 shows the results on both KITTI2012 and KITTI2015. Our approach

significantly outperforms both hand-designed and CNN-based approaches on KITTI

2012 with and without fine-tuning. On KITTI 2015, our model achieves much lower

error rates than CNN-based approaches without pre-training (including ours). After

fine-tuning, it outperforms all other approaches.

We note that better optical flow results are reported in an improved version of

PWC-Net [132], which uses FlyingChairs followed by FlyingThings3D for pre-training.

It also uses much longer learning rate schedules for fine-tuning, so the results are not

directly comparable to ours.
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Table 4.4: Results on KITTI2015 Scene flow dataset. CNN-based approaches need
to deal with refinement of D2, where N and R indicates network and rigidity-based
refinement, respectively.

Method D1-all D2-all Fl-all SF-all D2 ref. Time (s)

ISF [8] 4.46 5.95 6.22 8.08 - 600

CSF [85] 5.98 10.06 12.96 15.71 - 80
SGM+FF[117] 13.37 27.80 22.82 33.57 - 29
SceneFF[118] 6.57 10.69 12.88 15.78 - 65
FlowNet3 [49] 2.16 6.45 8.60 11.34 N 0.25

SENSE 2.23 7.37 8.38 11.71 N 0.16
SENSE+semi 2.22 6.57 8.16 11.35 N 0.16
SENSE+semi 2.22 5.89 7.64 9.55 R+N 0.32

Disparity results. For disparity estimation, SENSE significantly outperforms pre-

vious CNN-based approaches including DispNetC [90] and GC-Net [65] and achieves

comparable accuracy with state-of-the-art approaches like PSMNet [18], SegStereo [159],

and FlowNet3 [49]. Notably, our approach performs the best on the foreground region

in both all and non-occluded regions on KITTI2015.

Scene flow results. Table 4.4 shows Scene flow results on KITTI 2015. SENSE

performs the best in general CNN-based scene flow methods, compared to FlowNet3

[49]. Compared to ISF [8], SENSE is 2K times faster and can handle general nonrigid

scene motions.

To remove artifacts introduced by the second frame disparity warping operation,

we use a refinement network of a encoder-decoder structure with skip connections.

It takes I1,l, O1,l
F , D1,l, and g(D2,l,F1,l) to generate a residual that is added to the

warped disparity. From our holistic outputs, we can refine the background scene flow

using a rigidity refinement step. We first determine the static rigid areas according to

semantic segmentation outputs. We then calculate the ego-motion flow by minimizing

the geometry consistency between optical flow and disparity images using the Gauss-

Newton algorithm. Finally, we compute the warped scene flow using the disparity

of the reference frame and the ego-motion to substitute the raw scene flow only in
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Table 4.5: Effectiveness of different tasks.

Tasks Results

flow disp seg flow (F1-occ) ↓ disp (D1-occ) ↓ seg (mIoU) ↑

X 11.37% - -
X - 2.73% -

X - - 47.51%

X X 11.59% 2.61% -
X X 11.39% - 49.54%

X X - 2.62% 49.12%

X X X 11.19% 2.59% 48.25%

the rigid background region. This step additionally produces camera motion and

better scene flow with minimal costs. Details of refinement steps are provided in

supplementary material.

Running time. SENSE is an efficient model. SENSE takes 0.03s to compute optical

flow between two images of size 436×1024. For disparity, SENSE is an order of

magnitude faster than PSMNet and SegStereo, and slightly faster than FlowNet3.

For scene flow using KITTI images, SENSE takes 0.15s to generate one optical flow

and two disparity maps. The additional warping refinement network takes 0.01s and

the rigidity refinement takes 0.15s.

Model size and memory. SENSE is small in size. It has only 8.8M parameters

for the optical flow model, and 8.3M for the disparity model. The scene flow model

with shared encoder has 13.4M parameters. In contrast, FlowNet3 has a flow model

(117M) and a disparity model (117M), which is 20 times larger. SENSE also has a

low GPU memory footprint. FlowNet3 costs 7.4GB while SENSE needs 1.5GB RAM

only. Although PSMNet has fewer parameters (5.1M), it costs 4.2GB memory due to

3D convolutions.

4.4.3 Ablation Studies

Performance of different tasks. We report results of different tasks using different

combinations of encoder and decoders. Our models are trained using 160 images of
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Table 4.6: Ablation study of different loss terms.

Distillation Self-supervised Flow Disp Seg

seg. occ. sem. pho. ss F1-Occ↓ D1-Occ↓ mIoU↑

11.16% 2.52% -

X 10.96% 2.44% 51.48%
X 11.07% 2.38% -

X X 11.17% 2.33% 51.26%

X 11.11% 2.38% -
X 11.04% 2.55% -

X 11.16% 2.47% -
X X X 11.21% 2.58% -

X X X X X 11.12% 2.49% 50.92%

KITTI 2015 with a half of the aforementioned learning rate schedule. Results are

reported on the rest 40 images in Table 4.5. We can see that the shared encoder

model performs better than models trained separately.

