482 research outputs found

    Training Group Orthogonal Neural Networks with Privileged Information

    Full text link
    Learning rich and diverse representations is critical for the performance of deep convolutional neural networks (CNNs). In this paper, we consider how to use privileged information to promote inherent diversity of a single CNN model such that the model can learn better representations and offer stronger generalization ability. To this end, we propose a novel group orthogonal convolutional neural network (GoCNN) that learns untangled representations within each layer by exploiting provided privileged information and enhances representation diversity effectively. We take image classification as an example where image segmentation annotations are used as privileged information during the training process. Experiments on two benchmark datasets -- ImageNet and PASCAL VOC -- clearly demonstrate the strong generalization ability of our proposed GoCNN model. On the ImageNet dataset, GoCNN improves the performance of state-of-the-art ResNet-152 model by absolute value of 1.2% while only uses privileged information of 10% of the training images, confirming effectiveness of GoCNN on utilizing available privileged knowledge to train better CNNs.Comment: Proceedings of the IJCAI-1

    Domain Adaptation and Privileged Information for Visual Recognition

    Get PDF
    The automatic identification of entities like objects, people or their actions in visual data, such as images or video, has significantly improved, and is now being deployed in access control, social media, online retail, autonomous vehicles, and several other applications. This visual recognition capability leverages supervised learning techniques, which require large amounts of labeled training data from the target distribution representative of the particular task at hand. However, collecting such training data might be expensive, require too much time, or even be impossible. In this work, we introduce several novel approaches aiming at compensating for the lack of target training data. Rather than leveraging prior knowledge for building task-specific models, typically easier to train, we focus on developing general visual recognition techniques, where the notion of prior knowledge is better identified by additional information, available during training. Depending on the nature of such information, the learning problem may turn into domain adaptation (DA), domain generalization (DG), leaning using privileged information (LUPI), or domain adaptation with privileged information (DAPI).;When some target data samples are available and additional information in the form of labeled data from a different source is also available, the learning problem becomes domain adaptation. Unlike previous DA work, we introduce two novel approaches for the few-shot learning scenario, which require only very few labeled target samples, and even one can be very effective. The first method exploits a Siamese deep neural network architecture for learning an embedding where visual categories from the source and target distributions are semantically aligned and yet maximally separated. The second approach instead, extends adversarial learning to simultaneously maximize the confusion between source and target domains while achieving semantic alignment.;In complete absence of target data, several cheaply available source datasets related to the target distribution can be leveraged as additional information for learning a task. This is the domain generalization setting. We introduce the first deep learning approach to address the DG problem, by extending a Siamese network architecture for learning a representation of visual categories that is invariant with respect to the sources, while imposing semantic alignment and class separation to maximize generalization performance on unseen target domains.;There are situations in which target data for training might come equipped with additional information that can be modeled as an auxiliary view of the data, and that unfortunately is not available during testing. This is the LUPI scenario. We introduce a novel framework based on the information bottleneck that leverages the auxiliary view to improve the performance of visual classifiers. We do so by introducing a formulation that is general, in the sense that can be used with any visual classifier.;Finally, when the available target data is unlabeled, and there is closely related labeled source data, which is also equipped with an auxiliary view as additional information, we pose the question of how to leverage the source data views to train visual classifiers for unseen target data. This is the DAPI scenario. We extend the LUPI framework based on the information bottleneck to learn visual classifiers in DAPI settings and show that privileged information can be leveraged to improve the learning on new domains. Also, the novel DAPI framework is general and can be used with any visual classifier.;Every use of auxiliary information has been validated extensively using publicly available benchmark datasets, and several new state-of-the-art accuracy performance values have been set. Examples of application domains include visual object recognition from RGB images and from depth data, handwritten digit recognition, and gesture recognition from video

    Deep Learning Architectures for Heterogeneous Face Recognition

    Get PDF
    Face recognition has been one of the most challenging areas of research in biometrics and computer vision. Many face recognition algorithms are designed to address illumination and pose problems for visible face images. In recent years, there has been significant amount of research in Heterogeneous Face Recognition (HFR). The large modality gap between faces captured in different spectrum as well as lack of training data makes heterogeneous face recognition (HFR) quite a challenging problem. In this work, we present different deep learning frameworks to address the problem of matching non-visible face photos against a gallery of visible faces. Algorithms for thermal-to-visible face recognition can be categorized as cross-spectrum feature-based methods, or cross-spectrum image synthesis methods. In cross-spectrum feature-based face recognition a thermal probe is matched against a gallery of visible faces corresponding to the real-world scenario, in a feature subspace. The second category synthesizes a visible-like image from a thermal image which can then be used by any commercial visible spectrum face recognition system. These methods also beneficial in the sense that the synthesized visible face image can be directly utilized by existing face recognition systems which operate only on the visible face imagery. Therefore, using this approach one can leverage the existing commercial-off-the-shelf (COTS) and government-off-the-shelf (GOTS) solutions. In addition, the synthesized images can be used by human examiners for different purposes. There are some informative traits, such as age, gender, ethnicity, race, and hair color, which are not distinctive enough for the sake of recognition, but still can act as complementary information to other primary information, such as face and fingerprint. These traits, which are known as soft biometrics, can improve recognition algorithms while they are much cheaper and faster to acquire. They can be directly used in a unimodal system for some applications. Usually, soft biometric traits have been utilized jointly with hard biometrics (face photo) for different tasks in the sense that they are considered to be available both during the training and testing phases. In our approaches we look at this problem in a different way. We consider the case when soft biometric information does not exist during the testing phase, and our method can predict them directly in a multi-tasking paradigm. There are situations in which training data might come equipped with additional information that can be modeled as an auxiliary view of the data, and that unfortunately is not available during testing. This is the LUPI scenario. We introduce a novel framework based on deep learning techniques that leverages the auxiliary view to improve the performance of recognition system. We do so by introducing a formulation that is general, in the sense that can be used with any visual classifier. Every use of auxiliary information has been validated extensively using publicly available benchmark datasets, and several new state-of-the-art accuracy performance values have been set. Examples of application domains include visual object recognition from RGB images and from depth data, handwritten digit recognition, and gesture recognition from video. We also design a novel aggregation framework which optimizes the landmark locations directly using only one image without requiring any extra prior which leads to robust alignment given arbitrary face deformations. Three different approaches are employed to generate the manipulated faces and two of them perform the manipulation via the adversarial attacks to fool a face recognizer. This step can decouple from our framework and potentially used to enhance other landmark detectors. Aggregation of the manipulated faces in different branches of proposed method leads to robust landmark detection. Finally we focus on the generative adversarial networks which is a very powerful tool in synthesizing a visible-like images from the non-visible images. The main goal of a generative model is to approximate the true data distribution which is not known. In general, the choice for modeling the density function is challenging. Explicit models have the advantage of explicitly calculating the probability densities. There are two well-known implicit approaches, namely the Generative Adversarial Network (GAN) and Variational AutoEncoder (VAE) which try to model the data distribution implicitly. The VAEs try to maximize the data likelihood lower bound, while a GAN performs a minimax game between two players during its optimization. GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. This causes the generator to create similar looking images with poor diversity of samples. In the last chapter of thesis, we focus to address this issue in GANs framework
    • …
    corecore