Semi-supervised loss. To study the effects of distillation and self-supervised loss

terms, we perform ablation studies using all images of KITTI 2012 and 160 images of

KITTI 2015 for training with a half of full learning rate schedule. The rest 40 ones

of KITTI 2015 are used for testing. We finetune the baseline model using sparse flow

and disparity annotations only. Table 4.6 shows the quantitative comparisons and

Fig. 4.4 highlights the effects qualitatively.

Regarding distillation loss, both segmentation and occlusion distillation loss terms

are useful for disparity and optical flow estimation. However, distillation loss is not

helpful for reducing the artifacts in sky regions. Thus, the self-supervised loss is

essential, as shown in Fig. 4.4, though quantitatively self-supervised loss is not as

effective as the distillation loss. Finally, combining all loss terms yields the best optical

flow and disparity accuracies. We also test SENSE trained using semi-supervised loss

on KITTI, as summarized in Tables 4.2, 4.3, and 4.4. We can see it improves disparity

and optical flow accuracy on KITTI 2015 and also leads to better disparity on KITTI

2012.
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4.5 Conclusion
We have presented a compact network for four closely-related tasks in holistic scene

understanding: Sharing an encoder among these tasks not only makes the network

compact but also improves performance by exploiting the interactions among these

tasks. It also allows us to introduce distillation and self-supervision losses to deal

with partially labeled data. Our holistic network has similar accuracy and running

time as specialized networks for optical flow. It performs favorably against state-

of-the-art disparity and scene flow methods while being much faster and memory

efficient. Our work shows the benefits of synergizing closely-related tasks for holistic

scene understanding and we hope the insights will aid new research in this direction.
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CHAPTER 5

SUPER SLOMO: HIGH QUALITY ESTIMATION OF
MULTIPLE INTERMEDIATE FRAMES FOR VIDEO

INTERPOLATION

5.1 Overview

There are many memorable moments in your life that you might want to record

with a camera in slow-motion because they are hard to see clearly with your eyes: the

first time a baby walks, a difficult skateboard trick, a dog catching a ball, etc. While

it is possible to take 240-fps (frame-per-second) videos with a cell phone, professional

high-speed cameras are still required for higher frame rates. In addition, many of the

moments we would like to slow down are unpredictable, and as a result, are recorded

at standard frame rates. Recording everything at high frame rates is impractical–it

requires large memories and is power-intensive for mobile devices.

Thus it is of great interest to generate high-quality slow-motion video from existing

videos. In addition to transforming standard videos to higher frame rates, video

interpolation can be used to generate smooth view transitions. It also has intriguing

new applications in self-supervised learning, serving as a supervisory signal to learn

optical flow from unlabeled videos [79, 80].

It is challenging to generate multiple intermediate video frames because the frames

have to be coherent, both spatially and temporally. For instance, generating 240-fps

videos from standard sequences (30-fps) requires interpolating seven intermediate

frames for every two consecutive frames. A successful solution has to not only cor-

rectly interpret the motion between two input images (implicitly or explicitly), but
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also understand occlusions. Otherwise, it may result in severe artifacts in the inter-

polated frames, especially around motion boundaries.

Existing methods mainly focus on single-frame video interpolation and have achieved

impressive performance for this problem setup [79, 80, 96, 97]. However, these meth-

ods cannot be directly used to generate arbitrary higher frame-rate videos. While it

is an appealing idea to apply a single-frame video interpolation method recursively

to generate multiple intermediate frames, this approach has at least two limitations.

First, recursive single-frame interpolation cannot be fully parallelized, and is therefore

slow, since some frames cannot be computed until other frames are finished (e.g., in

seven-frame interpolation, frame 2 depends on 0 and 4, while frame 4 depends on 0

and 8). Errors also accumulates during recursive interpolation. Second, it can only

generate 2i−1 intermediate frames (e.g., 3, 7). As a result, one cannot use this ap-

proach (efficiently) to generate 1008-fps video from 24-fps, which requires generating

41 intermediate frames.

In this chapter we present a high-quality variable-length multi-frame interpolation

method that can interpolate a frame at any arbitrary time step between two frames.

Our main idea is to warp the input two images to the specific time step and then

adaptively fuse the two warped images to generate the intermediate image, where

the motion interpretation and occlusion reasoning are modeled in a single end-to-end

trainable network. Specifically, we first use a flow computation CNN to estimate

the bi-directional optical flow between the two input images, which is then linearly

fused to approximate the required intermediate optical flow in order to warp input

images. This approximation works well in smooth regions but poorly around motion

boundaries. We therefore use another flow interpolation CNN to refine the flow

approximations and predict soft visibility maps. By applying the visibility maps to

the warped images before fusion, we exclude the contribution of occluded pixels to

the interpolated intermediate frame, reducing artifacts. The parameters of both our
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flow computation and interpolation networks are independent of the specific time step

being interpolated, which is an input to the flow interpolation network. Thus, our

approach can generate as many intermediate frames as needed in parallel,

To train our network, we collect 240-fps videos from YouTube and hand-held

cameras [127]. In total, we have 1.1K video clips, consisting of 300K individual video

frames with a typical resolution of 1080×720. We then evaluate our trained model on

several other independent datasets that require different numbers of interpolations, in-

cluding the Middlebury [6], UCF101 [123], slowflow dataset [54], and high-frame-rate

MPI Sintel [54]. Experimental results demonstrate that our approach significantly

outperforms existing methods on all datasets. We also evaluate our unsupervised

(self-supervised) optical flow results on the KITTI 2012 optical flow benchmark [32]

and obtain better results than the recent method [79].

5.2 Related Work

Video interpolation. The classical approach to video interpolation is based on

optical flow [38, 7], and interpolation accuracy is often used to evaluate optical flow

algorithms [6, 133]. Such approaches can generate intermediate frames at arbitrary

times between two input frames. Our experiments show that state-of-the-art optical

flow method [48], coupled with occlusion reasoning [6], can serve as a strong baseline

for frame interpolation. However, motion boundaries and severe occlusions are still

challenging to existing flow methods [17, 32], and thus the interpolated frames tend

to have artifacts around boundaries of moving objects. Furthermore, the intermedi-

ate flow computation (i.e., flow interpolation) and occlusion reasoning are based on

heuristics and not end-to-end trainable.

Mahajan et al. [88] move the image gradients to a given time step and solve

a Poisson equation to reconstruct the interpolated frame. This method can also

generate multiple intermediate frames, but is computationally expensive because of
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the complex optimization problems. Meyer et al. [93] propose propagating phase

information across oriented multi-scale pyramid levels for video interpolation. While

achieving impressive performance, this method still tends to fail for high-frequency

contents with large motions.

The success of deep learning in high-level vision tasks has inspired numerous deep

models for low-level vision tasks, including frame interpolation. Long et al. [80] use

frame interpolation as a supervision signal to learn CNN models for optical flow.

However, their main target is optical flow and the interpolated frames tend to be

blurry. Niklaus et al. [96] consider the frame interpolation as a local convolution

over the two input frames and use a CNN to learn a spatially-adaptive convolution

kernel for each pixel. Their method obtains high-quality results. However, it is both

computationally expensive and memory intensive to predict a kernel for every pixel.

Niklaus et al. [97] improve the efficiency by predicting separable kernels. But the

motion that can be handled is limited by the kernel size (up to 51 pixels). Liu et

al. [79] develop a CNN model for frame interpolation that has an explicit sub-network

for motion estimation. Their method obtains not only good interpolation results but

also promising unsupervised flow estimation results on KITTI 2012. However, as

discussed previously, these CNN-based single-frame interpolation methods [96, 97, 79]

are not well-suited for multi-frame interpolation.

Wang et al. [146] investigate to generate intermediate frames for a light field video

using video frames taken from another standard camera as references. In contrast,

our method aims at producing intermediate frames for a plain video and does not

need reference images.

Learning optical flow. State-of-the-art optical flow methods [153, 155] adopt the

variational approach introduce by Horn and Schunck [41]. Feature matching is often

adopted to deal with small and fast-moving objects [14, 109]. However, this approach
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requires the optimization of a complex objective function and is often computationally

expensive. Learning is often limited to a few parameters [74, 114, 128].

Recently, CNN-based models are becoming increasingly popular for learning op-

tical flow between input images. Dosovitskiy et al.[26] develop two network archi-

tectures, FlowNetS and FlowNetC, and show the feasibility of learning the map-

ping from two input images to optical flow using CNN models. Ilg et al. [48] fur-

ther use the FlowNetS and FlowNetC as building blocks to design a larger network,

FlowNet2, to achieve much better performance. Two recent methods have also been

proposed [104, 131] to build the classical principles of optical flow into the network

architecture, achieving comparable or even better results and requiring less compu-

tation than FlowNet2 [48].

In addition to the supervised setting, learning optical flow using CNNs in an

unsupervised way has also been explored. The main idea is to use the predicted

flow to warp one of the input images to another. The reconstruction error serves

as a supervision signal to train the network. Instead of merely considering two

frames [162], a memory module is proposed to keep the temporal information of

a video sequence [102]. Similar to our work, Liang et al. [75] train optical flow via

video frame extrapolation, but their training uses the flow estimated by the EpicFlow

method [109] as an additional supervision signal.

5.3 Proposed Approach

In this section, we first introduce optical flow-based intermediate frame synthesis

in section 5.3.1. We then explain details of our flow computation and flow interpo-

lation networks in section 5.3.2. In section 5.3.3, we define the loss function used to

train our networks.

83



5.3.1 Intermediate Frame Synthesis

Given two input images I0 and I1 and a time t ∈ (0, 1), our goal is to predict the

intermediate image Ît at time T = t. A straightforward way is to accomplish this is

to train a neural network [80] to directly output the RGB pixels of Ît. In order to

do this, however, the network has to learn to interpret not only the motion pattens

but also the appearance of the two input images. Due to the rich RGB color space,

it is hard to generate high-quality intermediate images in this way. Inspired by [6]

and recent advances in single intermediate video frame interpolation [96, 97, 79], we

propose fusing the warped input images at time T = t.

Let Ft→0 and Ft→1 denote the optical flow from It to I0 and It to I1, respectively.

If these two flow fields are known, we can synthesize the intermediate image Ît as

follows:

Ît = α0 � g(I0, Ft→0) + (1− α0)� g(I1, Ft→1), (5.1)

where g(·, ·) is a backward warping function, which can be implemented using bilinear

interpolation [170, 79] and is differentiable. The parameter α0 controls the contribu-

tion of the two input images and depend on two factors: temporal consistency and

occlusion reasoning. � denotes element-wise multiplication, implying content-aware

weighting of input images. For temporal consistency, the closer the time step T = t

is to T = 0, the more contribution I0 makes to Ît; a similar property holds for I1.

On the other hand, an important property of the video frame interpolation problem

is that if a pixel p is visible at T = t, it is most likely at least visible in one of the

input images,1 which means the occlusion problem can be addressed. We therefore

introduce visibility maps Vt←0 and Vt←1. Vt←0(p) ∈ [0, 1] denotes whether the pixel p

1It is a rare case but it may happen that an object appears and disappears between I0 and I1.
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𝑇 = 0 𝑇 = 𝑡 𝑇 = 1

Figure 5.1: Illustration of intermediate optical flow approximation. The orange pixel
borrows optical flow from pixels at the same position in the first and second images.

remains visible (0 is fully occluded) when moving from T = 0 to T = t. Combining

the temporal consistency and occlusion reasoning, we have

Ît=
1

Z
�
(
(1−t)Vt←0�g(I0, Ft→0)+tVt←1�g(I1, Ft→1)

)
,

where Z = (1− t)Vt→0 + tVt→1 is a normalization factor.

5.3.2 Arbitrary-time Flow Interpolation

Since we have no access to the target intermediate image It, it is hard to compute

the flow fields Ft→0 and Ft→1. To address this issue, we can approximately synthesize

the intermediate optical flow Ft→0 and Ft→1 using the optical flow between the two

input images F0→1 and F1→0.

Consider the toy example shown in Fig. 5.1, where each column corresponds to a

certain time step and each dot represents a pixel. For the orange dot p at T = t, we

are interested in synthesizing its optical flow to its corresponding pixel at T = 1 (the

blue dashed arrow). One simple way is to borrow the optical flow from the same grid
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positions at T = 0 and T = 1 (blue and red solid arrows), assuming that the optical

flow field is locally smooth. Specifically, Ft→1(p) can be approximated as

F̂t→1(p) = (1− t)F0→1(p) (5.2)

or

F̂t→1(p) = −(1− t)F1→0(p), (5.3)

where we take the direction of the optical flow between the two input images in the

same or opposite directions and scale the magnitude accordingly ((1 − t) in (5.3)).

Similar to the temporal consistency for RGB image synthesis, we can approximate

the intermediate optical flow by combining the bi-directional input optical flow as

follows (in vector form).

F̂t→0 = −(1− t)tF0→1 + t2F1→0

F̂t→1 = (1− t)2F0→1 − t(1− t)F1→0. (5.4)

This approximation works well in smooth regions but poorly around motion

boundaries, because the motion near motion boundaries is not locally smooth. To re-

duce artifacts around motion boundaries, which may cause poor image synthesis, we

propose learning to refine the initial approximation. Inspired by the cascaded archi-

tecture for optical flow estimation in [48], we train a flow interpolation sub-network.

This sub-network takes the input images I0 and I1, the optical flows between them

F0→1 and F0→1, the flow approximations F̂t→0 and F̂0→1, and two warped input im-

ages using the approximated flows g(I0, F̂t→0) and g(I1, F̂t→1) as input, and outputs

refined intermediate optical flow fields Ft→1 and Ft→0. Sample interpolation results

are displayed in Figure 5.2.
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I0 F0→1 F1→0

It F̂t→1 F̂t→0

I1 Ft→1 Ft→0

‖Ft→1 − F̂t→1‖2 ‖Ft→0 − F̂t→0‖2

Figure 5.2: Samples of flow interpolation results, where t = 0.5. The entire scene
is moving toward the left (due to camera translation) and the motorcyclist is in-
dependently moving left. The last row shows that the refinement from our flow
interpolation CNN is mainly around the motion boundaries (the whiter a pixel, the
bigger the refinement).

As discussed in Section 5.3.1, visibility maps are essential to handle occlusions.

Thus, We also predict two visibility maps Vt←0 and Vt←1 using the flow interpolation

CNN, and enforce them to satisfy the following constraint

Vt←0 = 1− Vt←1. (5.5)
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I0 I1

Ft→0 Ft→1

g(I0, Ft→0) g(I1, Ft→1)

Vt←0 Vt←1

Ît Ît w/o visibility maps
PSNR=30.23 PSNR=30.06

Figure 5.3: Samples of predicted visibility maps (best viewed in color), where t=0.5.
The arms move downwards from T = 0 to T = 1. So the area right above the arm at
T =0 is visible at t but the area right above the arm at T =1 is occluded (i.e., invisible)
at t. The visibility maps in the fourth row clearly show this phenomenon. The white
area around arms in Vt←0 indicate such pixels in I0 contribute most to the synthesized
Ît while the occluded pixels in I1 have little contribution. Similar phenomena also
happen around motion boundaries (e.g., around bodies of the athletes).
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Without such a constraint, the network training diverges. Intuitively, Vt←0(p) = 0

implies Vt←1(p) = 1, meaning that the pixel p from I0 is occluded at T = t, we should

fully trust I1 and vice versa. Note that it rarely happens that a pixel at time t is

occluded both at time 0 and 1. Since we use soft visibility maps, when the pixel p is

visible both in I0 and I1, the network learns to adaptively combine the information

from two images, similarly to the matting effect [111]. Samples of learned visibility

maps are shown in the fourth row of Fig. 5.3.

In order to do flow interpolation, we need to first compute the bi-directional optical

flow between the two input images. Recent advances in deep learning for optical flow

have demonstrated great potential to leverage deep CNNs to reliably estimate optical

flow. In this chapter, we train a flow computation CNN, taking two input images I0

and I1, to jointly predict the forward optical flow F0→1 and backward optical flow

F1→0 between them.
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Figure 5.4: Network architecture of our approach.

Our entire network is summarized in Fig. 5.4. For the flow computation and flow

interpolation CNNs, we adopt the U-Net architecture [112]. The U-Net is a fully

convolutional neural network, consisting of an encoder and a decoder, with skip con-

nections between the encoder and decoder features at the same spatial resolution For
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Figure 5.5: Illustration of the architecture of our flow computation and flow interpo-
lation CNNs.

both networks, we have 6 hierarchies in the encoder, consisting of two convolutional

and one Leaky ReLU (α= 0.1) layers. At the end of each hierarchy except the last

one, an average pooling layer with a stride of 2 is used to decrease the spatial dimen-

sion. There are 5 hierarchies in the decoder part. At the beginning of each hierarchy,

a bilinear upsampling layer is used to increase the spatial dimension by a factor of 2,

followed by two convolutional and Leaky ReLU layers.

For the flow computation CNN, it is crucial to have large filters in the first few

layers of the encoder to capture long-range motion. We therefore use 7× 7 kernels in

the first two convoluional layers and 5× 5 in the second hierarchy. For layers in the

rest of entire network, we use 3× 3 convolutional kernels. The detailed configuration

of the network is described in Fig. 5.5.

We found concatenating output of the encoders in two networks together as in-

put to the decoder of the flow interpolation network yields slightly better results.
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Moreover, instead of directly predicting the intermediate optical flow in the flow

interpolation network, we found it performs slightly better to predict intermediate

optical flow residuals. In specific, the flow interpolation network predicts ∆Ft→0 and

∆Ft→1. We then have

Ft→0 = F̂t→0 + ∆Ft→0

Ft→1 = F̂t→1 + ∆Ft→1 (5.6)

5.3.3 Training

Given input images I0 and I1, a set of intermediate frames {Iti}Ni=1 between them,

where ti ∈ (0, 1), and our predictions of intermediate frames {Îti}Ni=1, our loss function

is a linear combination of four terms:

l = λrlr + λplp + λwlw + λsls. (5.7)

Reconstruction loss lr models how good the reconstruction of the intermediate

frames is:

lr =
1

N

N∑
i=1

‖Îti − Iti‖1. (5.8)

Such a reconstruction loss is defined in the RGB space, where pixel values are in the

range [0, 255].

Perceptual loss. Even though we use the L1 loss to model the reconstruction error

of intermediate frames, it might still cause blur in the predictions. We therefore use

a perceptual loss [64] to preserve details of the predictions and make interpolated

frames sharper, similar to [97]. Specifically, the perceptual loss lp is defined as

lp =
1

N

N∑
i=1

‖φ(Ît)− φ(It)‖2, (5.9)

91



where φ denote the conv4 3 features of an ImageNet pre-trained VGG16 model [122]

Warping loss. Besides intermediate predictions, we also introduce the warping

loss lw to model the quality of the computed optical flow, defined as

lw =‖I0−g(I1, F0→1)‖1+‖I1−g(I0, F1→0)‖1+ (5.10)

1

N

N∑
i=1

‖Iti−g(I0, F̂ti→0)‖1+
1

N

N∑
i=1

‖Iti−g(I1, F̂ti→1)‖1.

Smoothness loss. Finally, we add a smoothness term [79] to encourage neighboring

pixels to have similar flow values:

ls = ‖∇F0→1‖1 + ‖∇F1→0‖1. (5.11)

The weights have been set empirically using a validation set as λr=0.8, λp=0.005, λw=

0.4, and λs=1. Every component of our network is differentiable, including warping

and flow approximation. Thus our model can be end-to-end trained.

Table 5.1: Statistics of dataset we use to train our network.

Adobe240-fps [127] YouTube240-fps
#video clips 118 1,014
#video frames 79,768 296,352
mean #frames per clip 670.3 293.1
resolution 720p 720p

5.4 Experiments

5.4.1 Dataset

To train our network, we use the 240-fps videos from [127], taken with hand-held

cameras. We also collect a dataset of 240-fps videos from YouTube. Table 5.1 sum-

marizes the statistics of the two datasets and Fig. 5.6 shows a snapshot of randomly
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Adobe240-fps

YouTube240-fps

Figure 5.6: Snapshot of our training data.

sampled video frames. In total, we have 1,132 video clips and 376K individual video

frames. There are a great variety of scenes in both datasets, from indoor to outdoor,

from static to moving cameras, from daily activities to professional sports, etc.

We train our network using all of our data and test our model on several inde-

pendent datasets, including the Middlebury benchmark [6], UCF101 [123], slowflow

dataset [54], and high-frame-rate Sintel sequences [54]. For Middlebury, we submit

our single-frame video interpolation results of eight sequences to its evaluation server.

For UCF101, in every triple of frames, the first and third ones are used as input to

predict the second frame using 379 sequences provided by [79]. The slowflow dataset

contains 46 videos taken with professional high-speed cameras. We use the first and

eighth video frames as input, and interpolate intermediate 7 frames, equivalent to
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Table 5.2: Effectiveness of multi-frame video interpolation on the Adobe240-fps
dataset.

PSNR SSIM IE

1 interp 30.26 0.909 8.85
3 interp 31.02 0.917 8.43
7 interp 31.19 0.918 8.30

converting a 30-fps video to a 240-fps one. The original Sintel sequences [17] were

rendered at 24 fps. 13 of them were re-rendered at 1008 fps [54]. To convert from

24-fps to 1008-fps using a video frame interpolation approach, one needs to insert 41

in-between frames. However, as discussed in the introduction, it is not directly possi-

ble with recursive single-frame interpolation methods [96, 97, 79] to do so. Therefore,

we instead predict 31 in-between frames for fair comparisons with previous methods.

Our network is trained using the Adam optimizer [66] for 500 epochs. The learning

rate is initialized to be 0.0001 and decreased by a factor of 10 every 200 epochs. During

training, all video clips are first divided into shorter ones with 12 frames in each and

there is no overlap between any of two clips. For data augmentation, we randomly

reverse the direction of entire sequence and select 9 consecutive frames for training.

On the image level, each video frame is resized to have a shorter spatial dimension of

360 and a random crop of 352× 352 plus horizontal flip are performed.

For evaluation, we report Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-

ilarity Index (SSIM) scores between predictions and ground-truth in-between video

frames, as well as the interpolation error (IE) [6], which is defined as root-mean-

squared (RMS) difference between the ground-truth image and the interpolated im-

age.
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Table 5.3: Effectiveness of different components of our model on the Adobe240-fps
dataset.

PSNR SSIM IE

w/o flow interpolation 30.34 0.908 8.93
w/o vis map 31.16 0.918 8.33
w/o perceptual loss 30.96 0.916 8.50
w/o warping loss 30.52 0.910 8.80
w/o smoothness loss 31.19 0.918 8.26

full model 31.19 0.918 8.30

5.4.2 Ablation Studies

In this section, we perform ablation studies to analyze our model. For the first

two experiments, we randomly sampled 107 videos from Adobe240-fps dataset for

training and the remaining 12 ones for testing.

Effectiveness of multi-frame video interpolation. We first test whether jointly

predicting several in-between frames improves the video interpolation results. Intu-

itively, predicting a set of in-between frames together might implicitly enforce the

network to generate temporally coherent sequences.

To this end, we train three variants of our model: predicting intermediate single,

three, and seven frames, which are all evenly distributed across time steps. At test

time, we use each model to predict seven in-between frames. Table 5.2 clearly demon-

strates that the more intermediate frames we predict during training, the better the

model is.

Impact of different components design. We also investigate the contribution of

each component in our model. In particular, we study the impact of flow interpo-

lation by removing the flow refinement from the second U-Net (but keep using the

visibility maps). We further study the use of visibility maps as means of occlusion

reasoning. We can observe from Table 5.3 that removing each of three components

harms performance. Particularly, the flow interpolation plays a crucial role, which
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Figure 5.7: Performance comparisons on each sequence of the Middlebury dataset.
Numbers are obtained from the Middlebury evaluation server.

Table 5.4: Results on the UCF101 dataset.

PSNR SSIM IE

Phase-Based [93] 32.35 0.924 8.84
FlowNet2 [6, 48] 32.30 0.930 8.40
DVF [79] 32.46 0.930 8.27
SepConv [97] 33.02 0.935 8.03

Ours (Adobe240-fps) 32.84 0.935 8.04
Ours 33.14 0.938 7.80

verifies our motivation to introduce the second learned network to refine intermedi-

ate optical flow approximations. Adding visibility maps improves the interpolation

performance slightly. Without it, there are artifacts generated around motion bound-

aries, as shown in Figure 5.3. Both of these validate our hypothesis that jointly

learning motion interpretation and occlusion reasoning helps video interpolation.

We also study different loss terms, where the warping loss is the most important

one. Although adding the smoothness terms slightly hurts the performance quantita-

tively, we fount it is useful to generate visually appealing optical flow between input

images.
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Table 5.5: Results on the slowflow dataset.

PSNR SSIM IE

Phase-Based [93] 31.05 0.858 8.21
FlowNet2 [6, 48] 34.06 0.924 5.35
SepConv [97] 32.69 0.893 6.79

Ours 34.19 0.924 6.14

Table 5.6: Results on the high-frame-rate Sintel dataset.

PSNR SSIM IE

Phase-Based [93] 28.67 0.840 10.24
FlowNet2 [6, 48] 30.79 0.922 5.78
SepConv [97] 31.51 0.911 6.61

Ours 32.38 0.927 5.42

Impact of the number of training samples. Finally, we investigate the effect

of the number of training samples. We compare two models: one trained on the

Adobe240-fps dataset only and the other one trained on our full dataset. The per-

formance of these two models on the UCF101 dataset can be found in last two rows

Table 5.4. We can see that our model benefits from more training data.

5.4.3 Comparison with state-of-the-art methods

In this section, we compare our approach with state-of-the-art methods including

phase-based interpolation [93], separable adaptive convolution (SepConv) [97], and

deep voxel flow (DVF) [79]. We also implement a baseline approach using the in-

terpolation algorithm presented in [6], where we use FlowNet2 [48] to compute the

bi-directional optical flow results between two input images. FlowNet2 is good at

capturing global background motion and recovering sharp motion boundaries for the

optical flow. Thus, when coupled with occlusion reasoning [6], FlowNet2 serves as a

strong baseline.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.8: Visual results of a sample from UCF101. Our model produces less artifacts
around the brush and the hand (best viewed in color). Please see the supplementary
material for more image and video results. From left to right: (a) two input images,
(b) actual in-between, (c) PhaseBased [93], (d) FlowNet2 [6, 48], (e) DVF [79], (f)
SepConv [97], and (g) ours.

Single-frame video interpolation. The interpolation error (IE) scores on each se-

quence form the Middlebury dataset are shown in Figure 5.7. In addition to SepConv,

we also compare our model with other three top-performing models on the Middle-

bury dataset2, where the interpolation algorithm [6] is coupled with different optical

flow methods including MDP-Flow2 [156], PMMST [164], and DeepFlow [151]. Our

model achieves the best performance on 6 out of all 8 sequences. Particularly, the

Urban sequence is generated synthetically and the Teddy sequence contains actually

two stereo pairs. The performance of our model validates the generalization ability

of our approach.

On UCF101, we compute all metrics using the motion masks provided by [79]. The

quantitative results are shown in Table 5.4, highlighting the performance of each inter-

polation model’s capacity to deal with challenging motion regions. Our model consis-

tently outperforms both non-neural [93] and CNN-based approaches [97, 79]. Sample

interpolation results on a sample from UCF101 can be found at Figure 5.8. More re-

2http://vision.middlebury.edu/flow/eval/results/results-i1.php
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Figure 5.9: Visual comparisons on the UCF101 dataset. (a) Ground truth in-between
frame, interpolation results from (b) PhaseBased [93], (c) FlowNet2 [38, 48], (d)
SepConv [97], (e) DVF [79], and (f) Ours.
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(a) (b) (c)

(f)(e)(d)

Figure 5.10: Visual comparisons on the UCF101 dataset. (a) Ground truth in-between
frame, interpolation results from (b) PhaseBased [93], (c) FlowNet2 [38, 48], (d)
SepConv [97], (e) DVF [79], and (f) Ours.
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Figure 5.11: PSNR at each time step when generating 31 intermediate frames on the
high-frame-rate Sintel dataset.

sults can be found in Figure 5.9 and Figure 5.10. For more visual comparisons, please

refer to our supplementary video http://jianghz.me/projects/superslomo/superslomopublic.mp4.

Multi-frame video interpolation. For the slowflow dataset, we predict 7 in-

between frames. All experiments are performed on the half-resolution images with a

spatial dimension of 1280 × 1024. On this dataset, our approach achieves the best

PSNR and SSIM scores and FlowNet2 achieves the best SSIM and L1 error scores.

FlowNet2 is good at capturing global motions and thus produces sharp prediction

results on those background regions, which follow a global motion pattern. Detailed

visual comparisons can be found in our supplementary material.

On the challenging high-frame-rate Sintel dataset, our approach significantly out-

performs all other methods. We also show the PSNR scores at each time step in

Figure 5.11. Our approach produces the best predictions for each in-between time

step except slightly worse than SepConv at the last time step.

In summary, our approach achieves state-of-the-art results over all datasets, gen-

erating single or multiple intermediate frames. It is remarkable, considering the fact

our model can be directly applied to different scenarios without any modification.

101



Table 5.7: Optical flow results on the KITTI 2012 benchmark.

LDOF[14] EpicFlow[109] FlowNetS[26] DVF[79] Ours

EPE 12.4 3.8 9.1 14.6 13.0

5.4.4 Unsupervised Optical Flow

Our video frame interpolation approach has an unsupervised (self-supervised) net-

work (the flow computation CNN) that can compute the bi-directional optical flow

between two input images. Following [79], we evaluate our unsupervised forward op-

tical flow results on the testing set of KITTI 2012 optical flow benchmark [32]. The

average end-point error (EPE) scores of different methods are reported in Table 5.7.

Compared with previous unsupervised method DVF [79], our model achieves an aver-

age EPE of 13.0, an 11% relative improvement. Very likely this improvement results

from the multi-frame video interpolation setting, as DVF [79] has a similar U-Net

architecture to ours.

5.5 Conclusion

We have proposed an end-to-end trainable CNN that can produce as many in-

termediate video frames as needed between two input images. We first use a flow

computation CNN to estimate the bidirectional optical flow between the two input

frames, and the two flow fields are linearly fused to approximate the intermediate

optical flow fields. We then use a flow interpolation CNN to refine the approximated

flow fields and predict soft visibility maps for interpolation. We use more than 1.1K

240-fps video clips to train our network to predict seven intermediate frames. Ablation

studies on separate validation sets demonstrate the benefit of flow interpolation and

visibility map. Our multi-frame approach consistently outperforms state-of-the-art

single frame methods on the Middlebury, UCF101, slowflow, and high-frame-rate Sin-

tel datasets. For the unsupervised learning of optical flow, our network outperforms

the recent DVF method [79] on the KITTI 2012 benchmark.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we investigate dynamic scene understanding and synthesis utilizing

motion cues contained in videos. In Chapter 3, we present an approach where useful

representations of the visual world can be learned from unlabeled videos by having

a (virtual) agent wander around. Chapter 4 introduces a holistic approach to esti-

mate the surrounding’s motion in order for an agent to safely move in the dynamic

world, where multiple tasks are solved simultaneously, leading to more accurate scene

understanding. These two approaches reveal the great potential of training visual

perception models from unlabeled or partially-labeled data. In particular, we believe

that holistic scene understanding is a promising direction, where constraints between

different tasks can be utilized to greatly reduce the reliance on manually labeled data.

Finally, in Chapter 5, we show that missing visual content can be re-created in

a normal-speed video based on the understanding of motion trajectories of pixels,

which enables us to perceive the visual surroundings in a novel manner. This ap-

proach is useful for other applications, such as video compression (by compressing

the key frames only and later synthesizing the intermediate video frames during the

decompression stage), generating videos with motion blur, synthesizing smooth vieo

transitions on a head-mounted virtual reality (VR) device to provide users’ more

authentic experiences, etc.
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6.1 Future Work

We briefly mention three future directions, which extends this thesis, toward un-

derstanding and synthesizing the dynamic visual world.

Holistic 3D Scene Understanding of Dynamics and Interaction. We live in a

3D visual world, which is constantly in motion. My goal is to build a holistic 3D scene

understanding model unifying appearance, geometry, motion, and semantics. Such

holistic model will not only allow us to infer various scene dynamics, including depth,

ego-motion, object motion, semantic parsing, etc, but also incorporate interactions of

agents in the scene. Interactions of agents are crucial for developing intelligence. An

important task for kids to learn in kindergarten, for example, is how to play together

with others. Investigating agents’ interactions is beneficial for applications as well. In

an urban traffic scene, An autonomous driving vehicle must predict intent and motion

trend of other (autonomous) vehicles, pedestrians, and bicyclists/motorcyclists. Such

a 3D holistic scene understanding model will have a huge impact on the advance and

safety of next-generation intelligent systems.

Enhancing Photography Experiences in the Mobile Era. Taking photos has

never been so easy with smartphones. Recording VLOGs (video blogs) and sharing

them on social media is a fashion living style nowadays. It imposes great challenges

as well as opportunities for researchers to improve users’ photography experiences on

cell phones. On the one hand, photos and videos casually shot by non-expert users

are usually less visually appealing. Photos or videos may be tilted and look too dark

or blurry. On the other hand, the latest smartphones are usually equipped with pow-

erful computational resources and cameras, which allow running of powerful visual

perception models to provide instant assistant to users. Following the effort of syn-

thesizing slow-motion videos [62], and from a broader perspective of deep generative

models, I am passionate about developing algorithms that enhance users’ photogra-

104



phy experiences to more easily record and share their daily lives, for example, via

VLOGs.

Toward Understanding Pre-training of Deep CNNs. In our previsou work,

[58] we demonstrated that pre-training of deep CNNs, either self-supervised or super-

vised, leads to better accuracy on a downstream task than a random initialization.

Particularly, when the number of training samples in a downstream task is limited,

such pre-training is critical. We know training of deep CNNs often leads to a rea-

sonably good and stable local minimum. Little is known so far, however, about the

dynamics of the optimization process given different initialization. I am interested

in analyzing the behaviors of such optimizations and furthermore taking inspirations

to design better initialization schemes. After all, pre-trained weights are essentially

equivalent to a better initialization of the CNNs once the pre-training is finished. It is

impactful on broad fields, including machine learning, computer vision, and natural

language processing.
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[101] Pathak, Deepak, Krähenbühl, Philipp, Donahue, Jeff, Darrell, Trevor, and
Efros, Alexei. Context encoders: Feature learning by inpainting. In CVPR
(2016).

[102] Patraucean, Viorica, Handa, Ankur, and Cipolla, Roberto. Spatio-temporal
video autoencoder with differentiable memory. In ICLR, workshop (2016).

[103] Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks.

[104] Ranjan, Anurag, and Black, Michael J. Optical flow estimation using a spatial
pyramid network. In Proc. CVPR (2017).

[105] Ranjan, Anurag, Jampani, Varun, Balles, Lukas, Kim, Kihwan, Sun, Deqing,
Wulff, Jonas, and Black, Michael J. Competitive collaboration: Joint unsu-
pervised learning of depth, camera motion, optical flow and motion segmenta-
tion. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
(2019), pp. 12240–12249.

[106] Ranzato, Marc’Aurelio, Szlam, Arthur, Bruna, Joan, Mathieu, Michaël, Col-
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